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Technically relevant fluid-structure interaction simulation of detonation-induced dy-
namic response of thin-walled solid structures requires an efficient detonation solver that
can cope with large deformations as well as arbitrary topology changes of the computa-
tional domain. We present a parallel adaptive method that uses a scalar level set function
to represent embedded evolving solid boundaries on an Eulerian Cartesian mesh and that
employs a constant volume burn model for efficient detonation propagation in a shock-
capturing finite volume scheme. As realistic computational application, we consider the
induction of large plastic deformations and the fracture of thin aluminum tubes due to
the passage of fully developed detonations in ethylene-oxygen mixtures.

1. INTRODUCTION

The Center for Simulation of Dynamic Response of Materials at the California In-
stitute of Technology has recently completed the construction of an infrastructure for
fluid-structure interaction (FSI) simulation involving compressible fluids named “Virtual
Test Facility” (VTF) [1,2]. The approach targets highly instationary coupled problems,
such as the rupture and fragmentation of solid structures under shock or detonation wave
impact. In this regime, computational fluid dynamics (CFD) and computational solid
dynamics (CSD) solver both need to be time-accurate and have to consider all arising
supersonic wave phenomena correctly. Applicable numerical schemes are usually shock-
capturing and time-explicit.

The design of the VTF follows a partitioned approach in which dynamically adaptive
Cartesian CFD solvers can be invoked together with different CSD solvers. Fluid and
solid are assumed to occupy disjoint parts of the computational domain and interaction
is accomplished by exchanging boundary conditions only at the fluid-solid interface after
consecutive time steps. For compressible fluids, stable solutions are obtained reliably with
such a “weakly coupled” method, when the evolving interface geometry and velocities are
imposed as boundary conditions on the CFD solver and the hydrodynamic pressure is
used as force boundary condition acting on the solid exterior [3,4].

In the present paper, we apply the VTF to simulating rupture events of thin-walled
aluminum tubes due to the passage of gaseous detonations in ethylene-oxygen mixtures
[5]. Emphasis is put on the description of the components on the CFD side that have
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proven crucial for these computations: a dynamically adaptive Cartesian upwind scheme
with embedded thin-structure capability and a constant volume combustion model for
resolution-independent detonation propagation, cf. Sec. 2. Specific to the VTF is that
scalar level set functions storing the distance information to the embedded surface are
used to represent the complex geometry on the Cartesian fluid mesh and a ghost-fluid-type
approach is employed to impose fluid boundary conditions [6]. In Sec. 3, we outline the
auxiliary algorithm based on geometric characteristic reconstruction and scan conversion
that we have developed to transform evolving triangulated surface meshes efficiently into
signed or unsigned distance functions. After the validation of the detonation model in
Sec. 4, we present in Sec. 5 two FSI computations with a Lagrangian thin-shell CSD
solver [7]. The first simulation verifies our methodology for detonation-driven large plastic
deformations; the second computation is a preliminary result for the fracturing case.

2. EULERIAN DETONATION SOLVER

The governing equations of detonation wave propagation in gases are the inviscid Euler
equations [9]. Throughout this paper, we consider only the simplified case of a single
exothermic chemical reaction A −→ B with a progress variable Y corresponding to the
mass fraction ratio between the partial density of the reactant A and the total density ρ,
i.e. Y = ρA/ρ. The governing equations of the hydrodynamic model are

∂tρ + ∇ · (ρ~u) = 0 , ∂t(ρ~u) + ∇ · (ρ~u⊗ ~u) +∇p = 0 ,
∂t(ρE) + ∇ · ((ρE + p)~u) = 0 , ∂t(Y ρ) + ∇ · (Y ρ~u) = ψ .

(1)

Herein, ~u is the velocity vector and E the specific total energy. The hydrostatic pressure
p is given by p = (γ − 1)(ρE − 1

2
ρ~uT~u− ρY q) with γ denoting the ratio of specific heats

and q the heat release due to the chemical reaction per unit mass. A one-step reaction
would typically be modeled with an Arrhenius law such as [9]

ψ = −kY ρ exp

(
−EAρ

p

)
, (2)

but in the specific case considered here, we utilize the constant volume burn model sug-
gested by Mader [8]. This model neglects the detailed chemical depletion, and therefore
the internal detonation structure, but ensures correct speed of propagation and state in
chemical equilibrium at all grid resolutions. The model is intended to be applied together
with the fractional step method that numerically decouples chemical reaction and hydro-
dynamic transport. First, the homogeneous system (1) is advanced at a full time step,
then the reactant density ρA, pressure p, and total energy E are modified locally in each
finite volume cell; the total density ρ and the velocity vector ~u remain unaltered. The
algorithm for the detonation model reads:

