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Preface

The primary aim of this text is to attract the attention of researchers and practitioners working
with computer networks to possible gain in precision, speed, and economy of their experiments by
employing advanced techniques of optimal experimental design. Unlike in many other experimen-
tal areas where the cost of measurements is dominant, in computer networks the emphasis is to
maximization of useful information per given amount of either collected or stored information.
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Chapter 1

INTRODUCTION

1.1 MOTIVATION

The idea of applying experimental design methodologies to develop monitoring systems for com-
puter networks is relatively novel even though it was applied in other areas such as meteorology,
seismology, and transportation [see Cressie (1991), Cheng (1991), Fedorov (1996)]. One objective
of a monitoring system should always be to collect as little data as necessary to be able to monitor
speci�c parameters of the system with respect to assigned targets and objectives. This implies a
purposeful monitoring where each piece of data has a reason to be collected and stored for future
use. When a computer network system as large and complex as the Internet is the monitoring
subject, providing an optimal and parsimonious observing system becomes even more important.

A standardized and widely accepted set of metrics will help to (1) determine performance of rou-
tine maintenance and problem troubleshooting, (2) predict performance trends, and (3) develop
simulations and the corresponding mathematical models that are necessary for operating system
understanding and development planning. The metrics may characterize the operating system sta-
tus, routes, capacity, resources, packet losses, response time, or intrusions, to name a few examples
[cf. Cla�y (1994), Paxson (1997), Cottrell et al. (1997), and Cottrell and Mathews (1998) for
computer network metric examples and an extensive bibliography]. We do not discuss extensively
an important problem of optimal selection of metrics (indicators, explanatory/response variables),
which must be included in the monitoring. In practice, the choice is based on the trade-o� between
what is needed, what can be measured (given expenses), and what is allowed to be measured by
various legal agreements.

Many data collection decisions must be made by the developers of a monitoring system. These
decisions include but are not limited to the following:

1. The type of data collection hardware and software instruments to be used.

2. How to minimize interruption of regular network activities during data collection.

3. Quanti�cation of the objectives and the formulation of optimality criteria.

4. The placement of data collection hardware and software devices.

5. The amount of data to be collected in a given time period, how large a subset of the available
data to collect during the period, the length of the period, and the frequency of data collection.
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6. The determination of the data to be collected (for instance, selection of response and explana-
tory variables).

7. Which data will be retained and how long (i.e., data storage and retention issues).

8. The cost analysis of experiments.

We would like to emphasize that this research is focused on the monitoring of networks through
measurements that minimally disturb the networks themselves. We do not consider the very inter-
esting and challenging \active" experiments in which a network's characteristics or regimes may be
varied to gather information about its behavior at some speci�c conditions, hypotheses, assump-
tions, or test models. For instance, the capacity of some bu�ers may be intentionally reduced or
some links (communications channels) may be blocked.

Mathematical statistics, and, in particular, optimal experimental design methods, may be used
to address the majority of problems generated by 3 � 7. In this study, we focus our e�orts on
topics 3�5. Optimal design theory methodologies start with a candidate set of variables that have
a potentially important impact on the response variables. In the most obvious cases, there are
variables that are included in a model that must be �tted and used for prediction or simulation.
The entire feasible set from which the levels of designated variables can be selected is called the
design or operability region. The main task of experimental design is to de�ne combinations of
those levels that will provide the most cost e�ective information in the sense of a given criterion
of optimality (for instance, variance of prediction or variance of the estimator of some speci�c
parameter).

A few methods and techniques of standard experimental design theory can be used after adaptation
similar to the approach that was applied for the monitoring of transportation networks [see Cheng
(1991) who considered the optimal sampling problem for federal highway tra�c data collection].
Computer network tra�c, however, exhibits unusual patterns of stochastic behavior, including
long range (in time and space) correlation, probability distributions with heavy tails, mixture
of distributions, bursts, nonstationarity, etc. This fact necessitates more serious changes in the
existing methods of experimental design theory and development of methods that address the
needs of mathematical models used for the cases above.

