138

INTEGRATED ENGINEERING

Executable

Specifications
for Embedded
Distributed Systems

Miroslav Sveda and Radimir Vrba, Brno University of Technology

ombining hardware compo-
nents with an executable speci-
fication language facilitates the
specification prototyping of
embedded distributed systems.
The specification language should cover
process management, timing, and com-
munication commands that real-time
executive and communication task ser-
vices of every node prototype can inter-
pret. We use a technique that employs
attribute grammars and either a macro-
processor or Prolog to execute the lan-
guage.
The overall prototyping technique
consists of four steps:

e defining a concrete specification lan-
guage, including a description of its
semantics through an attribute
grammar;

e using text macros or Prolog definite
clause grammar to implement a
translator prototype that encodes
this attribute grammar;

e designing a trial architecture and
identifying its reusable components;
and

e using the trial system architecture
and the devised specification lan-
guage to specify a target application
system, followed by macroproces-
sor- or Prolog-driven expansion of
that specification into executable
code.

Computer

SPECIFICATION LANGUAGE

We use a time model that fits systems
requirements to design embedded dis-
tributed applications. Currently, prevail-
ing real-time specification and design
methodologies are based on global
clocks. The local-clocks alternative ap-
peals to designers because it uses an
approach that is similar to the techniques
they use to implement applications.

We derive local-time semantics from
partial-order logical time and from a

physical generator of periodic events. An
event-count, E, counts the number of a
specific type of events that have occurred
during execution. Event occurrence in-
vokes the implicit operation ADVANCE
(E) : E :=E + 1. The explicitly callable
operation AWAIT(E, s) suspends the
calling process until the value of E is at
least s. The call AWAIT (E, s) can reset
the current value of E, enabling relative
counting. An event-count monitors either
a prescribed type of asynchronous exter-

nal event or periodic internal events that
an internal timer circuit implements as
local-time clock ticks.

A system’s logical structure employs
distributed processes that use message
passing to communicate asynchronously
through an input buffer at the destina-
tion. The Asynchronous Specification
Language (ASL), which describes these
processes, respects true concurrency. The
language’s real-time operational seman-
tics stem from the event-count model.

In the following example, the most
important primitives relate to process
specification, timing, communication,
and control structure:

Process_name (
is:1list of s_inputs;
os:list of s outputs;
ic:1list _of m_inputs;
oc:list of m outputs):

. endprocess;

wait(_, timeout);

wait(event, _);

wait(event, timeout, test);

send (message, destination);

loop ... [... when <cond>

o] exit]*

. endloop;

[action

Each asynchronous process is equipped
with an individually timed local clock.

Designers can use hardware
components and an executable
specification language to
efficiently prototype embedded
distributed systems.

The process header contains lists labeled
is, os, ic, and oc that act as the inter-
face to the process’s environment. The
language distinguishes between signal
inputs or outputs, denoting unbuffered
events that either carry value or signal
their occurrence. It identifies message
inputs or outputs as typed asynchronous
channels between process couples. These
signals and messages declare the inter-
process synchronization and communi-
cation, whose operations are driven by



the statements wait (event, ), wait
(event, timeout, test),and send
(message, destination).

The value time-out defines the interval
during which the primitive wait (_,
timeout) suspends a process. In this
case, the monitored event is every tick of
the local clock, so the related event-count
operation is AWAIT (local_ ticks,
timeout_value). For the primitive
wait(event, _), which suspends a
process until the specified event appears,
the operation is AWAIT (event_type,
1) . The semantics of the combined state-
ment wait (event, timeout, test)
require two event-counts. The first event-
count anticipates the specified event, and
the second, with a lower priority, moni-
tors the local clock. When the value of the
Boolean parameter test is true, the event
occurred within the interval time-out.

The primitive send (message, des-
tination) uses message passing to im-
plement asynchronous communication
through an input buffer at the destination.
To respect different local clocks, a clock
common to the source and the destination
controls the information transfer. Inputting
a message induces the event for the related
operation AWAIT (message, 1).

