
Construction and Application of an AMR
Algorithm for Distributed Memory Computers

Ralf Deiterding

California Institute of Technology,1200 East California Blvd., Mail-Code 158-79,
Pasadena, CA 91125, ralf@cacr.caltech.edu

While the parallelization of blockstructured adaptive mesh refinement tech-
niques is relatively straight-forward on shared memory architectures, ap-
propriate distribution strategies for the emerging generation of distributed
memory machines are a topic of on-going research. In this paper, a locality-
preserving domain decomposition is proposed that partitions the entire AMR
hierarchy from the base level on. It is shown that the approach reduces the
communication costs and simplifies the implementation. Emphasis is put on
the effective parallelization of the flux correction procedure at coarse-fine
boundaries, which is indispensable for conservative finite volume schemes. An
easily reproducible standard benchmark and a highly resolved parallel AMR
simulation of a diffracting hydrogen-oxygen detonation demonstrate the pro-
posed strategy in practice.

1 Introduction

The adaptive mesh refinement (AMR) method after Berger and Collela [2]
is widely used for adaptive simulations on logically rectangular finite volume
meshes. Instead of replacing single cells by finer ones, the AMR method con-
structs a hierarchy of properly nested refinement grids. The striking efficiency
of this algorithm, in particular for instationary supersonic gas dynamical prob-
lems, was demonstrated by Berger and her collaborators in [1].

Up to now, various reliable implementations of the AMR method for single
processor computers have been developed [3, 4]. Even implementations for
parallel computers with shared memory architecture have reached a stable
state [1]. Parallelism is an inherent feature of the AMR algorithm and in
a shared memory environment simply the numerical solution on the whole
sequence of grids has to be advanced in parallel to achieve a sufficient load-
balancing. The question for an efficient parallelization strategy becomes more
delicate for distributed memory machines, because the costs of communication
can not be neglected anymore. Due to the technical difficulties in implementing



2 Ralf Deiterding

hierarchical adaptive methods in a distributed memory environment only few
parallelization efforts are documented, cf. [11, 10, 7].

This paper describes a rigorous domain decomposition approach that par-
titions the entire hierarchy from the base level on. By employing ghost or halo
cell regions, which are synchronized whenever the algorithm applies bound-
ary conditions, an overlap between subgrids is constructed that allows most
operations of the AMR algorithm to be carried out strictly local. After a brief
characterization of the employed finite volume methods in Sec. 2, we review
the sequential AMR algorithm in Sec. 3. In Sec. 4, we specify the domain de-
composition and discuss the necessary extensions of the previously described
subroutines in parallel. Sec. 5 presents parallel AMR simulations for the Euler
equations of gas dynamics obtained with our public domain code AMROC [6]
on typical Linux-Beowulf-clusters.

2 Finite Volume Schemes

The Berger-Collela AMR method is a dynamic mesh adaptation approach,
which is tailored especially for the adaptive numerical solution of hyperbolic
conservation laws

∂tq(x, t) +∇ · f(q(x, t)) = 0 , x = (x1, . . . , xd)T ∈ Rd , t ∈ R+
0 (1)

on logically rectangular finite volume (FV) meshes. For simplicity, we restrict
our attention to the two-dimensional case and assume an equidistant FV dis-
cretization of the computational domain G0 ⊂ R2 with mesh widths ∆x1,
∆x2 and a constant time step ∆t. The discrete mesh points are defined by
(xi

1, x
j
2) :=

((
i + 1

2

)
∆x1, s

(
j + 1

2

)
∆x2

)
, i, j ∈ Z and tκ := κ∆t , κ ∈ N0.

