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Automated Debugging: 
Are We Close?

F or the past 50 years, software engineers have
enjoyed tremendous productivity increases
as more and more tasks have become auto-
mated. Unfortunately, debugging—the
process of identifying and correcting a fail-

ure’s root cause—seems to be the exception, remain-
ing as labor-intensive and painful as it was five decades
ago. An engineer or programmer still has to notice
something, wonder why it happens, set up hypothe-
ses, and then attempt to confirm or refute them.

In theory, there is no reason to continue this legacy.
Debugging can be just as disciplined, systematic, and
quantifiable as any other area of software engineer-
ing—which means that we should eventually be able
to automate at least part of it. So far, research has con-
centrated on program analysis because of its roots in
compiler construction. But analysis requires complete
knowledge about the program being examined and
does not scale well to large programs.

Testing is another way to gather knowledge about
a program because it helps weed out the circumstances
that aren’t relevant to a particular failure. If testing
reveals that only three of 25 user actions are relevant,
for example, you can focus your search for the fail-
ure’s root cause on the program parts associated with
these three actions. If you can automate the search
process, so much the better.

This is the premise of Delta Debugging, an algo-
rithm that uses the results of automated testing to sys-
tematically narrow the set of failure-inducing
circumstances.1 Programmers supply a test function
for each bug and hardcode it into any imperative lan-
guage. The test function checks a set of changes to

determine if the failure is present or if the outcome is
unresolved and feeds that information to the Delta
Debugging code.

Programmers can either hardcode the algorithm,
available from the Delta Debugging Web site
(http://www.st.cs.uni-sb.de/dd/) or download and
adapt the core of Wynot, a prototype debugger writ-
ten in Python that runs on a Unix or Linux system.
Both the algorithm and Wynot (short for “worked yes-
terday, not today”) fit with any imperative language,
and Wynot is platform independent. 

Work on a “debugging server” is in progress. The
idea is to have a programmer submit the program to
be examined along with invocation details to a Web
site, choose from a menu how to identify a failure, and
click on “Submit.” Wynot will then automatically iso-
late the failure-inducing circumstances and e-mail the
results to the programmer. Plans are for the server to
be operational by spring 2002. Eventually, users might
be able to run their own debugging server—for exam-
ple, within a company intranet or as a module in an
automated test system. 

HOW DELTA DEBUGGING WORKS
As Figure 1 shows, external failures typically come

from program input, user interaction, and program
changes. Within each of these categories are myriad
circumstances, any one of which could be the root
cause of the failure. 

Delta Debugging requires a test to prove that each
circumstance is really failure inducing. An automated
testing environment typically provides such a test,
but the number of test runs can be quite large. The
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Despite increased automation in
software engineering, debugging hasn’t
changed much. A new algorithm
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the hit-or-miss approach to isolating 
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trade-off is that, unlike conventional debugging,
Delta Debugging always produces a set of relevant
failure-inducing circumstances, which offer signifi-
cant insights into the nature and cause of the failure.
Also, if you know something about the structure of
the failure-inducing circumstance, fewer tests are
required. 

How time-consuming it is to incorporate Delta
Debugging in a testing environment depends on the
circumstances. Program input is typically easy to
access, modify, and evaluate. Adapting Delta
Debugging to run a program on a different input
should take only a matter of hours. Examining user-
interaction history requires external tools that record
and play back user interaction. Program changes are
moderately easy to access and simple to modify, but
altering configurations can be difficult, depending on
the tools you use. 

My colleagues and I used the Wynot prototype to
debug Mozilla, Netscape’s open-source Web browser
project (http://www.mozilla.org/), and the GNU
debugger. Specifically, we used Wynot to 

• simplify HTML input that causes the Mozilla
browser to fail—after 57 test runs, only one of
896 HTML lines remained;

• simplify Mozilla failure-inducing user interac-
tion—after 82 test runs, we saw that only 3 of 95
user actions were relevant for the failure; and 

• identify failure-inducing code changes—after 97
tests, we narrowed a set of 178,000 changed lines
to one changed line in the GNU debugger that
caused a failure.