The control structure primitive Loop...
endloop delimits an indefinite cycle,
which is exited upon a true result of test-
ing the condition following the primitive
when. Consequently, the system executes
statements occurring between the primi-
tives action and exit, and, after that,
those following the endloop primitive.
This combined statement extends the lan-
guage by providing additional control
structures with simple macro-like text
replacements such as

if <cond> then <sl> else
<s2> fi;
~ loop when <cond>
action <sl> exit <s2>
when true exit endloop;
timeloop (timeinterval) <s>
endloop;
~ loop wait(_,
timeinterval) <s>
endloop;

The control structure timeloop
(timeinterval)...endloop specifies

Attribute Grammars

An attribute grammar is a context-free structure enriched by attributes and
semantic rules. The context-free grammar G is an ordered quadruple G = (N, T,
P, S), where N is a set of nonterminals (textual variables), T is a set of terminals
(textual constants), P is a set of syntactic rules that respect context-free constraints
(the left side of the rule consists of only one nonterminal and the right side is a
string of terminals, nonterminals, or both), and S is the starting symbol (initial
nonterminal). The attribute is a data type with instances and values. A set of attrib-
utes ascribes every nonterminal; further, every syntactic rule has a set of semantic
rules that enable calculation of left-side attribute values from right-side attribute
values and constants. An L-attribute grammar allows calculation of all attribute
values during only one pass through a derivation tree, created from the starting
symbol by stepwise substitution of nonterminals with the help of syntactic rules.

an isochronous loop, which the system
periodically initiates whenever the time
interval expires. The operation AWAIT
(local ticks,
value) defines the operational semantics
of timing these initiations.

The “Attribute Grammars” sidebar
provides details about the L-attribute
grammar. The example of a nested con-
trol structure explains the principle of
control structure prototyping imple-
mented over an unstructured assembler-
type base language. A structured
statement of the type <LOOP>, with prim-
itives loop — [. . .when [action...]
- exit]* — endloop, is accompanied
by the attribute BGN, whose values dis-
tinguish individual instances of the
<LOOP> structure during program com-
pilation. The system stores the BGN
attribute values in an expansion-time
stack for nesting. The CNT counting type
attribute is implemented as a global vari-
able of compile time, and its value
increases incrementally with each new
<LOOP> instance. The relevant part of the
attribute grammar is

timeinterval

<BLOCK>: :=
<LOOP><BLOCK>/<sbl>
BGN := CNT

<LOOP>: :=loop <BLOCK>
[{BLOCK>when <cond>
[action <BLOCK>] exit]*
<{BLOCK> endloop;
CNT := CNT + 1

where <sb1l> means a segment in the
base language. In the syntactic rules,

strings in angle brackets stand for non-
terminals, and strings without angle
brackets represent terminals; in the
semantic rules, capital strings identify
attributes. The timing and communica-
tion primitives map to real-time execu-
tive services and communication task
services, and the control-structure state-
ments and data structure specifications
are encoded either in textual macros or in
Prolog definite-clause grammar rules and
normal Prolog goals, as the “Prototyping
with Prolog” sidebar describes.

LOW-COST TRANSLATOR
PROTOTYPING

The nested control structure <LOOP>
helps to explain the principle of control
structure translation prototyping. In
addition to the L-attribute grammar, we
use a single-pass textual macroprocessor,
embedded as a preprocessor in an assem-
bler. We use macros to implement the
primitives loop, when, action, exit,
and endloop; the macro when contains
a proper decision condition—a more
developed implementation uses parame-
ter macros that evaluate complex condi-
tions in the form of and-or decision
trees. The synthesized attributes BGN and
CNT appear as expansion-time variables.
The macro 1oop embodies the semantic
rules and pushes the actual value of BGN
on the stack. If the when macro exists, it
contains the stack-top inquiry. The exit
and endloop macros remove the stack’s
old top. The decision condition translates
into a conditional jump to the concate-
nation of a chosen symbol-string and a

January 2001




Integrated Engineering

Prototyping with Prolog

Many Prolog implementations provide a notational extension called definite-
clause grammars, which also enable straightforward encoding of attribute gram-
mars. A definite-clause grammar expresses context-free rules as logic statements.
Certainly, notation is only a syntactic enhancement of Prolog: It brings no new
expressive power because we can use standard Prolog to directly encode all rules.
On the other hand, because we can use arguments with nonterminals, definite-
clause grammars are more powerful than context-free grammars. This feature
makes it possible to use attribute names to bind syntactic rules described by a
definite-clause grammar with semantic rules encoded by normal Prolog goals.
In this case, the translator prototype consists of a Prolog interpreter, the attribute
grammar defined by definite-clause grammar rules for syntax, and normal Pro-

log goals for static semantics.

value of BGN to create the label. This
algorithm binds adequate structure prim-
itives, including forward referencing of
yet-to-be-defined destination addresses
for jumps.