In each point (xi
1, x

j
2, t

κ) we define a discrete value Qκ
ij as an approx-

imation to the vector of state q(x, t) averaged over the control volume
[xi−1/2

1 , x
i+1/2
1 )× [xj−1/2

2 , x
j+1/2
2 ). These values are updated by a time-explicit

conservative (2s + 1)2-point FV scheme of the form

H(∆t) : Qκ+1
ij = Qκ

ij−
∆t

∆x1

(
F1

i+ 1
2 ,j − F1

i− 1
2 ,j

)
− ∆t

∆x2

(
F2

i,j+ 1
2
− F2

i,j− 1
2

)
(2)

with numerical fluxes given by

F1
i+ 1

2 ,j = F1(Qκ
i−s+1,j−s, ... ,Q

κ
i+s,j+s),F

2
i,j+ 1

2
= F2(Qκ

i−s,j−s+1, ... ,Q
κ
i+s,j+s).

For vanishing boundary fluxes, scheme (2) satisfies the important discrete
conservation property

∑
i,j Qκ+1

jk =
∑

i,j Qκ
jk, which is essential for the cor-

rectness of the approximation, if Eq. (1) admits discontinuous solutions, as it
is the case e.g. for Euler equations. The numerical fluxes in (2) are often evalu-
ated by solving a Riemann problem between neighboring cells approximately.
In this case, a typical stability condition for H(∆t) could be



An AMR Algorithm for Distributed Memory Computers 3

CCFL := max
j,k

(
Sj+ 1

2 ,k

∆t

∆x1
, Sj,k+ 1

2

∆t

∆x2

)
≤ 1 , (3)

where Sj+ 1
2 ,k, Sj,k+ 1

2
denote the maximal signal speeds in both space direc-

tions according to the approximative solution of the Riemann problems at the
cell interfaces.

3 Blockstructured Adaptive Mesh Refinement

A significant advantage of the blockstructured idea over other mesh refinement
strategies is that the update operator H(·) only needs to be implemented on a
single uniform Cartesian grid G, where s layers of auxiliary cells (ghost or halo
cells) around G should be employed to define discrete boundary conditions.
Cells flagged by various error indicators are clustered dynamically at run-time
into non-overlapping rectangular subgrids Gl,m that define the domain of an
entire level l = 0, . . . , lmax by

Gl :=
Ml⋃

m=1

Gl,m .

Refinement grids are derived recursively from coarser ones and a hierarchy
of successively embedded levels is thereby constructed. All mesh widths on
level l are rl-times finer than on level l− 1, i.e. ∆tl := ∆tl−1/rl and ∆xn,l :=
∆xn,l−1/rl with rl ∈ N, rl ≥ 2 for l > 0 and r0 = 1, and a time-explicit FV
scheme (in principle) remains stable under a condition like (3) on all levels of
the hierarchy. The recursive integration order visualized in the left sketch of
Fig. 1 is an important difference to unstructured adaptation strategies and is
one of the main reasons for the high efficiency of the approach.

The numerical scheme is applied on level l by calling the single-grid rou-
tines H(·) in a loop over all subgrids Gl,m. The execution of the numerical
loop in UpdateLevel() in Alg. 1 requires the previous setting of the ghost
cell values. Three types of boundary conditions have to be considered in the
sequential case, see right sketch of Fig. 1. Cells outside of the root domain
G0 are used to implement physical boundary conditions. Ghost cells in Gl

have a unique interior cell analogue and are set by copying the data value
from the grid, where the interior cell is contained (synchronization). On the
root level no further boundary conditions need to be considered, but for l > 0
also internal boundaries can occur. They are set by a conservative time-space
interpolation from two previously calculated time steps of level l − 1.

Beside a general data tree that stores the topology of the hierarchy, the
AMR method requires at most two regular arrays assigned to each subgrid,
which contain the discrete vector of state Q for the actual and updated time
step. In the following, we denote by Ql(t) and Ql(t + ∆tl) the unions of
these arrays on level l. The regularity of the input data for the numerical
routines allows high performance on vector and super-scalar processors and



4 Ralf Deiterding

Fig. 1. Left: Recursive integration order. Right: Sources of ghost cell values.

cache optimizations. Small data arrays are effectively avoided by leaving coarse
level data structures untouched, when higher level grids are created. Values
of cells covered by finer subgrids are overwritten by averaged fine grid values
subsequently.