SIMPLIFYING PROGRAM INPUT
Mozilla is a work in progress with a wide audience

(Netscape 6 uses a Mozilla variant), and Mozilla engi-
neers receive several dozens of bug reports a day. Their
first step in processing a bug report is to simplify it—
eliminate all details that are irrelevant to the failure.
In part, a simplified bug report makes debugging eas-
ier because it replaces other reports with irrelevant
details.

In July 1999, Bugzilla, the Mozilla bug database,
listed more than 370 open, unsimplified bug reports,
and the queue was growing. Seeing that Mozilla engi-
neers “faced imminent doom,” Eric Krock, the
Netscape product manager, sent out the Mozilla
BugAThon, a call for volunteers to help simplify bug
reports.2 Each volunteer was to turn a bug report into
a set of minimal test cases, in which every input would
be significant in reproducing the failure. For every five
simplifications, a volunteer would get an invitation to
the Mozilla launch party; 20 simplifications would earn
the volunteer a T-shirt signed by grateful engineers.

The following was Bugzilla entry #24735:

Ok the following operations cause
mozilla to crash consistently on my
machine

→ Start mozilla
→ Go to bugzilla.mozilla.org
→ Select search for bug
→ Print to file setting the bottom  

and right margins to .50 (I use  
the file /var/tmp/netscape.ps)

→ Once it’s done printing do the 
exact same thing again on the 
same file (/var/tmp/netscape.ps)

→ This causes the browser to crash 
with a segfault

To simplify bug reports, BugAThon volunteers were
supposed to load the Bugzilla Web page (http://
bugzilla.mozilla.org/) into their text editors and then
follow the BugAThon instructions for simplifying
Mozilla test cases:

Start removing HTML markup, CSS rules, and lines
of JavaScript from the page. Start by removing the
parts of the page that seem unrelated to the bug.
Every few minutes, check the page to make sure it
still reproduces the bug. [. . . ] When you’ve cut away
as much HTML, CSS, and JavaScript as you can, and
cutting away any more causes the bug to disappear,
you’re done.2

This volunteer most likely carried out the process
manually, but there is no need to—especially in an
environment designed for automation. If you have an
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Figure 1. How circum-
stances affect a pro-
gram’s behavior. A
failure can stem from
a range of circum-
stances, including
program input, such
as an HTML page that
makes a browser fail,
user interaction that
makes a program
crash, or changes a
programmer makes
after the program
fails a regression
test.
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automated test that tells whether or not the failure is
still present, you can easily automate simplification.
Setting up an automated test that checks whether
printing a specific HTML page works is not very dif-
ficult. All you need is a record-and-replay facility for
user interaction.

One approach to automating simplification is to
write a program that removes single characters from
the input. After each removal, the program would
check whether or not the failure still occurs, using the
replay tool to automate execution. It would repeat the
check until only characters relevant in producing the
failure remain.

Unfortunately, for the 40,000 characters of the
Bugzilla Web page, this approach would require at
least 40,000 tests—and this is the good news. The bad
news is that you could end up cutting away the last
character again and again.

A better approach is to use the technique experi-
enced programmers use: Cut away large chunks first
and increase granularity later. For example, start by
cutting away chunks of 20,000 characters, then
chunks of 10,000, 5,000, 2,500 characters, and so on,
cutting away anything not relevant for the failure. By
increasing the granularity, you eventually remove sin-
gle characters.

This is the approach we took in building our pro-
totype debugger. Wynot starts with large chunks of an
input such as replaying a Mozilla user interaction and
keeps removing parts until the chunk size is minimal
and it can no longer simplify the input.

