|Generalized Euler equations|

The computation of inviscid flows with chemical reaction requires the
usage of generalized Euler equations. In cartesian coordinates the
following equations have to be applied:

K continuity equations for K different gaseous species:
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N momentum equations:
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Equation of state|

The species are assumed to be ideal gases in thermal equilibrium. The
ideal gas law and Dalton’s law can be applied:
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Ideal gases are thermally perfect and the specific heats are functions
of the temperature:

cpi = cpi(T) cvi = ci(T) %i(T) = cpi(T) / eui(T)

Caloric equation:
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Evaluation of p(p, T) requires the computation of T = T'(p,e) from the
implicit equation:
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Only in the case of calorically perfect gases with c,;, c,; const. =y =
~v(p) the temperature T can be eliminated and an explicit equation of
state can be derived:
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Detailed chemistry|

The chemical production rates m;(p1,...,pK,T) are derived from a
reaction mechanism that consists of M chemical reactions:
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The forward reaction rate chf-(T) is calculated with an empirical Arrhe-
nius law:
K[ (T) = AT exp(~E;/RT)
Evaluation of the equilibrium constant KJ@(T) allows the calculation of

the corresponding backward reaction rate Ic;f(T) = kf(T)/K]C-(T).
Mass production rate of specie S;:
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[ZND detonation model|

An instructive model-problem is derived by assuming a stationary
detonation wave with only one single irreversible reaction A — B
with normalized energy release gp = —ARO and forward reaction rate
E(T) = exp(—Et/T).

Mass production rate of species A and B:

g = —paexp(—ET/T), tnp= —1ny

A and B are treated as calorically perfect gases with y4 = yg. The
equation of state therefore reads:

p(p,e) = (v — 1) (pe — pa 90)

The parameter f = (D/DCJ)2 > 1 measures the degree of overdrive
for a given ZND detonation traveling with speed D in respect to the
minimal detonation velocity D¢y. f determines the stability of a ZND
wave.

[Numerical Methods|

Incorporation of source terms and extension to multiple dimensions via
the method of fractional steps:

A sequence of N one-dimensional initial value problems for the ho-
mogeneous transport equations and the system of ordinary differential
equations

O pi = m; (p1,. -, Pk, T) i=1,...,K
are solved successively within each time-step.

The following upwind schemes are employed to solve the homogeneous
1D transport equations:

e Godunov's method

e Roe's method with entropy correction only in sonic rarefactions
(Roe) and with entropy enforcement by adding numerical viscosity
(RoeV)
Steger-Warming and van Leer's flux vector splitting methods
e Harten, Lax, van Leer's (HLL) method

Decoupled source term integration:
e Standard ODE-methods, e.g. semi-implicit Rosenbrock-Wanner
method for detailed chemistry

The integration of stiff source terms requires automatic stepsize ad-
justment in a single transport step.

Accurate simulation of detonation phenomena

Georg Bader & Ralf Deiterding

|Stable ZND detonation|

The computation of stable one-dimensional ZND detonations allows
the quantitative comparison of solutions of different numerical schemes
against the exact one. By applying an ODE solver of higher order
different 1st order upwind schemes within the fractional-step method
can be evaluated.
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1. A sufficiently dissipative up-
wind scheme has to be em-
ployed to stabilize the splitting
method: Stable detonations
are computed with FVS meth-
ods, HLL and RoeV (upper
right picture). The solution
is qualitatively incorrect, if
Roe’s and Godunov's method
are applied (lower right pic-
ture).

2. Van Leer's FVS and RoeV
resolve the detonation front
most sharply (middle left pic-
ture), but only Van Leer's 74
FVS converges against the ex- 2
act ZND front pressure (upper 0 10 2 Tme 30 40 50
right picture).
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|Unstable ZND detonation]

Linearized stability analysis for ZND waves predicts one unstable mode
for 1.57 < f < 1.73 and v = 1.2, ET =50, qg = 50. Starting from the
unperturbed exact solution the numerical scheme should reproduce the
unstable behavior.