3.1 Conservative Flux Correction

Replacing coarse cell values by averaged fine grid values modifies the numerical
stencil on the coarse grid. In general the important property of conservation is
lost. A flux correction is necessary that introduces the involved fine grid fluxes
into Eq. (2). In two and three space dimensions hanging nodes additionally
have to be considered. As an example we consider cell (j, k) in Fig. 2 on level
l. After the numerical update on level l a correction term associated to the
boundary of level l + 1 is initialized by δF1,l+1

j− 1
2 ,k

:= −F1,l

j− 1
2 ,k

. During the rl+1

update steps of level l + 1 all necessary fine level fluxes are accumulated, i.e.

δF1,l+1

j− 1
2 ,k

:= δF1,l+1

j− 1
2 ,k

+
1

r2
l+1

rl+1−1∑
ν=0

F1,l+1

v+ 1
2 ,w+ν

(t + µ∆tl+1) (4)

Fig. 2. Location of
numerical fluxes re-
quired for flux correc-
tion. Cells to correct
are shaded.

with µ = 0, . . . , rl+1 − 1. After the integration of the
fine level, the correction is applied by calculating

Q̌κ+1
jk := Q̃κ+1

jk +
∆tl

∆x1,l
δF1,l+1

j− 1
2 ,k

.

The edge- or face-centered flux correction terms δFn,l+1

have to be stored along the boundaries, where a level
l > 0 abuts the next coarser level. To avoid the usage of
the numerical fluxes Fn on the entire level, the grid-wise
application of the numerical scheme and the computa-
tion of the correction terms are effectively combined in
UpdateLevel() in the loop over all all grids on level l.



An AMR Algorithm for Distributed Memory Computers 5

AdvanceLevel(l)

Repeat rl times

Set ghost cells of Ql(t)
If time to regrid

Regrid(l)
UpdateLevel(l)
If level l + 1 exists

Set ghost cells of Ql(t + ∆tl)
AdvanceLevel(l + 1)

Average Ql+1(t + ∆tl) onto

Ql(t + ∆tl)

Correct Ql(t + ∆tl) with δFn,l+1

t := t + ∆tl

Alg. 1. Recursive AMR algorithm.

Regrid(l)

For ι = lc Downto l Do

Flag N ι according to Qι(t)
If level ι + 1 exists?

Flag N ι below Ğι+2

Flag buffer zone on N ι

Generate Ğι+1 from N ι

Ğl := Gl

For ι = l To lc Do

CĞι := G0\Ğι, Ğι+1 := Ğι+1\CĞ
1

ι

Recompose(l)

Alg. 2. Regridding procedure.

3.2 Recursive Grid Generation

The basic recursive AMR algorithm is formulated in Alg. 1. Except the regrid-
ding procedure, all operations have already been explained. New refinement
grids on all higher levels are created by calling Regrid() from level l. Level l
by itself is not modified. To consider the nesting of the level domains already
in the grid generation, Alg. 2 starts at the highest refineable level lc, where
0 ≤ lc < lmax. The refinement flags are stored in grid-based integer arrays
N ι. A clustering algorithm [1] is necessary to create a new refinement Ğι+1

on basis of N ι until the ratio between flagged and all cells in every new grid
Ğι+1,m is above a prescribed threshold 0 < ηtol < 1.

Before the new grids Ğι+1 can be used to replace Gι+1, the proper nesting
of the new refinement grids has to be enforced over the modified hierarchy.
In Alg. 2 we evaluate the invalid region for level ι + 1 by calculating the
complement CĞι := G0\Ğι of the next coarser level domain Ğι in G0 and
by enlarging CĞι by one additional layer of cells on level ι. We denote this
enlarged region by CĞ

1

ι . The operation Ğι+1 := Ğι+1\CĞ
1

ι then eliminates
all invalid regions from the new level domain Ğι+1.