Computer software for generating response surface design of experiments is currently available
from various vendors such as the Statistical Analysis System Inc., SPSS, \Trial Run," etc., [see,
for instance, SAS/QS (1995), SPSS (1997), and Wheeler(1994)]. While this software handles most
standard linear model designs, it does not cover the optimal design theory methods needed for
our research. In particular, even the most extensive package, SAS, has no features for correlated
observations, does not allow the computation of optimal designs when prior information is available,
and uses algorithms that do not guarantee global optimality. Thus, computer programs that work
for the considered models are needed, and the development of their pilot versions is a part of this
study.

1.2 MEASURING NETWORK PERFORMANCES

With the extensive growth of the Internet and its various components, only regular and well or-
ganized measurements and surveys enable one to understand ongoing tendencies and processes.
Knowledge and correct diagnosis of short-term processes make it possible for various conditions
to occur, such as connection establishment, retransmission, fragmentation, optimal routing, etc.
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Understanding long term tendencies may be useful in network development strategies or technical
improvements needed to satisfy the consumer needs.

There exists a rather intense ux of publications covering various aspects of measurements and
some statistical techniques related to those measurements. Very comprehensive bibliographies may
be found in Cla�y (1994), Paxson (1997), Quarterman (1990), Willinger et al. (1995a,b), Willinger
et al. (1996). It has been noted that the probability distributions of random variable and random
processes observed on large networks have some unusual properties. Self-similarity, heavy tails, and
long-memory processes are frequently discussed subjects in publications related to measurements
and statistical analysis of large networks. Examples are Floyd (1996), Frost and Melamed (1994),
Paxson (1995, 1996), Paxson and Floyd (1995), Willinger et al. (1995a), Willinger et al. (1995b),
and Beran (1994), Chap. 1.

More practical aspects and, in particular, various \metrics" to measure are surveyed by Cottrell et
al. (1997). See also Cla�y (1994) and Paxson (1997). For quick, real-time evaluation of network
state(s), simple graphical presentation and visualization of some basic statistics are essential com-
ponents (see, for instance, Cottrell and Mathews (1998), Batsell et al. (1997)). There are a few
Web sites where the reader can �nd the corresponding information; see http://www.slac.stanford.
edu/xorg/nmtf.html and http://www.epm.ornl.gov/�sgb/network.html for references.

In all examples included in this study, we use software measurements, which are based on two
popular programs; \ping (Packet Internet Groper)" and \traceroute". The detailed description of
these programs may be found, for instance, in Paxson (1997) and Stevens (1994), Chaps. 7 and 8.
Various scripts for the e�cient use of the mentioned \tools" were written by T. Dunigan of Oak
Ridge National Laboratory (ORNL).

1.3 COMMENTS ON STATISTICAL METHODS OF EXPERI-

MENTAL DESIGN

A number of statistical methodologies have been developed for constructing experimental designs.
In general, experimental design methods help to select an appropriate sample size (number of
design points, experimental units, treatments, experimental runs, etc.) and the most informative
combinations of explanatory variables based on a prior knowledge about the uncertainties that
might be expected and the functional relationships between various groups of variables that may
be used to make inferences about the explored systems. Methodologies for linear models have
a history going back to the beginning of the century [see Stigler (1974)]. Convex design theory
was mainly initiated by Kiefer's celebrated results [see Kiefer (1959)] and was actively evolving
afterwards [see details and references, for instance, in Atkinson and Donev (1992), Bandemer et
al. (1977), Box and Draper (1987), Box, Hunter and Hunter (1978), Fedorov (1972), Fedorov and
Hackl (1997), Karlin and Studden (1966), Pukelsheim (1993), and Silvey (1980)].

Standard experimental design methods for linear models (regression or response surfaces) are a
subset of optimal design methodologies, which are used as a benchmark for determining how \good"
designs could be under rigid assumptions. In practice, optimal design methodology is frequently
applied to the situations in which those assumptions hold \very approximately". At that point a
practitioner either believes that violation of those assumptions does not lead to a drastic divergence
of a design proposed by idealized theory from actually optimal design or, together with statisticians,
starts to look for more realistic approaches. Design for nonlinear response models, for models of
�nite validity range, or models with correlated observational errors are typical examples of the
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latter situation.