Front pressure
80

10 pts/Ll/Q, CFL=0.9

RoeV ——
Steger-Warming

1. The instability is re- 75} VanLHe‘e‘r

produced best  with
Van Leer's FVS. RoeV
shows the unstable
mode slightly. Steger-
Warming FVS and HLL 6
are to dissipative to 0 10 20 30 40 50
resolve the detonation suffi-

ciently at this resolution and fion
do not reproduce the instabil- 75 Godunov
ity (upper right picture).
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2. Numerical instabilities totally
suppress the physical one 65
when using Roe’'s or Go-
dunov’'s method (lower right
picture).
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3. Higher order reconstruction technics

within the upwind scheme can improve

the solution significantly. (Compare

maximal front pressures obtained with

s Van oot Minmeod —— 2nd order MUSCL-Hancock in left pic-
o i ture to 1st order results).
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'Occurrence of the carbuncle phenomenon|

If a one-dimensional upwind scheme is used to solve the multidi-
mensional Euler equations on a structured grid with a fractional-step
method, strong shock or typical detonation wave solutions may be-
come unstable. Sufficient crossflow dissipation is necessary to stabilize
the solution.

A simple test for standard Euler " Pressure
equations can be derived by taking 60

as Riemann initial data the val- :g

ues near the detonation front for 00 : - .

v = 1.2, g9 = 50, f = 2.0 and
disturbing the shock-pressure cell-
wise by +1%.
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Isolines of density at ¢ = 10 for different 1st order schemes (CFL=0.5)
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|Generic framework for blockstructured AMR]

A locally high resolution, which is es-
sential for the accurate computation
of detonation waves, is achieved by
utilizing the most efficient adaptive
method for hyperbolic conservation
laws on blockstructured grids: The
Berger and Oliger AMR algorithm.
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A generic and flexible framework for
AMR has been developed. It consists

of three abstraction levels: Hierarchy of properly nested subgrids.

1. Specific application. (Extended Clawpack supplied as demo appli-
cation)

2. AMROC (Adaptive Mesh Refinement in Object-oriented C++).
3. Parallel hierarchical data structures that employ the MPI-library.
Typical benchmarks run on distributed memory machines show high
parallel efficiency and a computational performance like purely Fortran-
based codes. The framework and appropriate visualization tools can
be obtained from http://www.math.tu-cottbus.de/~ deiter/amroc

|[Planar detonation with transverse waves|

Experiments have shown that self-sustaining detonation waves are
locally multidimensional and nonsteady. Triple-points may form,
which enhance the local chemical reaction significantly. Equilibrium-
configurations with regular detonation cells are possible in particular
cases. The accurate numerical simulation of transverse wave phenom-
ena in detonation waves requires extraordinarily high resolution.
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Top: The time history of the released chemical energy shows the detonation cells.
Bottom: Interacting transverse waves behind the detonation front.

Reaction mechanism: 34 elementary reactions for the 9 thermally per-
fect species H, O, OH, Hjy, Os, HyO, HO5, HO5 Ar.

Configuration: Stoichiometric Ho-O»-system with 70% Ar, at 6.7 kPa
and 298 K.

e 1044 time steps with 3 refinement levels (factors: 2,4,4). Finest
level corresponds to 19840x640 grid (12.7 M cells).

e =~ 32 cells within induction length.

e Adaptive computation uses 150k-200k cells.

e 121h real time on 7 nodes Pentium III-750 MHz.
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Schematic diagram of the flow around a
triple-point.
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Detailed study of the flow around
a triple-point. Additional isolines
show the induction length.

Isolines of density on refinement grids
show the dynamic adaption of the deto-
nation wave.

|Detonation with two orthogonal transverse waves|

e Detonation front remains quasi-stationary, because unburned gas
flows in with CJ-velocity.

e 264 time steps with 3 refinement levels (factors: 2,2,2). Finest
level corresponds to 224x96x192 grid (4.1 M cells).

e =~ 8 cells within induction length.

Adaptive computation uses
800k-1.2M cells.

66h real time on 15 nodes
Pentium III-750 and Pentium
I1I-450 MHz.

Temporal development of the detonation
front with two orthogonal triple-point
lines.

Isolines of density on refinement grids.
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Temporal development of the detonation
front structure with coarse triple-point
tracks.