The reinitialization of the hierarchy is done in the subroutine Recompose(l),
which is formulated in Alg. 3a. In particular, grid-based auxiliary data
Q̆(Ğι, t) is necessary to reorganize the vector of state. Cells in newly refined
regions Ğι\Gι are initialized by interpolation, values of cells in Ğι ∩ Gι are
copied. As interpolation requires the previous synchronized reorganization of
Qι−1(t), the recomposition algorithm traverses the hierarchy upwards.

4 Parallelization by Domain Decomposition

We follow a rigorous domain decomposition approach and partition the AMR
hierarchy from the root level on. We assume a parallel machine with P iden-
tical nodes and split the root domain G0 into P non-overlapping portions Gp

0,



6 Ralf Deiterding

p = 1, . . . , P by

G0 =
P⋃

p=1

Gp
0 with Gp

0 ∩Gq
0 = ∅ for p 6= q .

The key idea now is that all higher level domains are required to follow the
decomposition of the root level, i.e.

Gp
l := Gl ∩Gp

0 . (5)

Condition (5) can cause the splitting of a subgrid Gl,m into multiple subgrids
on different processors. Under requirement (5) we estimate the work on an
arbitrary subdomain Ω ⊂ G0 by

W(Ω) =
lmax∑
l=0

[
Nl(Gl ∩Ω)

l∏
ν=0

rν

]
. (6)

Herein, Nl(·) denotes the total number of FV cells on level l in the given
domain. The product in (6) is used to consider the time step refinement. A
nearly equal distribution of the work necessitates

Lp :=
P · W(Gp

0)
W(G0)

≈ 1 for all p = 1, . . . , P . (7)

A considerable advantage of the proposed decomposition strategy is the re-
duction of the communication costs. Together with the use of ghost cells our
approach allows an almost local execution of Alg. 1. In particular, the inter-
level operations interpolation and averaging remain strictly local. The only
parallel operations that have to be considered additionally are the parallel
ghost cell synchronization and the application of flux correction terms across
processor borders. Especially UpdateLevel() need not be modified. Appar-
ently, the new vector of state on each subgrid Gp

l,m and the fluxes can be
computed strictly local, but also the evaluation of the correction terms does
not require communication.

4.1 Local Calculation of Flux Corrections

To illustrate this, we assume a parallel border in Fig. 2 at j − 1
2 . Let cell

(j, k) be contained in Gq
l and let cell (v, w) be contained in Gp

l+1. Then
the necessary correction term δF1,l+1

j−1/2,k resides on node p, because it is
assigned to the fine level. Its initialization requires the coarse grid flux
F1,l

j−1/2,k. This flux is available on node p, because the basic AMR strat-
egy ensures that below (v, w) an interior coarse cell (j − 1, k) exists hav-
ing F1,l

j−1/2,k as flux into a ghost cell (j, k). On the other hand, F1,l
j−1/2,k

is also computed on node q, where (j, k) is interior and (j − 1, k) is a
ghost cell. As the ghost cells have been synchronized before the numeri-
cal update, the same boundary flux is calculated on both nodes, cf. Fig. 3.
The fine grid fluxes F1,l+1

v+1/2,w+ν are only available on p, because no abut-

ting interior fine grid cell exists on q. As the correction term δF1,l+1
j−1/2,k



An AMR Algorithm for Distributed Memory Computers 7

Fig. 3. Flux correction in parallel.

is also stored on p the summation
in (4) remains local. The only op-
eration of the flux correction that
necessarily requires communication
is the final application of the cor-
rection terms as mentioned in the
previous section. But the communi-
cation costs are minor, because the
corrections are only necessary along
lower-dimensional domains.