There are a number of features that separate experiments on large computer networks from the
\standard cases". In particular, the assumptions of homogeneous variances (or nonhomogeneous
but known) and no correlation of observational errors are essential for many results in design theory.
The assumption that there is no correlation between di�erent observations can work as an admissible
approximation for computer network experiments. For instance, the short-term measurements of
activities on two remote sites (computers, servers) may be considered stochastically independent.
But even in this case, the problem is still quite di�erent from the ones analyzed in experimental
design theory: most frequently both the response and its variance contain unknown parameters.
A typical example is measuring counts (number of packages per time unit, train length, arrivals,
etc.). In this case, a Poisson type distribution can be considered as a candidate to model the
stochastic components of observed characteristics. For Poisson regression, the presence of unknown
parameters in the variance moves the problem from the linear paradigm to the nonlinear one, which
demands signi�cantly more e�ort to build an optimal design.

As an example of another unusual model for experimental design theory, we can point to the use
of compound distributions to model stochastic tra�c of qualitatively di�erent messages on the
Internet. The \demixing" problem is still waiting for new approaches both in statistical analysis
and experimental design.

Even when we use some simple linear models to describe network tra�c, the size of a network
can create tremendous di�culties in listing elements of the design space. These di�culties are
ampli�ed if, instead of deterministic control, an experimenter has weaker control in the selection
of elements from this space. For instance, in selecting a particular route to communicate with a
remote site, an experimenter cannot be sure that the message will travel along this selected route.
With some probability it may be redirected by the network management to another route. So,
some new approaches in experimental design taking into account that type of uncertainties must
be elaborated.

The list can be continued, and we foresee a number of new studies addressing the above and related
problems. Unlike many other areas we need on-line technologies that allow us to create optimal
observational schemes in real time (consider, for instance, measurements in the optimal routing
problem). The objective of this study is relatively modest: to adjust and complement existing
experimental design techniques to make them useful in the construction of optimal monitoring net-
works, to attract the attention of practitioners to a possible increase of e�ciency of measurements,
and to post and discuss new statistical problems that are waiting for solutions.

1.4 OUTLINE OF THE PAPER

Most of the objectives of optimal experimental design are the natural extension of what is pursued
in estimation theory. The aim of the latter is to obtain the best estimators given the data. The pre-
vious one pursues the further gain in precision through better allocation of the measuring resources.
In this text, we are mainly working with regression or response type models. In other words, we
analyze functional links between di�erent groups of random variables. The stochastic behavior of
communication networks requires that we consider those types of functional links that satisfac-
torily describe and incorporate the corresponding random variables. The regression models and
corresponding analysis techniques are probably most widely applied when the average tendencies
for one group of variables (responses) conditioned on the second groups of variables (predictors) is
of interest. In Chapt. 2 we summarize the main results from regression analysis with the necessary
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adaptations to handle the problems generated in the analysis of network performance. Sect. 2.1
contains a very short exposure of well known results that we need to make the text self-consistent
and to introduce the reader to the most important facts about the information and covariance ma-
trices which are the main elements in many design problems considered in this research. Additivity
of information matrices is one of the most crucial facts and allows us to introduce a concept of
optimal design (see Sect. 2.1). We include the Bayesian estimators but treat them exclusively in
terms of the second moments: this allows us to easily adapt the existing methods to situations with
prior information. The use of prior information frequently is the only resort from singularities in
the design of optimal monitoring systems (see Sects. 3.4 and 3.5).

In Sects. 2.2 and 2.3 we discuss various generalizations that make it possible to analyze the results of
correlated measurements or measurements with variances that depend upon unknown parameters.
The latter is a necessity for many problems in network analysis in which the Poisson model or
its various generalizations are popular and natural choices; see Sect.2.3.3. We propose \iterated"
estimators as the main tool for data analysis. The use of this estimator provides compatibility
between data analysis and existing optimal monitoring design techniques, especially in a multi-
stage setting.

We briey discuss models with nonlinear responses in Sect. 2.4. There exists vast literature on
the subject. What is important for this study is to show one principal di�erence between linear
and nonlinear response models: unlike the linear case, information matrices in the non-linear case
depend on estimated parameters. This fact creates noticeable di�culties in experimental design
and most frequently pushes a practitioner towards sequential design methods. We, however, reserve
the extension of optimal monitoring design to the nonlinear models for our forthcoming studies.

