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Outline of the talk
• Introduction

− Governing equations
− Difficulties in detonation simulation

• Finite volume scheme
− Roe-type upwind scheme
− Constructing a reliable method for detonation simulation

• Structured adaptive mesh refinement
− Berger-Collela SAMR method

• Embedded boundary treatment
− Verification

• H2:O2:Ar detonation simulations in 2d
− Regular oscillating structures in purely Cartesian domains 
− Regular detonations under transient conditions in pipe bends

• Fluid-structure interaction with reaction
• Conclusions
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Caloric equation

Standard Euler equations

Explicit equation of state

Ideal gas law

Hydrodynamic equations

Euler equations for mixtures

with

Implicit equation of state
Chemical kinetics with Arrhenius law
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Difficulties in detonation simulations
1. Discontinuous solutions → high-resolution finite volume method with upwinding in 

all characteristic fields
2. Stiffness of reaction terms, Δtc << Δt → Numerical decoupling of time operators 

with method of fractional steps and local time steps Δtc
3. Extremely high spatial resolution in reaction zone necessary. Discretization of an 

exact ZND detonation:

minimal spatial resolution: 7 − 8 Pts/lig → Δx ≈ 0.2 − 0.175mm
Uniform grids for typical geometries: > 107 Pts in 2D, > 109 Pts in 3D → Self-
adaptive finite volume method (AMR)

4. Problem size even with AMR in 3D enormous → parallelization for massively 
parallel systems with distributed memory
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Finite volume scheme
• Method of fractional steps

1st-order: 

2nd-order:

• Hydrodynamics
− Extension to 2d and 3d via dimensional splitting 
− Linearized Riemann-solver of Roe-type for thermally perfect gas-mixtures 

(Grossman, Cinella, J. Comput. Phys. 85, 1990)
− Positivity-preserving

• Switching to HLL for unphysical ρ, p
• Fix for Yi (Larrouturou, J. Comput. Phys. 95, 1991).

− Entropy fix modification to avoid carbuncle phenomenon (Sanders, Morano, 
Druguett, J. Comput. Phys. 145, 1998)

− 2nd-order MUSCL reconstruction
• Reaction term

− Semi-implicit Runge-Kutta method of 4th order with subcycling (Kaps, Rentrop, 
Num. Math. 33, 1979)

− Evalutation of mi with automatically generated optimized Fortran-77 functions in 
the line of Chemkin-II

• Evaluation of T with Newton iteration / bisection
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1st order Wave Prop, correction in 
normal direction 
2nd order Wave Prop, correction 
applied to all terms 

Use                                                             to define fluctuations. 
Problem: Need consistent transverse scheme to implement 

It is not sufficient to implement just (S1)-(S7) for the transverse splitting. 
Example: Mass fraction positivity fix

Spherical Riemann problem on [0,1]x[0,1] 
r=0.2, 3 time steps with CFL=0.45

Multi-dimensional Wave Propagation  

Interior Exterior

ρ 2 1 
p 20 1 
Y1 1 0 

Donor cell method, no correction
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Structured AMR for hyperbolic problems

• For simplicity

• Refined subgrids overlay 
coarser ones

• Computational decoupling of 
subgrids by using ghost cells

• Refinement in space and time 
• Block-based data structures
• Cells without mark are refined
• Cluster-algorithm necessary
• Efficient cache-reuse / 

vectorization possible
• Explicit finite volume scheme

only for single rectangular grid 
necessary

• M. Berger and P. Colella, J. 
Comput. Phys. 82, 1988.
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Berger and Collela SAMR algorithm

Recursive time-stepping method for 
explicit finite volume scheme
Discretization

is applied patch-wise. 
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Parallelization strategy

• Data of all levels resides on same node → Interpolation and averaging remain 
strictly local

• Only parallel operations to be considered:
− Parallel synchronization as part of ghost cell setting
− Load-balanced repartitioning of data blocks as part of  Regrid(l)
− Application of flux correction terms on coarse-grid cells 

• Partitioning at root level with generalized Hilbert space-filling curve by 
M. Parashar
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Embedded boundary method 
• Incorporate complex moving boundary/ 

interfaces into a Cartesian solver (extension 
of work by R.Fedkiw and T.Aslam)

• Implicit boundary representation via distance 
function ϕ, normal n=∇ϕ / |∇ϕ|

• Treat an interface as a moving rigid wall 
• Method diffuses boundary and is therefore 

not conservative
• Construction of values in embedded 

boundary cells by interpolation / extrapolation
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• Higher resolution at embedded boundary required 
than with first-order unstructured scheme

• Appropriate level-set-based refinement criteria are 
available to cure deficiencies
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GFM Verification – Stationary Vortex
Construct a non-trivial radially symmetric and stationary solution by balancing hydrodynamic 
pressure and centripetal force per volume element, i.e. 