4.2 Parallel Grid Generation

Analogous to Alg. 1 the regridding in Alg. 2 is hardly affected by the paral-
lelization. The flagging of cells on each level can be done locally. If a refinement
criterion requires auxiliary time steps (i.e. error estimation by Richardson ex-
trapolation, cf. [2]), additional synchronizations will be necessary, but this
does not affect Alg. 2. The only operation in Alg. 2 that needs special atten-
tion is the clustering.

The clustering algorithm could be executed strictly locally on N(Gp
ι ) or it

could be executed on the data of the entire level N(Gι). Usually, the results
will be identical for ηtol = 1 only. To avoid the expensive global concate-
nation of all data sets N(Gp

ι ) to N(Gι), we execute the clustering algorithm
strictly locally and communicate just the results Ğp

ι+1 to obtain the global list
Ğι+1 =

⋃
p Ğp

ι+1. To consider a buffer zone of b cells before local clustering,
the grid-based integer arrays N ι are extended by b ghost cells. A parallel syn-
chronization of these ghost cells before creating the buffer zone locally ensures
the appropriate flagging of interior cells.

The main changes in the regridding procedure are in Recompose(l). In-
stead of Alg. 3a we apply Alg. 3b. Due to our distribution strategy we now
have to consider a complete reorganization of the entire hierarchy even for a
regridding at a higher level. In particular, the whole relevant data of levels
with ι ≤ l have to be copied. Like the synchronization operation, these copy
operations are partially local and parallel. For levels with ι < l the relevant
data is Qι(t), Qι(t + ∆tι) and δFn,ι, for level l we have to copy Ql(t) and
δFn,l. The initialization of a level with ι > l is in principle identical to Alg.
3a. Interpolation is a strictly local operation, provided that the next coarser
level has already been reorganized. The copy operation is a combination of
local and parallel copy.

Alg. 3b is significantly more complex than Alg. 3a, because it considers the
general case of a complete parallel redistribution of the AMR hierarchy even
at higher level time steps. However, in practice it usually suffices to allow this
operation only on the root level. Under this simplification, Alg. 3b reduces
mostly to Alg. 3a. The creation of the new load-balanced distributions Gp

0



8 Ralf Deiterding

Recompose(l) - sequential

For ι = l + 1 To lc + 1 Do

Interpolate Qι−1(t) on Q̆ι(t)

Copy Qι(t) on Q̆ι(t)

Set ghost cells of Q̆ι(t)

Qι(t) := Q̆ι(t)

Gι := Ğι

Alg. 3a. Sequential recomposition.

Recompose(l) - parallel

Derive Gp
0 from

{G0, ... , Gl, Ğl+1, ... , Ğlc+1}
For ι = 0 To lc + 1 Do

If ι > l

Ğp
ι := Ğι ∩Gp

0

Interpolate Qι−1(t) on Q̆ι(t)
else

Ğp
ι := Gι ∩Gp

0

If ι > 0

Copy δFn,ι onto δF̆n,ι

δFn,ι := δF̆n,ι

If ι ≥ l then νι = 0 else νι = 1
For ν = 0 To νι Do

Copy Qι(t + ν∆tι) on Q̆ι(t + ν∆tι)

Set ghost cells of Q̆ι(t + ν∆tι)

Qι(t + ν∆tι) := Q̆ι(t + ν∆tι)

Gp
ι := Ğp

ι , Gι :=
S

p Gp
ι

Alg. 3b. Parallel recomposition.

then has to be considered just for the case l = 0 and only Qι(t) has to be
copied over processor borders.

4.3 Partitioning

It is evident, that the overall efficiency of the chosen parallelization strategy
depends especially on the first step of Algorithm 3b, the partitioning algo-
rithm. This algorithm has to meet several requirements. It must balance the
estimated workload, while the parallel synchronization costs should be small.
A slight change of the hierarchy should require only a moderate data redistri-
bution. The algorithm must be fast, because it is carried out on-the-fly.