Chapt. 3 starts with a trivial example that illuminates what kind of design problems may be
encountered in network analysis. In the estimation problem, we can construct the best linear
unbiased estimator, and it is the best one for any design in the sense of the covariance matrix
ordering (i.e., in the sense of Loewner's ordering, see comments to (2.10)). One of the main
conclusions of Sect. 3.1 is that, in general, Loewner's optimization cannot be done in the design
world. Consequently, we must formulate some scalar optimality criterion and minimize it with
respect to the experimental design.

We provide a short survey of experimental design theory, including only those facts that are needed
in optimal monitoring design. The main reference for Chapt. 3 is a book on experimental design by
Fedorov and Hackl (1997). Whenever it is possible, we provide some simple examples based on very
simple networks to illustrate the techniques. Computational Sects. 3.3 and 3.4 are very practically
oriented. The earlier versions of examples from Sect. 3.4 were mainly developed by Flanagan
(1997) during her work in the LDRD project \Network Performance Understanding". In Sect. 3.5
we attempt to apply experimental design techniques to optimal monitoring of the Department of
Energy's Energy Sciences Network (ESnet). We have made a number of assumptions which may
be easily criticized by practitioners. It is obvious to us that there is a great distance between \on
line" applications and what is described in that section. However, our objective is, to a very large
extent, not only to produce something which can be of immediate use but to attract the attention
of the network community to the opportunities. The elaboration of assumptions and bringing them
closer to the real world is our nearest objective. In the framework of the selected model we discuss
the following problems of optimal monitoring based on a simpli�ed graph of the ESnet containing
34 site nodes and 39 edges and the D-criterion:

� Optimal monitoring design, in which all 34 nodes/sites can be considered as hosts, i.e., all of
them are able to measure along the routes prescribed to them.
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� Selection of the given number of partners (or \team" selection) and the corresponding desti-
nation nodes and routes to optimally monitor the ESnet.

� Introduction of measurement uncertainties depending on the selected routes and analysis of
changes in optimal monitoring they can cause.

A number of practical and theoretical relatively straightforward generalizations, together with prob-
lems, which need principally new approaches, are discussed in the concluding section of Chapt. 3.
We think that two problems (see Subsects. 3.6.4, Other Types of the Information Matrix Normal-
ization and 3.6.5, Heavy Tailed Distributions) are most interesting for applications and are a real
challenge from a mathematical point of view. We are not familiar with any publications on ex-
perimental design, or more speci�cally, in optimal monitoring design for models discussed in these
sections.

In Chapt. 4 we abandon the parameterized response models and consider relationships between
various groups of variables that can be modeled through covariance structures. We work with linear
predictors and covariance matrices. The �nal objectives are close to what they are in Chapt. 3,
but the emphasis is naturally on prediction of network characteristics at the prescribed set of sites
(nodes, edges, etc.). Formally, the proposed approach is based on ideas that are close to the ideas
of convex design theory. We describe main properties of optimal allocations (Sect. 4.2) and the �rst
order algorithm (Sect. 4.3) and illustrate the applicability of the proposed methods in Sect. 4.4, in
which we return to the monitoring problem for the ESnet. In particular, we analyze the changes that
are observed when the ratio of the measurement variance to the number of available measurements
varies. It is shown that the covariances between di�erent interrogated sites are important only
if this ratio is su�ciently large. Otherwise, the monitoring schemes adhere to this very simple
principle: interrogate sites with the greatest variability of the measured characteristics.

In Sect. 4.5, we bridge some heuristic approaches developed in analysis of spatial �elds with the
developed theory and show that it is possible to introduce similar approaches in network monitoring
design. The main idea is extremely simple and attractive. If you have data simultaneously collected
for several sites, then project each of them on all others and delete what is well explained by
measurements at other sites from your collection of sites to monitor. Repeat the action until an
economically sound number of sites is left in your collection. Is this procedure optimal? We show
that it may be very close to optimal under rather mild conditions.