We reproduced the “Mozilla cannot print” failure
as Bugzilla entry #24735 described it and ran Wynot
using the Bugzilla HTML code as input. After 57 test
runs on a 400-MHz Linux PC, each starting Mozilla
and replaying the previously recorded user interac-
tion, Wynot simplified the original 896 lines to a one-
line input:

<SELECT NAME=”priority” MULTIPLE  
SIZE=7>

Another 25 runs reduced this line to just the
<SELECT> tag. Each run took an average 15 seconds,

for a total of about 21 minutes. Figure 2 shows how
the algorithm worked.

SIMPLIFYING USER INTERACTIONS
Having simplified the HTML input, we were ready

to look at other details in the Mozilla bug report. Was
“setting the bottom and right margins to .50” really
necessary, for example? In a separate test from the
HTML input test, we subjected the log of recorded
user interactions to Wynot to find the minimum set of
failure-inducing user actions. After 82 test runs (21
minutes), only 3 of the 95 user actions remained:

1. Press the P key while holding the Alt modifier key.
(Invoke the Print dialog.)

2. Press mouse button 1 on the Print button without
a modifier. (Arm the Print button.)

3. Release mouse button 1. (Start printing.)

Among the removed actions were moving the mouse
pointer, selecting the print-to-file option, altering the
default file name, setting the print margins to .50, and
releasing the P key before clicking on “Print.” All these
were irrelevant in producing the failure. Pressing the
mouse button before releasing it was relevant, however.

Thus, after simplifying both HTML input and user
actions, the bug report was

Printing a page containing <SELECT>makes Mozilla
crash.

That’s it—everything else was irrelevant. 
In principle, Mozilla engineers could easily apply

this minimization procedure automatically for the
12,479 open bugs (as of 15 February 2001) in the
Bugzilla database, as long as they could reproduce bug
reports automatically. All that is needed are an HTML
input, a sequence of user actions, an observable fail-
ure, and a little time to let the computer simplify the
failure-inducing input.

Subsequent testing on 44 different input-related
failures yielded similar results: Wynot always sim-
plified the input significantly.3 The Delta Debugging
Web site offers the public-domain tool we used to

Figure 2. Simplifying
a bug in Mozilla’s
HTML input. The
Wynot prototype
starts cutting large
chunks of HTML input
(many characters at a
time) and gradually
narrows the cut to just
a few characters. By
line 26, only
<SELECT> remains.
The rest of the charac-
ters (gray) have been
cut. The ✔and ✘

symbols denote test
outcome pass and
fail, respectively. 

1 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✘
2 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
3 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
4 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
5 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✘
6 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✘
7 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
8 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
9 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
10 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✘
11 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
12 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
13 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔

14 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
15 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
16 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✘
17 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✘
18 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✘
19 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
20 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
21 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
22 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
23 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
24 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
25 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
26 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✘



record and play back events for the Unix/Linux X
system. 

ISOLATING DIFFERENCES
To simplify an input to n characters, Wynot requires

at least n tests—simply because it must verify that each
character is relevant for the failure. This is a penalty
for complex inputs. As an alternative, we tried another
approach, which is much more effective: If you know
that there is another input where the failure does not
show up, you can focus on the input differences rather
than on the entire input. In general, isolating a small
failure-inducing difference is more efficient than sim-
plifying a large failing input.

Figure 3 shows how we isolated a failure-inducing
difference in HTML code. Again, for the failing run,
we started with a single-line input containing the
SELECT tag. The passing run had no input. To nar-
row the difference between the two, we could have
removed differences from the failing run and kept cut-
ting away until a minimal set remained. But rather
than simply cutting input while the failure persisted,
we also added input while the program still passed the
test. The combination of cutting and adding rapidly
pared down the set of differences whenever a test
either passed or failed. 

In Test 3 in Figure 3, for example, half the HTML
input passes the test. Thus, this input is not failure
inducing, and we can include it in all further tests. The
difference becomes smaller. In Test 4, Wynot has added
half the remaining input. Now, the test fails, which
indicates that the failure-inducing difference is in the
text just added. The difference becomes smaller still.