For  and the velocity field

We find by integrating Eq. (1) with boundary condition  the pressure distribution

In Cartesian coordinates the entire solution for Euler equations in primitive variables reads 
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Wave Propagation, Roe 
solver 

Godunov-Splitting, Roe 
solver 

Error Order Cost Error Order Cost 
20 0.0111235 0.0028 0.0182218 0.0029 

40 0.0037996 1.55 0.0091 0.0090662 1.01 0.0086 

80 0.0013388 1.50 0.0426 0.0046392 0.97 0.0434 

160 0.0005005 1.42 0.1757 0.0023142 1.00 0.1589 

N

2.3133 1.7320 

0.6998 1.58 0.0006971 0.4792 1.52 0.0024369 

0.1430 1.99 0.0020886 0.0875 1.40 0.0069655 

0.0316 0.0082823 0.0228 0.0184102 
Cost Order Error Cost Order Error 

WENO - 7 Point WENO - 5 Point 

Cartesian accuracy test:

Consistency test for GFM, fixed wall boundary conditions:

-9.116e-11 2.03 1.399e-06 -1.343e-10 1.93 1.472e-06 160 

-3.122e-10 1.77 5.919e-06 -1.190e-09 1.61 5.702e-06 -2.383e-09 1.56 5.595e-06 80 

-2.086e-08 0.68 2.024e-05 -3.570e-08 1.10 1.736e-05 -5.025e-08 0.07 1.646e-05 40 

6.297e-06 3.232e-05 -7.567e-07 3.718e-05 -9.136e-07 1.729e-05 20 

Mass loss Order Error Mass loss Order Error Mass loss Order Error 

WENO - 7 Pt Godunov-Splitting Wave Propagation 
N
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Wave Propagation Godunov-Splitting WENO - 7 Pt 
Error Order Mass loss Error Order Mass loss Error Order Mass loss 

20 0.0423925 0.0423925 0.0271446 0.0271446 0.0260747 0.0260747 

40 0.0358735 0.24 0.0358735 0.0242260 0.16 0.0242260 0.0236603 0.14 0.0236603 

80 0.0212340 0.76 0.0212340 0.0128638 0.91 0.0128638 0.0128931 0.88 0.0128931 

160 0.0121089 0.81 0.0121089 0.0070906 0.86 0.0070906 

N

Strong shear flow along embedded boundary:

Wave Propagation Godunov-Splitting WENO - 7 Pt 
Error Order Mass loss Error Order Mass loss Error Order Mass loss 

20 0.0120056 0.0079236 0.0144203 0.0020241 0.0064736 0.0028641 

40 0.0035074 1.78 0.0011898 0.0073070 0.98 0.0001300 0.0017008 1.93 0.0004790 

80 0.0014193 1.31 0.0001588 0.0038401 0.93 -0.0001036 0.0006816 1.32 -5.878e-05 

160 0.0005032 1.50 5.046e-05 0.0018988 1.02 -2.783e-06 

N

Negligible shear flow along embedded boundary:
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Verification of embedded boundary method 

Below: Lift-up of a solid body in 2D 
and 3D when being hit by Mach 3 
shock wave, Falcovitz et al. (1997)

Schlieren plot of 
density

Left: Overlay of two simulation 
of a double Mach reflection on a 
800x400 grid with GFM and 2nd 
order accurate scheme

Refinement Levels
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Shock interaction at double-wedge geometry
• Simulation by David Hill (Caltech) 
• Mach 9 flow in air hitting a double-

wedge (15o and 45o)
• Example from Olejniczak, Wright 

and Candler (JFM 1997)
• AMR base mesh 300x100, 3 

additional levels with factor 2
• 3rd order WENO computation vs. 

2nd order MUSCL with van Leer 
flux vector splitting
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Simulation of regular cellular structures 

• Regular Chapman-Jouguet
detonation for H2 : O2 : Ar/2 : 
1 : 7 at T0 = 298K and p0 = 10 
kPa, cell width 1.6 cm

• Similar configuration as E. 
Oran et al., J. Combustion 
and Flame 113, 1998

• Euler equations for 9 
thermally perfect species, 34 
elementary reactions 

• Adaptation criteria:
− Scaled gradients of ρ

and p
− Error estimation in Yi by 

Richardson extrapolation
• 67.6 Pts within induction 

length. 4 additional refinement 
levels (2,2,2,4)
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Detonation diffraction
• Detailed mechanism with 34 elementary 

reactions
• 25 Pts within induction length. AMR base 

grid 508x288, 4 additional levels (2,2,2,4)
• Adaptive computations use less than 3.106

cells instead of 150.8.106 cells (uniform grid)
• ~4000h CPU on 48 nodes Athlon 1.4 GHz