Through the entire text, we try to make exact chapter references when results from books are cited.
We skip the proofs of many results in hope that the concluding bibliography can help the reader
�nd the necessary details.
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Chapter 2

REGRESSION TYPE MODELS IN

NETWORK MEASUREMENTS

2.1 STANDARD LINEAR MODELS

2.1.1 Example: Simple Network

Let us consider the simple network of Fig. 2.1 with a single host node 1. Let a test-signal (packet,
�le, etc.) be sent from that node to any of nodes 2-4 along a selected (i.e., the \host" may select it)
route, and this signal returns along the same route. We assume that no signi�cant changes occur
in the network activity during an experiment. Let the expected travel time from the host node to
the destination node along a speci�ed i-th route and return by the same route be

E(yjxi) = �Txi ; (2.1)

where E stands for expectation; vectors xi and � have m components; m is the number of edges
in the corresponding graph (in our example it equals 5). If the �-th edge is included in the i-th
route, then xi� = 1, otherwise xi� = 0. The vector of expected individual travel times is � = �=2
in the case when a test signal is sent to a destination site and then without any additional delay is
automatically bounced back to a host site, as assumed for the ping program.

Linear model (2.1) may describe more complicated and interesting situations than were described in
the beginning of this example. For the network at Fig. 2.1, the vector � may consist of components
corresponding to the delay times on edges (�1 = 2�1; : : : ; �5 = 2�5) and to the processing times at
nodes (�6 = �1; : : : ; �9 = �4). In this text, we will neglect processing times to simplify discussions.

To complete the formulation of model (2.1), we have to make assumptions about the probability
distribution of y. Unless otherwise stated, our analysis and design methods are based on the �rst
and second moments of this distribution. Thus, we have to complement (2.1) with some statement
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Figure 2.1: Network graph with 4 nodes and 5 edges.

about the second moments. For instance,

V ar(yjxi) = E(y � �Txi)
2 = �2(xi); (2.2)

where �2(xi) is given, and

Cov(y; y0jxi; xi0) = E
h
(y � �Txi) (y

0 � �Txi0)
i
= 0; i 6= i0 (2.3)

Note that xi may be equal to xi0 (i.e., repeated observations are also uncorrelated). To �nd a
reasonable structure for the function �2(x), information on the stochastic nature of the network and
measurements must be thoroughly analyzed. The popular and simplest choice is that �2(x) � �2.
In the case of routes with a given or known number of edges, it may be reasonable or expedient to
assume that �2(x) = �2� (number of edges included in x).

2.1.2 Linear Regression Models

Model (2.1) - (2.3) is a particular case of the linear regression model. The methods of analysis and
design of experiments are well developed for this class of models [cf. Fedorov and Hackl (1997),
Pukelsheim (1993), Rao (1973)]. In this chapter, we consider a slightly more general model than
(2.1) � (2.3). Namely, we assume that

E(yjxi) = �Tf(xi) ; (2.4)

where f(x) is a (m � 1) vector of given basis functions. Of course, �Tf(x) = fT (x)�, and we use
either presentation as needed without any additional comment. It may be that f(x) = x like in
the above example, but model (2.4) allows us to include more complicated cases. For instance,
interaction xi�xi� that can occur if the behavior of di�erent parts of the network depends upon
each other.

In this section, we assume that
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V ar(yjxi) = �2(xi) (2.5)

and all measurements are uncorrelated. It is a common practice to replace (2.5) by a simpler
assumption

V ar(yjxi) � 1 ; (2.6)

because (2.5) can be transformed to (2.6) if one uses

y0 = ��1(xi)y; f 0(xi) = ��1(xi)f(xi) : (2.7)

We prefer to work with (2.4) and (2.5) instead of (2.4) and (2.6) in spite of the longer formulae: it
makes an easier transition to cases in which the variance-covariance structure is more complicated.

2.1.3 The Best Linear Unbiased Estimator and the Least Squares Method

The least squares and best linear unbiased type of estimator is de�ned either as

�̂ = argmin
~�

E
h
(~� � �) (~� � �)T

i
; (2.8)

where E(~�) = �, ~� = LY, Y = (y1; : : : ; yn), and L is a (m� n) matrix, or as

�̂ = argmin
�

nX
i=1

��2(xi)
h
yi � �Tf(xi)

i2
: (2.9)

The Gauss-Markov theorem (c.f. Rao (1973), Chap. 4a) tells us that the solutions of (2.8) and
(2.9) coincide if the covariance matrix

D = E
h
(�̂ � �) (�̂ � �)T

i
(2.10)

is regular. Note that minimization in (2.8) is understood in the sense of non-negative de�nite
matrix ordering [i.e., Loewner's ordering (cf. Pukelsheim (1993), Chap. 4], so we say that A � B,
if A = B + C and C is non-negative de�nite (C � 0).