V := ρ−1, V0 := ρ−1
0 , VCJ := ρCJ

Y ′ := 1− (V − V0)/(VCJ − V0)
if 0 ≤ Y ′ ≤ 1 and Y > 10−8

if Y < Y ′ and Y ′ < 0.9 then Y ′ := 0
if Y ′ < 0.99 then p′ := (1− Y ′)pCJ else p′ := p
ρA := Y ′ρ, E := p′/(ρ(γ − 1)) + Y ′q0 + 1

2
~uT~u
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In the latter, the index 0 indicates the unreacted state (assumed to be constant), while
CJ refers to the equilibrium values that can be calculated in advance following Chapman-
Jouguet theory [9,10] for a given detonation velocity.

As shock-capturing finite volume upwind scheme, we utilize a straightforward extension
of the flux-vector splitting method by Van Leer, cf. [10]. Second-order accuracy in smooth
solution regions is achieved with the MUSCL-Hancock variable extrapolation technique.
Geometrically complex moving boundaries are incorporated into the upwind scheme by
using some of the finite volume cells as ghost cells for enforcing immersed moving wall
boundary conditions [6,11]. The boundary geometry is mapped onto the Cartesian mesh
by employing a scalar level set function φ that stores the unsigned distance to the bound-
ary surface and allows the efficient evaluation of the boundary outer normal in every mesh
point as ~n = −∇φ/|∇φ|.1 A cell is considered to be a valid fluid cell, if the distance at the
cell midpoint satisfies the condition φ > h/2 and as an exterior ghost cell otherwise. The
mesh received from a thin-shell solver corresponds to a two-dimensional manifold surface
mesh and the utilization of condition φ > h/2 is a straightforward, unambiguous solution
to achieve the mandatory thickening of this mesh by the shell thickness h. The contour
line φ = h/2 effectively represents the embedded boundary for the fluid solver (depicted
as dotted line around shell elements in Fig. 1). The hydrodynamic load on each shell ele-
ment is evaluated as the difference between the approximated pressure values at φ = h/2
in the positive and negative direction of each shell element’s normal, i.e. pF := p+ − p−.

The value construction in the cells used to prescribe boundary conditions along embed-
ded moving rigid walls has been detailed in [12]. It involves a monotonicity-preserving
mirroring of spatially interpolated values across the boundary, which we accomplish by a
combination of linear interpolation and one-sided constant value extrapolation. Figure 1
visualizes the interpolation stencil reduction near the boundary for three exemplary cases.
After each fluid time step, internal ghost cells are set to the values of the nearest interior
cell to ensure proper values in case of boundary movement. Note that a ghost-cell-based
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Figure 1: Ghost cells (shaded gray)
around 1d shell elements (black lines)
and construction of mirrored values.

technique does not require a modification of the
numerical stencil itself and is therefore generically
applicable, but causes a diffusion of the bound-
ary location throughout the method and results in
an overall non-conservative scheme. We alleviate
such errors and the unavoidable staircase approx-
imation of the boundary with this approach effec-
tively by using isotropic dynamic mesh adaptation
to refine the Cartesian mesh along the boundary.

Cartesian fluid mesh adaptation in the VTF
is generically provided by the structured adap-
tive mesh refinement (SAMR) framework AM-
ROC [14]. AMROC (Adaptive Mesh Refinement
in Object-oriented C++) implements the SAMR
method after Berger and Colella [13] that com-
bines temporal with spatial resolution adaptation

1For topologically closed boundary surfaces it is also possible to use signed distance instead, cf. [12,7].
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Figure 2. The characteristic polyhedra for
faces and edges of an icosahedron.

Figure 3. Slicing of a polyhedron to form
two-dimensional polygons (right) and scan
conversion of an exemplary case (left).

and has been tailored for time-explicit finite volume schemes. Our extension of the recur-
sive Berger-Collela SAMR algorithm for weakly coupled FSI simulation has been described
in detail in [12]. The parallelization strategy in AMROC is a locality-preserving rigorous
domain decomposition approach that employs a space-filling curve for dynamic run time
partitioning. A representative scalability study is also discussed in [12].

3. EFFICIENT LEVEL SET EVALUATION

The CFD method described in the previous section is based on the concept of employing
a distance function to represent a complex embedded boundary on a Cartesian mesh
implicitly. While distance functions are easily prescribed for single elementary geometric
objects, their evaluation can be very cumbersome for complex shapes. In coupled FSI
simulations, this complex shape is defined by the deforming surface mesh provided by a
CSD solver. Up to now, all CSD solvers in the VTF are unstructured Lagrangian finite
element solvers that export a triangular interface mesh.