2H2 +O2+22%N2 , 100kPa, D/λ=13

2H2+O2+70%Ar 10kPa,  D/λ=12

flow 
direction
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Triple point tracksColor plot of temperature, 15o pipe bend

• Same configuration as in 2D diffraction simulation. Tube width of 5 detonation 
cells (8 cm)

• Pipe bend with same radius. Angle: 15o, 30o, 45o, 60o

• 67.6 Pts within induction length. 4 additional refinement levels (2,2,2,4)
• Adaptive computations use ≈ 7.106 cells (≈ 5.106 on highest level) instead of 

1.2.109 cells (uniform grid)
• ~70,000h CPU on 128 CPUs Pentium-4 2.2GHz

Detonation propagation through smooth pipe bends
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100 μs150 μs200 μs250 μs

Dynamic mesh adaptation: 60o
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• Schlieren plot of density on 4 refinement levels.
• Savings from SAMR: 250 up to 680

Zoom into single triple point
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Fluid-structure coupling (VTF)
• Couple compressible Euler equations to Lagrangian structure 

mechanics
• Compatibility conditions between inviscid fluid and solid at a slip 

interface
− Continuity of normal velocity: uS

n = uF
n

− Continuity of normal stresses: σS
nn = -pF

− No shear stresses: σS
nτ = σS

nω = 0
• Time-splitting approach for coupling

− Fluid: 
• Treat evolving solid surface with moving wall boundary conditions in fluid
• Use solid surface mesh to update fluid level set on-the-fly with Closest-

Point Tranform algorithm by S. Mauch (Caltech)
• Use nearest velocity values uS on surface facets to impose uF

n in fluid
− Solid:

• Use interpolated hydro-pressure pF to prescribe σS
nn on boundary facets

• Ad-hoc separation in dedicated fluid and solid processors
− Parallel boundary data exchange library by S. Mauch



27

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

• Elastic motion of a thin steel plate when being hit by a Mach 1.21 shock 
wave, Giordano et al. Shock Waves (2005)

• Steel plate modeled with finite difference solver using the beam equation

• SAMR base mesh 320x64, 2 additional level with factors 2, 4

Schlieren plot 
of density
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− Thin aluminum test specimen embedded in shocktube (closed at upper end)
− Preflawed specimen ruptures from detonation wave in H2-O2 mixture ignited by shock wave reflection 
− Specimen simulated by thin-shell FEM solver by F. Cirak (U Cambridge) 

Multi-physics examples with fracture
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− Detailed H2-O2 reaction mechanism 
− Ignition and depletion visible from O2 consumption 
− 6+10 nodes 2.2 GHz AMD Opteron quad processor, ca. 2300h CPU

Multi-physics examples with fracture
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Conclusions 
• Detailed construction of fully positivity-preserving upwind scheme for thermally 

perfect gas-mixtures
• Discussed embedding of this scheme into SAMR in a Cartesian ghost-fluid-type 

method
• Detonation structure simulations with detailed chemistry are possible nowadays in 

2d
− Resolution down to the scale of secondary triple points can be provided in realistic 

geometries
• Enabling components: Combining parallel SAMR with mixed explicit-implicit time 

operator splitting 
− SAMR provides a sufficient spatial and temporal resolution
− Saving from SAMR >50x for example for detonation diffraction simulations, up to >680x 

for pipe bend simulations
− Operator splitting allows a cell-wise integration of stiff reaction terms

→ no globally coupled implicit system
− Entire splitting scheme is time-explicit → time accurate, easy parallelization
− High resolution finite volume schemes for homogeneous Euler equations and complex 

stiff ODE solvers can be reused
− Distributed memory parallelization allows large-scale problems

• Outlook: The Virtual Test Facility software
− Coupling of Lagrangian finite-element solvers to Eulerian SAMR-GFM framework Amroc

for highly instationary fluid-structure interaction problems
• Literature, links to software, etc. under http://www.csm.ornl.gov/~r2v

http://www.csm.ornl.gov/~r2v


31

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Abbreviations
• Amroc: Adaptive mesh refinement in object-oriented 

C++
• GFM: Ghost fluid method
• CPT: Closest point transform
• FEM: Finite element
• FV: Finite volume
• MUSCL: Monotone upstream-centered schemes for 

conservation laws
• ODE: Ordinary differential equations
• SAMR: Structured adaptive mesh refinement
• VTF: Virtual Test Facility
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