We use the same characters for random variables and their realizations. Usually the latter are
marked by some subscripts. When it is necessary to emphasize that we are interested in analyzing
the properties of �̂ as a random vector, the term \estimator" is used. When the particular meaning
of this vector is discussed we use the term \estimate".

Some exercises in matrix algebra show that

�̂ =M�1Y ; (2.11)

where

9



M =
nX
i=1

��2(xi)f(xi)f
T (xi) ; (2.12)

Y =
nX
i=1

��2(xi)yif(xi) : (2.13)

MatrixM is called \information matrix," and, for the sake of simplicity, it is assumed to be regular
(jM j 6= 0) when the inverse operation is used. Various discussions on singular cases may be found,
for instance, in Fedorov and Hackl (1997), Chap. 1, and Pukelsheim (1993), Chap. 3. It must be
emphasized that in any experiment the information matrix is nonnegative de�nite and additive (i.e.,
it is the sum of information matricesm(xi) describing the information gained at each measurement):

M =
nX
i=1

m(xi) ; (2.14)

where

m(xi) = ��2(xi)f(xi)f
T (xi) : (2.15)

If there are repeated measurements, then

M =
nX
i=1

ri�
�2(xi)f(xi)f

T (xi) =
nX
i=1

rim(xi) (2.16)

and

Y =
nX
i=1

riyif(xi) ; (2.17)

where ri is a number of measurements made at point xi, and yi = r�1
i

Pri
j=1 yij .

The covariance matrix of the best linear unbiased estimator �̂ is

D = V ar(�̂) =M�1 : (2.18)

The best linear unbiased estimator of any linear vector function L� is L�̂ with the covarience matrix

V ar(L�̂) = LDLT : (2.19)

For instance, to estimate a regression function �Tf(x) we can use �̂T f(x) and

d(x) = V ar[�̂Tf(x)] = fT (x)Df(x) : (2.20)

In what follows, both matrix (2.19) and function (2.20) are essential for comparison of \quality" of
experiments. Both are uniquely de�ned by the information matrix M .
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2.1.4 Properties of Information Matrices

Let us now summarize the main properties of matrices de�ned by (2.16). Some have been already
mentioned; others directly follow from the de�nition (2.16).

1. The information matrix M is uniquely de�ned by the collection fxi; ri; gn1 and by the vector
of the basis functions f(x), and does not depend upon the results of measurements.

2. M is symmetric and non-negative de�nite.

3. M is the sum of the individual information matrices for each measurement.

Let the collection

� = fxi; pign1 ; pi = ri=N; N =
nX
i=1

ri

be called the design (sometimes the plan) of an experiment. To compare the quality of experiments
with di�erent numbers of observations, the normalized information matrix

M(�) = N�1M =
nX
i=1

pi�
�2(xi)f(xi)f

T (xi) =
nX
i=1

pim(xi) (2.21)

can be useful.

If the set of designs is extended to the set of all possible probability measures, �(dx), on a compact
(for simplicity) set X, then the normalized information matrix is de�ned as

M(�) =

Z
X
��2(x)f(x)fT (x)�(dx);

Z
X
�(dx) = 1 : (2.22)

Note that

M(�) =

Z
X
m(x)�(dx) ;

where m(x) is the information matrix of a measurement made at x; see (2.15). The normalized
covariance matrix is de�ned as

D(�) =M�1(�) ; (2.23)

if M(�) is regular. Unless it would otherwise be ambiguous, we omit the word \normalized".

Let M1 and M2 be the information matrices of two experiments made according to designs �1 and
�2, respectively. Then, because of the additivity of the information matrix, we can write

M =M 1 +M2 , NM(�) = N1M(�1) +N2M(�2) ;

and dividing both sides by N we have
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M(�) = (1� �)M(�1) + �M(�2) ;

where

� =
N2

N1 +N2
and � = (1� �) �1 + � �2 :

Thus, the set of normalized information matrices is convex. Additivity is a property of information
matrices only when observations are uncorrelated.