One can efficiently compute the distance on a grid by solving the Eikonal equation with
the method of characteristics and utilizing polyhedron scan conversion [15]. For a given
grid point, the relevant closest point on the triangular mesh lies on one of the primitives
(faces, edges and vertices) that comprise the surface. The characteristics emanating from
each of these primitives form polyhedral shapes. Such a characteristic polyhedron contains
all of the points which are possibly closest to its corresponding face, edge or vertex. The
closest points to a triangle face must lie within a triangular prism defined by the face
and its normal; the closest points to an edge lie in a cylindrical wedge defined by the line
segment and the normals to the two incident faces (see Fig. 2 for face (a) and edge (b)
polyhedra for a particular example). Analogously, polygonal pyramids emanating from
the vertices are also possible (not shown). We then determine the grid points that lie inside
a characteristic polyhedron with polyhedron scan conversion. The polyhedron is sliced
along each sheet of the grid lattice to produce two-dimensional polygons. Rasterization is
then used to determine which Cartesian points lie inside a particular polygon, cf. Fig. 3.
Simple geometric formulas are finally applied to evaluate the distance between each grid
point and the mesh primitive found to be closest. By evaluating the distance exactly
only within a small band around the embedded surface, a highly efficient transformation
algorithm can be formulated. It has linear computational complexity both in the number
of Cartesian mesh points and surface triangles [15,1].
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4. DETONATION SOLVER VERIFICATION

The configuration we are interested in is an experimental setup developed by Chao [5].
It consists of a detonation tube of 1.52 m length to which thin-walled aluminum (Al6061-
T6) test tubes are attached. The test specimen have a length from 45.7 cm to 89.6 cm,
an inner radius of 1.975 cm, and a wall thickness of 0.89 mm. While the lower end of
the device is closed, a thin diaphragm seals the upper end. The entire apparatus is filled
with a perfectly stirred mixture of stoichiometric ethylene and oxygen (C2H4 + 3 O2) at
295 K. Combustion is thermally ignited at the closed end and accelerates quickly to a
quasi-stationary detonation wave. A Taylor rarefaction wave occurs immediately behind
the detonation and must be considered in accurate simulations. All computations use a
constant adiabatic mixture coefficient of γ = 1.24.

In order to ensure the correct function of the detonation model sketched in Sec. 2,
we carry out one-dimensional simulations for an initial pressure of p0 = 100 kPa. The
heat release is set to q = 4.704 MJ/kg leading to a detonation velocity of 2291.74 m/s.
This average speed of propagation has been measured in experiments for this particular
configuration [5]. We use a one-dimensional setup with a domain length of 2.15 m encom-
passing the detonation tube and the longest specimen, reflective wall boundary conditions
at the lower end and zero gradient outflow conditions at the upper domain boundary. A
mesh of 1148 cells plus one additional level of cells all refined by a factor 4 is used.
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Figure 4: Comparison of measured (solid)
and simulated (dashed) pressure traces.

The adaptation criteria are scaled gradients
of total density, pressure and mass fraction Y .
Figure 4 gives a comparison of the temporal
pressure traces at the locations x = 0.38 m
(transducer 1), x = 0.78 m, and x = 1.18 m
(from left to right in Fig. 4) in the one-
dimensional simulation with experimentally
measured pressure traces (time origins in both
traces adjusted to t = 0 when the detonation
front reaches transducer 1). The agreement
is very good considering the natural fluctua-
tions in experimental measurements and the
idealized ignition in our inviscid model.

5. FLUID-STRUCTURE INTERACTION SIMULATIONS

In three space-dimensions, we ensure the correct consideration of the Taylor rarefaction
wave, cf. Fig. 4, by considering an additional tubular domain 0.92 m upstream in the CFD
solver. The flow field is initialized with the data from corresponding one-dimensional sim-
ulations taken at the moment when the detonation enters the specimen. The dynamic
material response of the test specimen itself is computed with a Lagrangian CSD solver
following Kirchhoff-Love-type thin-shell theory [7]. The solver uses sub-division finite ele-
ments [16] as a robust discretization approach for shells and special interface elements to
model material rupture [17]. The fluid-structure coupling methodology is a straightfor-
ward partitioned approach in which CFD and CSD solver are parallelized separately using
independent rigorous domain decomposition methods. Exchange of inter-solver bound-
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Figure 5. Simulated schlieren pictures of fluid density and side view of the deforming
solid mesh compared to schlieren photo graphs taken in a corresponding experiment.

ary conditions along the distributed fluid-shell boundary is facilitated through a special
non-blocking communication library. The computations employ the FSI communication
algorithm detailed in [12] that considers the recursive time step refinement in the SAMR
CFD solver and allows additionally for sub-iterations in the CSD solver accommodating
a typically smaller solid time step.