Repeating this scheme took only seven tests to nar-
row the failure-inducing difference to one character.
The input of the failing run is reduced to

<SELECT NAty” MULTIPLE SIZE=7>

while the input of the passing run expanded to

SELECT NAty” MULTIPLE SIZE=7>

The difference between them is only the first charac-
ter, the angle bracket, which when missing changes
the HTML tag to ordinary text. As in the HTML pro-
gram input test, the failure depends on whether the
user prints a SELECT tag or ordinary HTML text. 

FINDING FAILURE-INDUCING CODE CHANGES
The most important source of failure-inducing cir-

cumstances is, of course, the code itself. I’ve shown
how Delta Debugging works to isolate failure-induc-
ing program input. In a sense, program code itself is
input—input to some machine executing the program.
So at least in theory, you could apply Delta Debugging

to simplify program code as well—just cut away code
until only a relevant slice remains. In practice, how-
ever, you would face a major problem: The code of
any nontrivial program is far more interwoven than
typical program inputs. You can easily cut away some
HTML code and still get something meaningful, but
removing a piece of code that initializes a variable can
dismantle the entire program. Therefore, most
changes, such as removing statements, will lead to
unresolved test outcomes. This gets you closer to the
worst case—a quadratic number of tests.

Additional program analysis, especially program
slicing,4,5 can eliminate several irrelevant program
parts from the start. However, we’re only beginning
to explore the integration of program analysis and
Delta Debugging. In short, simplifying failure-induc-
ing program code is not ready for practice.

Again, a more practical approach is to isolate a
difference. If you know that the failure does not
show up in another program version, you can have
Delta Debugging isolate the failure-inducing differ-
ence.

We used this approach to isolate the failure-inducing
changes to GDB, the GNU debugger. In July 1998, a
Motorola employee sent in a bug report stating that after
upgrading GDB from version 4.16 to 4.17, running the
debuggee from GNU data display debugger (DDD), a
graphical front end for GDB, no longer worked:

Date: Fri, 31 Jul 1998 15:11:05–0500

To: DDD Bug Report Address <bug-ddd@gnu.org>
Subject: Problem with DDD and GDB 4.17

When using DDD with GDB 4.16, the run com-
mand correctly uses any prior command-line argu-
ments, or the value of “set args”. However, when I
switched to GDB 4.17, this no longer worked: If I
entered a run command in the console window, the
prior command-line options would be lost. [...]

This is a classical instance of the “worked yesterday,
not today” problem: Some change (or difference) causes
a failure. In this case, the change is huge: The difference
between the source codes of GDB 4.16 and GDB 4.17
is 178,000 lines—178,000 lines have been either added,
deleted, or changed between the two releases. (If you
consider that the GDB source code itself has about
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Figure 3. Focusing on
the difference be-
tween the passing run
(bottom line) and fail-
ing run (top line). The
combined approach of
cutting differences
and adding them to
passing runs is more
efficient than just sim-
plifying. After only
seven tests, Wynot
isolates the failure-
inducing difference—
the left angle bracket
of the HTML tag. 

2 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✘
4 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✘

7 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
6 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
5 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
3 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
1 <SELECT NAME=”priority” MULTIPLE SIZE=7> ✔
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500,000 lines, and that about a third of the code has
been changed, you might wonder why everything else
still works.) Somewhere within these 178,000 lines lie
the changes that caused DDD to fail—but where?

We used Delta Debugging to isolate this cause. First,
we decomposed the 178,000-line diff into 8,721 tex-
tual changes in the GDB source, with any two textual
changes separated by a context of at least two
unchanged lines. We then let Wynot isolate the fail-
ure-inducing changes. Each test applied a subset of
changes to the GDB code, rebuilt GDB, and ran an
automated test that verified whether or not the fail-
ure was still present.