Distribution strategies based on space-filling curves seem to give an accept-
able compromise between these partially competing requirements. A space-
filling curve defines a continuous mapping from [0, 1] onto [0, 1]d and is well
suited to define an ordered sequence on the root level cells of a blockstruc-
tured domain. This sequence can easily be split into portions of equal size
yielding load-balanced new distributions Gp

0. As space-filling curves are con-
structed recursively, they are locality-preserving by definition and naturally
avoid an excessive redistribution overhead. Further on, the surface is small,
which reduces the synchronization costs.

Our present implementation utilizes a partitioning algorithm based on
Hilbert’s space-filling curve [9]. The Figs. 4 and 6 display domain decomposi-
tions derived with this algorithm for the work estimation formula (6). Appar-
ently, the extensions of the domain assigned to each node vary remarkably,
but the workloads according to (7) always differ by less than 5%.



An AMR Algorithm for Distributed Memory Computers 9

5 Computational Results

We use a standard test for Euler equations of a single polytropic gas to evalu-
ate the proposed parallelization strategy within the MPI-based AMROC im-
plementation [6]. A homogeneous circular region of high pressure and density
expands in an enclosed box. After a few time steps, the initial discontinu-
ity separates into a rapidly expanding discontinuous shock wave, a following
slower contact discontinuity and a collapsing smooth rarefaction wave.

We utilize a base grid of 150× 150 cells and apply a two-level refinement
with the factors r1 = 2 and r2 = 4. About 200 root level grid time steps with
CCFL ≈ 0.8 to tend = 0.5 were computed, where the Clawpack implemen-
tation of the Wave Propagation Method [8] with the approximate Riemann
solver of Roe was employed as numerical update routine. A repartitioning of
the hierarchy was done only at root level time steps, cf. Sec. 4.2. A standard
Linux-Beowulf-cluster of Pentium-III-1GHz CPUs connected with Fast Ether-
net (effective bandwidth ≈ 40 MB) was used for the benchmarks. Exemplary
results on eight nodes are shown in Fig. 4. While the AMROC computa-
tion on one node required 152 min, the execution time decreased to remark-
able 13.9 min on 16 nodes. Tab. 1 shows a breakdown of the computational

Table 1. Computational time on P nodes.

Task [%] P=1 P=2 P=4 P=8 P=16
Update by H(·) 86.6 83.4 76.7 64.1 51.9
Flux correction 1.2 1.6 3.0 7.9 10.7
Boundary setting 3.5 5.7 10.1 15.6 18.3
Recomposition 5.5 6.1 7.4 9.9 14.0
Misc. 4.9 3.2 2.8 2.5 5.1
Time [min] 151.9 79.2 43.4 23.3 13.9
Efficiency [%] 100.0 95.9 87.5 81.5 68.3

time for the most im-
portant AMR operations.
For one node the fractions
spent in different parts
of the code are in good
agreements with the re-
sults in [2] and at least
for a moderate number
of computing nodes we
achieve an acceptable par-
allel efficiency.

In order to demonstrate that our parallelization approach is also well suited
for cutting-edge AMR simulations, we briefly present exemplary results for a
two-dimensional hydrogen-oxygen detonation propagating out of a tube into
unconfinement. The simulation reproduces the critical width for square tubes
and is in perfect qualitative agreement with experimental results. The com-
putation was run effectively in less than 4 days real time on a Linux-Beowulf-
cluster of 48 CPUs and spent ≈ 2000 h CPU time in the update operator H(·),
which was a special approximative Riemann solver for multi-component Euler
equations with general equation of state. The reaction terms according to a
detailed non-equilibrium reaction mechanism were incorporated numerically
into H(·) with a fractional step method and required the additional solution
of a stiff initial value problem in each FV cell. See [5] for details.