As a verification test towards rupture that involves large plastic material deformations,
an experiment has been conducted in which an “H” shape pattern is cut close to the mid-
dle into a specimen of 89.6 cm. Each cut has a length of 25 mm. The combustible mixture
is the same as in Sec. 4. When the detonation wave passes the pre-flawed region, the two
flaps open up and the high pressure in the Taylor wave causes a venting of the combustion
products into the air. To allow for an undisturbed leakage we use a relative large com-
putational domain of [−92 cm, 89.6 cm] × [−3.75 cm, 56.25 cm] × [−39 cm, 39 cm] and an
SAMR base mesh of 104×80×242 cells with 3 additional level and refinement factors 2, 2,
and 4. Additional to the refinement criteria in Sec. 4, that capture the detonation front,

Figure 6: Fluid mesh adaptation
and deforming solid mesh at 92µs.

the walls of the specimen are always fully refined
enabling an offset parameter of h = 0.81 mm. An
exemplary snapshot of the evolving mesh is de-
picted in Fig. 6. The figure shows schlieren of
the fluid density on the three refinement levels dis-
played in different gray tones and highlights the
enormous gain from dynamic mesh adaptation. An
equivalent unigrid CFD calculation would require
> 7.9 · 109 cells, but the SAMR computation uses
only ≈ 4.0 · 107 cells on average. The CSD sub-
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Figure 7. Detonation-driven rupture of the thin aluminum tube. Snapshots of the solid
mesh with velocity iso-contours (lower row) and cuts through the fluid domain show the
opening due to fracture and the resulting hydrodynamic venting (upper row).

problem employs a triangular input mesh of 17, 056 elements. A J2 plasticity model for
aluminum with power-law hardening and thermal softening is applied as bulk material
model [18].

The computation ran on 72 Opteron-2.2 GHz processors connected with Infiniband
network for about 4300 h CPU to a final time of te = 460µs. In Fig 5, a series of schlieren
photo graphs are compared to corresponding simulated images at a nearby time. The
computational graphics display schlieren of the fluid density in the plane perpendicular
to the z-axis together with a side view of the deforming solid mesh. The time origin is
set to the moment when the detonation passes the middle of the longitudinal slot. The
agreement in flow evolution and solid deformation is quite good confirming the correct
function of the fluid-structure coupling methodology and the appropriateness of the chosen
computational setup.

Finally, we present one exemplary fluid-structure interaction computation that involves
the rupture of the test specimen utilizing the fracture capability of the thin-shell CSD
solver [17]. The initial pressure is p0 = 180 kPa and the specimen has a length of 45.7 cm.
To ensure a reproducible fracture the specimen has a central longitudinal notch of 6.32 cm
at the middle, which is modeled as an initial crack in the computations. Figure 7 visualizes
the results for a shell mesh of 8665 elements and a uniform Cartesian fluid mesh of
40× 40× 725 cells that required ≈ 900 h CPU on 27 nodes of a Pentium-4-2.4 GHz dual
processor system (21 fluid and 33 solid processes). 1300 coupled time steps with fixed
step size to a final time of te = 260µs have been calculated (20 solid solver sub-steps
in each fluid time step). The left graphic of Fig. 7 shows the beginning of the crack
opening ≈ 150µs after the detonation has passed the initial crack. The snapshot on
the right shows the rupture at the final time 260µs. The venting of high pressurized
reacted gas from the opening slit and the cracking of the material are clearly visible. It is
worth pointing out that during this simulation, the dynamic level set evaluation with the
algorithm sketched in Sec. 3 and the update with the core Cartesian finite volume scheme
described in Sec. 2 have about the same computational costs on each fluid processor.
This result confirms that our approach utilizing distance functions for implicit geometry
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representation is sufficiently efficient for computing even complex FSI problems with large
deformations and evolutions in the mesh topology with high computational efficiency.

6. CONCLUSIONS

A level-set-based Cartesian CFD solver tailored for time-accurate fluid-structure inter-
action simulation involving gaseous detonation waves and thin embedded solid structures
has been described. The approach has been demonstrated to handle arbitrary topology
changes and large deformations in reasonable agreement with experimental results. As
enabling components for high computational efficiency we have detailed the employed
detonation model and an effective distance function evaluation algorithm. The inte-
grated implementation of these components together with the thin-shell CSD solver used
throughout this paper in the software framework Virtual Test Facility is freely available
for research purposes, see http://www.cacr.caltech.edu/asc.
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