Although we continued to use the isolation
approach to reduce the differences between the two
original versions, we faced a new problem. Wynot
had no knowledge about the semantics of the
changes and combined them more or less arbitrarily.
This caused tests to turn out unresolved because the
changes would not integrate, the program would not
build, and so on—in short, there was nothing to test.
First, we optimized the algorithm to handle unre-
solved outcomes: By applying smaller and smaller
sets of changes, we decreased the risk of conflicting
changes. Second, rather than grouping changes arbi-
trarily, we grouped changes by their scope, that is,
the directory, file, or function in which they were
applied. We assumed that a set of changes was less
likely to be in conflict if they all applied to the same
scope. 

Figure 4 shows the result of these Delta Debugging
runs and the effect of the optimizations. Starting with
8,721 changes, Wynot required between 288 and 97
tests—the more optimizations applied, the fewer tests
required. On a 400-MHz Linux PC, each test took
about 240 seconds to apply the changes and rebuild
and run GDB; 97 tests thus required about 6.5 hours.

In all three cases, Wynot reduced the 178,000 lines
to the same one-line change that caused DDD to mal-
function:

diff -r gdb-4.16/gdb/infcmd.c gdb4.17/gdb/infcmd.c
1239c1278
< “Set arguments to give program being debugged
when it is started. \n\ ———
> “Set argument list to give program being
debugged when it is started. \n\ 

This change in a string constant from arguments to
argument list was responsible for GDB 4.17 not inter-
operating with DDD. Given the command “show
arguments,” GDB 4.16 gives a reply that is obviously
constructed from the changed string constant:

Arguments to give program being debugged when it
is started is “a b c”

GDB 4.17, however, issues a slightly different (and
grammatically correct) text

Argument list to give program being debugged when
it is started is “a b c”

which DDD could not parse. To solve the problem, we
simply reversed the GDB change; eventually, we
upgraded DDD to make it work with the new GDB ver-
sion.

We have applied Delta Debugging to find failure-
inducing changes in other projects as well. However, in
most of these projects, we had a version repository,
which lets us group changes by their creation date. With
such knowledge, the risk of inconsistencies decreases
dramatically. In one case,6 Delta Debugging reduced
344 ordered changes from the DDD version repository
to a single failure-inducing change—in only 12 tests.

A lthough Delta Debugging streamlines the
process of isolating failure-inducing input and
failure-inducing code changes, programmers

must still follow the causality chain and decide where
to break it. A failure typically does not stem from only
one circumstance. Breaking the chain for one failure
is easy, but breaking it to eliminate as many failures
as possible is challenging.

We are currently applying Delta Debugging to
examine internal program states, which isolates even
more elements of the causality chain, and first results
are promising.7 Future combinations of automated
testing and program analysis may even assist in prop-
erly breaking the causality chain as well.

Also, program input is only one of many circum-
stances that affect its behavior. The program’s envi-
ronment, operating system, and runtime library may
also be relevant. We are exploring Delta Debugging
for circumstances like the following:
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Figure 4. Delta
Debugging (DD) opti-
mizations. Minimiz-
ing the set of changes
between GDB 4.16
and GDB 4.17 isolates
the failure-inducing
change after 288
tests. Narrowing the
difference between
the two versions 
finds the same
change after 187
tests. Grouping
changes according 
to scope reduces 
the tests to 97.



• environment settings (which part of the environ-
ment is relevant?),

• system libraries (after an upgrade, I am stuck in
a DLL misconfiguration—why?), and

• thread schedules in parallel programs (which part
of the schedule causes a nondeterministic behavior?).

As we discover more about the structure of these cir-
cumstances and the resulting causality chain, we come
closer to passing much of the boredom and monotony
of debugging onto machines. Eventually, debugging
may become as automated as testing—not only detect-
ing failures, but also revealing how they came to be. ✸
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