As detonation simulations require an extraordinarily high local resolution
to capture the influence of the chemical kinetics correctly, the computation
benefits remarkably from dynamic mesh adaptation. The graphics in Fig. 5



10 Ralf Deiterding

display the solution on the refinement levels 240 µs after the detonation has left
the tube (730 root level time steps with CCFL ≈ 0.8, one half of the domain
was simulated) and the enormous efficiency of the refinement is apparent. The
base grid used 508 × 288 cells and four levels of refinement with r1,2,3 = 2,
r4 = 4, which corresponds to ≈ 150 M cells, but at the time step displayed
the simulation uses less than 3.0 M cells on all levels.

6 Conclusions

We have described a locality-preserving parallelization strategy for the block-
structured AMR algorithm after Berger and Colella, which is tailored espe-
cially for distributed memory machines. The approach is based on domain
decomposition and reduces the communication costs. In particular, the im-
portant flux correction procedure, which can become quite complicated in a
distributed memory environment, can be implemented with ease. Benchmark
calculations with our MPI-based implementation AMROC show promising
parallel speed-up and we were able to obtain exceptional detonation simula-
tions with the framework on standard Linux-Beowulf-clusters, cf. [5].

References

1. J. Bell, M. Berger, J. Saltzman, and M. Welcome. Three-dimensional adap-
tive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comp.,
15(1):127–138, 1994.

2. M. Berger and P. Colella. Local adaptive mesh refinement for shock hydrody-
namics. J. Comput. Phys., 82:64–84, 1988.

3. M. Berger and R. LeVeque. Adaptive mesh refinement using wave-propagation
algorithms for hyperbolic systems. SIAM J. Num. Anal., 35(6):2298–2316, 1998.

4. W. Crutchfield and M. L. Welcome. Object-oriented implementation of adaptive
mesh refinement algorithms. J. Scientific Programming, 2:145–156, 1993.

5. R. Deiterding. Parallel adaptive simulation of multi-dimensional detonation
structures. PhD thesis, Techn. Univ. Cottbus, Sep 2003.

6. R. Deiterding. AMROC - Blockstructured Adaptive Mesh Refinement in Object-
oriented C++. Available at http://amroc.sourceforge.net, Oct 2003.

7. S. R. Kohn and S. B. Baden. A parallel software infrastructure for structured
adaptive mesh methods. In Proc. of the Conf. on Supercomputing ’95, Dec 1995.

8. R. J. LeVeque. Wave propagation algorithms for multidimensional hyperbolic
systems. J. Comput. Phys., 131(2):327–353, 1997.

9. M. Parashar and J. C. Browne. On partitioning dynamic adaptive grid hierar-
chies. In Proc. 29th Annual Hawaii Int. Conf. on System Sciences, Jan 1996.

10. M. Parashar and J. C. Browne. System engineering for high performance com-
puting software: The HDDA/DAGH infrastructure for implementation of par-
allel structured AMR. In Structured Adaptive Mesh Refinement Grid Methods,
IMA Volumes in Mathematics and its Applications. Springer, 1997.

11. C. A. Rendleman, V. E. Beckner, M. Lijewski, W. Crutchfield, and J. B. Bell.
Parallelization of structured, hierarchical adaptive mesh refinement algorithms.
Computing and Visualization in Science, 3, 2000.



An AMR Algorithm for Distributed Memory Computers 11

After 38 time steps After 79 time steps

Fig. 4. Circular Riemann problem in an enclosed box. Isolines of density on two
refinement levels (indicated by gray scales) and distribution to eight nodes (indicated
by different colors).

Fig. 5. (Upper four graphics.) Pla-
nar detonation diffraction. Density
distribution on four refinement lev-
els 240 µs after the detonation has
left the tube. Multiple zooms are
necessary to display the finite vol-
ume cells.

Fig. 6. Planar detonation diffrac-
tion. Distribution of computational
domain to 48 nodes.


