|Generalized Euler equations

The computation of inviscid flows with chemical reaction requires the
usage of generalized Euler equations. In cartesian coordinates the
following equations have to be applied:

K continuity equations for K different gaseous species:

N
Bepi+ Y. Oz,(pivn) = my
n=1
N momentum equations:
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Energy equation:

for i=1,...,.K
for m=1,...,N
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Equation of state]

The species are assumed to be ideal gases in thermal equilibrium. The
ideal gas law and Dalton’s law can be applied:

K
with p= Z pi

i=1
Ideal gases are thermally perfect and the specific heats are functions
of the temperature:
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Caloric equation:
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Evaluation of p(p,T) requires the computation of T'= T'(p,e) from the
implicit equation:
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Only in the case of calorically perfect gases with ¢p;, ¢,; const. =~y =

v(p) the temperature T can be eliminated and an explicit equation of
state can be derived:

K
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Detailed chemistry|

The chemical production rates m;(p1,...,pKk,T) are derived from a
reaction mechanism that consists of M chemical reactions:
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The forward reaction rate Ic]f(T) is calculated with an empirical Arrhe-
nius law:
k{(T) = A;T7% exp(—E;/RT)
Backward reaction rates are experimentally measured or calculated
from the equilibrium constant KJC(T) as lc]T-(T) = k]f(T)/Kj(T).
Mass production rate of specie S;:
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[ZND detonation model|

The simplified ZND detonation model is used to validate different
numerical schemes. It is derived by assuming a stationary detona-
tion wave with only one single irreversible reaction A — B with
normalized energy release qo = —ARY and forward reaction rate
K (T) = exp(—E1/T).

Mass production rate of species A and B:

tg = —psexp(~ET/T), rhg=—rny

A and B are treated as calorically perfect gases with v4 = yg. The
equation of state therefore reads:

p(p,e) = (v —1) (pe — pa 90)

The parameter f = (D/DCJ)2 > 1 measures the degree of overdrive
for a given ZND detonation traveling with speed D in respect to the
minimal detonation velocity D¢ ;. f determines the stability of a ZND
wave.

[Numerical Methods|

Incorporation of source terms and extension to multiple dimensions via
the method of fractional steps:

A sequence of N one-dimensional initial value problems for the ho-
mogeneous transport equations and the system of ordinary differential
equations

O pi =mi(p1;---,pK,T) i=1,...,K

are solved successively within each time-step.

The following upwind schemes are employed to solve the homogeneous
1D transport equations:
e Godunov's method
e Roe’s method with entropy correction only in sonic rarefactions
(Roe) and with entropy enforcement by adding numerical viscosity
(RoeV)
e Steger-Warming and van Leer's flux vector splitting methods
e Harten, Lax, van Leer's (HLL) method

Decoupled source term integration:
e Standard ODE-methods, e.g. semi-implicit Rosenbrock-Wanner
method for stiff ODE’s (detailed chemistry).
e Automatic stepsize adjustment allows an efficient treatment of
source terms that involve time scales that are smaller than the
global time-step.

Efficient simulation of multi-dimensional detonation phenomena
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|Unstable ZND detonation]|

By applying an ODE solver of higher order different 1st order upwind
schemes within the fractional-step method can be evaluated.

Linearized stability analysis for ZND waves predicts one unstable mode
for 1.57 < f < 1.73 and y=1.2, Et =50, go = 50. Starting from the
unperturbed exact solution the numerical scheme should reproduce the
unstable behavior.
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3. Higher order reconstruction technics
within the upwind scheme can improve
the solution significantly. (Compare
maximal front pressures obtained with

Va2, Minmog —— 2nd order MUSCL-Hancock in left pic-

o L LR 0 ture to 1st order results).
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|Occurrence of the carbuncle phenomenon]|

If a one-dimensional upwind scheme is used to solve the multidi-
mensional Euler equations on a structured grid with a fractional-step
method, strong shock or typical detonation wave solutions may be-
come unstable. Sufficient crossflow dissipation is necessary to stabilize
the solution.
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Isolines of density at ¢ = 10 for different 1st order schemes (CFL=0.5)

|Blockstructured AMR]|

A locally high resolution, which is essential for the accurate compu-
tation of detonation waves, is achieved by utilizing the most efficient
adaptive method for hyperbolic conservation laws on blockstructured
grids: The Berger and Oliger AMR algorithm.

-+ Discretization necessary
only for a single logically
rectangular grid

+ Spatial and temporal re-
finement, no global time
step restriction

+ No neighboring cell in-
formation has to be
stored

Grid hierarchy
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and vectorization possi- Oy

ble The blockstructured refinement strategy cre-

i i ates a hierarchy of properly nested subgrids.
+ Simple load balancing

Appropriate only for simple geometries

Cluster algorithm necessary for grid generation

- Hanging nodes unavoidable and require special treatment
- Complex implementation
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A generic and flexible framework for
AMR has been developed. It consists
of three abstraction levels:

1. Specific application and numerical
scheme.

2. AMROC (Adaptive Mesh
Refinement in Object-oriented
C++).

3. Parallel hierarchical data struc-
tures that employ the MPI-library.
e Data follows “floor plan” of a

single Grid Hierarchy.
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All higher level data follow the dis-
tribution of the base level.
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e Data of all levels resides on the
same node — Most AMR opera-
tions are strictly local. ‘ ‘ ‘
Neighboring grids are synchronized
transparently even over processor

borders when boundary conditions
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[Planar detonation with transverse waves

Experiments have shown that self-sustaining detonation waves are
locally multidimensional and nonsteady. Triple-points form, which
enhance the local chemical reaction significantly. Equilibrium-
configurations with regular detonation cells are possible in particular
cases.
e 34 elementary reactions
for the 9 thermally per-

£ € & €
fect species H, O, OH, ¢ & P &
Ha, Oz, H20, HO3, ¢ ¢ ¢ ¢
HQOQ,AI‘. “ - -

e Stoichiometric Ho-Op-
system with 70% Ar, at
6.7 kPa and 298 K.

o ~ 22-44 cells within induction length.

e Adaption criteria:

1. Scaled gradients |Qf‘+1 —QF| of pand p
2. Estimation of error in Y; by Richardson extrapolation

The time history of the released chemical en-
ergy shows the detonation cells.
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Dynamic adaption of the detonation wave.

Detonation with transverse and slapping waves|

The time history of the vorticity shows regular ortho-
gonal detonation cells.
e Quasi-stationary computation. Symme-
tric in y-direction.
e ~ 16.8 cells within induction length.
e Adaptive computation uses 1.0M-1.5M
cells. (Nonadaptive 8.8M). 80h real time
on 48 PC-nodes.

Isolines of density on refinement grids for ¢ = 660 us.
Left pictures: Schlieren-plots of density.

[Mach-reflection of a detonation wave

e Angle of inflow: 30°

e ~ 25 cells within induction length.

e Adaptive computation uses 470k — 1 M cells. (Nonadaptive 59 M)
e 80h real time on 15 PC-nodes.

Left: Temperature distribution after 48 us. Right: Adaption of detonation front and
reflected shock.
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