2.1.5 Presence of Prior Information

If prior information about the estimated parameters exists and can be expressed in terms of a
prior distribution with mean �0 and variance-covariance matrix D0, then the combined information
matrix is:

M tot =M +M0 ; (2.24)

whereM0 = D�1
0 . The covariance matrix of the parameter estimators is calculated as Dtot =M�1

tot .
The updated estimator for � may be presented as

�̂tot = (M +M0)
�1(M�̂ +M0�0) ; (2.25)

where �̂ is de�ned by (2.11). In the case of normally distributed measurements and a normal prior
distribution, �̂tot coincides with the Bayesian estimator [cf. Box and Tiao (1992), Chap. 2].

The latter formula contains a hint of how to regularize the estimation problem when the original
information matrix is singular: one has to use a regularized matrix

M(c) =M + cM 0; M0 > 0; c > 0

where frequently [for instance, in ridge regression exercises, Seber (1977), Chap. 3.10] M0 = I, and
the behavior of M�1(c) as a function of c. This approach is convenient when a linear combination
 = L� can be uniquely estimated for a given M even when the latter is singular. In this case [cf.
Albert (1972), Chap. 3] for any estimable linear function  = L�

̂ = lim
c!0

L(M + cM 0)
1Y

and

V ar ̂ = lim
c!0

L(M + cM0)
�1LT :

Details about the use of prior information and regularization can be found in Atkinson and Fedorov
(1988) and Pilz (1991).
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2.2 CORRELATED OBSERVATIONS

In the presence of correlation, it is more practical to rewrite model (2.4) in the matrix form:

E(YjF ) = F T � ; (2.26)

where F is an m�n matrix and is de�ned as F = (f(x1); : : : ; f(xn)). Let the vector of observations
have the following covariance matrix:

C = V ar(YjF ) = E

��
Y � F T �

��
Y � F T �

�T jF� : (2.27)

If C is known, then the best linear unbiased estimator is [cf. Rao (1993), Chap. 4a]:

�̂ =M�1Y ; (2.28)

where

M = FC�1F T and Y = YC�1F T :

Note that

�̂ = argmin
�

�
Y � F T �

�T
C�1

�
Y � F T �

�
:

Sometimes the matrix C may be constructed from an analysis of the stochastic behavior of the
vector Y. The most popular examples are various auto-regression models [cf. Anderson (1994)]
and competition models [cf. Martin (1996)]. However, more frequently only some historical data
are available to construct and estimate the covariance matrix C.

2.2.1 Example

To continue to analyze the model introduced in the example from Sect. 2.1.1, let the i-th observation
be described as

y = �Txi + ETxi ;

where the random vector E has the same dimension as �, E(E) = 0; V ar(E) = �2I, and i = 1; : : : ; n.
For the sake of simplicity, we assume that there are no repeated measurements. One can imagine
that all n observations are made almost instantaneously (i.e., nothing has been changed on the
network during those n observations). If the vector xi has k nonzero components, then

Cii = V ar(yjxi) = xTi xi�
2 = k�2 :

If the vectors xi and xi0 have ` common nonzero components (routes contain the same edges), then

Cii0 = Cov(y; y0jxi; xi0) = xTi xi0�
2 = `�2 :
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Table 2.1 lists all possible routes for the considered example (single-host and multihost cases are
included). One can see, for instance, that observations made on routes 1 and 2 are not correlated
(i.e. C12 = 0, while for routes 1 and 9, there are two common edges and hence C19 = 2�2).

Table 2.1: Routes for the network problem with 4 nodes and 5 edges

Host-Interrogated Route Edges
Site Number 1 2 3 4 5

1 - 2 1 0 1 1 1 0
1 - 2 2 1 0 0 0 0
1 - 2 3 0 1 0 0 1
1 - 4 4 0 0 0 1 0
1 - 4 5 0 0 1 0 1
1 -4 6 1 1 1 0 0
1 - 3 7 0 0 0 0 1
1- 3 8 1 1 0 0 0
1 - 3 9 0 0 1 1 0
2 - 3 10 0 1 0 0 0
2 - 3 11 1 0 0 0 1
2 - 3 12 1 0 1 1 0
2 - 4 13 1 0 0 1 0
2 - 4 14 0 1 1 0 0
2 - 4 15 0 1 0 1 1
2 - 4 16 1 0 1 0 1
3 - 4 17 0 0 1 0 0
3 - 4 18 0 0 0 1 1
3 - 4 19 1 1 0 1 0