The detailed implementation depends
on the microprocessor’s characteristics.
When we embed the macroprocessor in
a simple macro assembler, a less de-
manding option includes employing the
auxiliary attribute NST as a global vari-
able corresponding to the actual depth
of nesting where NST is a pointer to
BGN’s stacked values. If the macro-
processor’s frame has a string decompo-
sition operation, a more advanced
variant simulates the entire stack in the
form of a symbol-string. Both techniques
correspond to parsing with the help of a
push-down automaton. We can also use
the internal stack to perform a recursive-
descent procedure when the macro-
processor allows a call according to a
distributed pattern.

Membe\rs\
save 25%

g

\

onall confg;ences sponsor
by the IEEE Computer Society.

Not a member? Join online today!

computer.org/join/

Computer

TRIAL ARCHITECTURE
AND COMPONENTS

A node prototyping board supports
experiments with embedded distributed
systems using various topologies and
communication protocols. The board’s
flexibility stems from its adaptable hard-
ware architecture and the use of modifi-
able software components. The board
contains two 8-bit microcontrollers inter-
connected through a programmable log-
ical array and a shared-memory SRAM,
configured as FIFO or two-port memory.
Auxiliary circuitry supports both micro-
controllers; the microcontrollers com-
municate externally through their parallel
or serial ports.

The node prototyping board’s software
component consists of a simple real-time
operating system kernel that maintains
local physical clocks, monitors surround-
ing events, and synchronizes communica-
tion and application tasks. Real-time OS
kernels for both microcontrollers create
an environment that provides priority-
based preemptive scheduling for event-
driven communication and application
tasks: external interrupts, timers, and mes-
sages. The communication task serves all
messages routed to or from the micro-
controller and offers remote communica-
tion services to application tasks.

To build a node prototype that fits our
specification, generating the code for a
process is the only application task for
one of the two microcontrollers on the
board; the other microcontroller is ded-
icated to extraboard communications
only. These microcontrollers communi-

cate with each other through onboard
SRAM, an allocation that preserves max-
imal parallelism. The other tasks support
monitoring and debugging throughout
the rapid prototyping process. Moreover,
they also support the next prototyping
steps, reducing the number of nodes by
scheduling some application processes in
the same microcontroller.

e have successfully used this low-

cost prototyping technique for

real-world applications such as
petrol dispenser control, multiple lift
control, and interconnecting different
types of low-level field buses. To date, we
have developed two semantically close
procedural ASL versions along with their
related translator prototypes for use in
microcontroller application domains.
While we can classify the syntax for these
ASLs as Pascal-like and C-like with dis-
tributed process extensions, both have
formal operational semantics for use in
verifying specifications with model
checking. Current research areas include
model-checking support tools and appli-
cation domains.

Of course, this low-cost technique can-
not compete against large prototyping
environments in providing user assis-
tance. On the other hand, this technique
is immediately available and easily
adaptable to special requirements as the
local-time concept demonstrates.

Miroslav Sveda is an associate professor
in the Department of Computer Science
and Engineering at the Brno University
of Technology, Czech Republic. Contact
him at sveda@dcse.fee.vutbr.cz.

Radimir Vrba is a professor in the
Department of Microelectronics at the
Brno University of Technology, Czech
Republic. Contact him at vrbar@umel.
fee.vutbr.cz.

Editors: Jerzy W. Rozenblit, University of
Arizona, ECE 320E, Tucson, AZ 85721,
jr@ece.arizona.edu; and Sanjaya Kumar,
Honeywell Technology Center, MS MN65-
2200, 3660 Technology Dr., Minneapolis,
MN 55418, skumar@htc.honeywell.com