2.3 VARIANCE DEPENDING UPON UNKNOWN PARAME-

TERS

2.3.1 Iterated Estimators Based on the Best Linear Unbiased Estimators

In analyzing network data the variance of the observations may depend upon the same parameters
� as the regression function [see, for instance, Batsell et al. (1997), Vardi (1996)], that is

V ar(yjx) = �2(x; �) :

In this case \iterated estimators" can be used to estimate � (see, for instance, Fedorov and Hackl
(1997), Chap. 1). For the linear regression function and uncorrelated observations, the iterated
estimator is

�̂ = lim
s!1

�s ; (2.29)
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where at each step s, we do the following calculations:

�s = M�1
s Ys ;

M s =
nX
i=1

ri�
�2(xi; �s�1)f(xi)f

T (xi) ;

Ys =
nX
i=1

ri�
�2(xi; �s�1)yif(xi) :

If N =
Pn

i=1 ri and PN is the probability that limit (2.29) exists, then it can be shown that under
rather mild assumptions

lim
N!1

PN = 1 :

If there exists a regular matrix

M(�) = lim
N!1

N�1MN (�) ;

whereMN (�) =
Pn

i=1 ri�
�2(xi; �)f(xi)f

T (xi), and � is the vector of true values of unknown param-
eters, then the iterated estimator is strongly consistent [see Rao (1973), Chap. 2c for a de�nition
and compare with Batsell et al. (1997)] and asymptotically has the same e�ciency as the best
linear unbiased estimator for the case when variances �2(xi; �) = �2i are given. The asymptotic
normalized covariance matrix D = limN!1NV ar(�̂) coincides with M�1(�). Unlike the previous
section, the covariance matrix depends on the vector �, which is not known a priori.

Instead of the information matrix de�ned by (2.22), we have to use the matrix

M(�; �) =

Z
X
��2(x; �)f(x)fT (x)�(dx) ; (2.30)

where �(dx) is a limit design for the sequence f�Ng = fxi; rijNg.
The vector �s also may be presented as

�s = argmin
�

nX
i=1

��2(xi; �s�1)
h
yi � fT (xi)�

i2
: (2.31)

However, it should be emphasized that

�̂ 6= ~� = argmin
�

nX
i=1

ri�
�2(xi; �)

h
yi � fT (xi)�

i2
; (2.32)

and, in general, the least square estimator ~� is not consistent [cf. Fedorov (1974) and Malyutov
(1987)].
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2.3.2 Iterated and Maximum Likelihood Estimators

Construction of the estimator �̂ is based on the concept of the best linear unbiased estimation and
the least squares method. The maximum likelihood method may generate a di�erent estimator.
For example, in the case of normally distributed observations, the maximum likelihood method
leads to the following iterated estimator:

�̂M = lim
s!1

�s ; (2.33)

�s = argmin
�

nX
i=1

ri
n
��2(xi; �s�1)

h
yi � fT (xi)� ]2

+
1

2
��4(xi; �s�1)

h
�̂2i (�s�1)� �2(xi; �)

i2�

where �̂2i (�) =
1
ri

Pri
j=1

h
yij � fT (xi)�

i2
.

Whenever the sequence f�sg converges, the vector �̂M coincides with the maximum likelihood
estimator

�� = argmax
�

nY
i=1

riY
j=1

1p
2��(xi; �)

e
1
2
[
yij�fT (xi)�

�(xi;�)
]2

= argmin
�

nX
i=1

riX
j=1

8<
:ln�2(xi; �) +

"
yij � fT (xi)�

�(xi; �)

#29=
; : (2.34)

If in estimator (2.33) we abandon the assumption on normality, then this estimator can be consid-
ered as a generalization of iterated estimator (2.31) when both functions fT (x)� and �2(x; �) must
be �tted to their observed values.

2.3.3 Example: Estimation of Delay/Travel Time

The travel time from the (�� 1)-th node through the �-th node (i.e., the service time at the latter
is included) may be characterized by a minimal delay time �� and by a mean time �� of various
services provided at that element of a route. In other words, we can describe a transmission process
by the random variable

z� = �� + u� ;

where �� is the minimal delay time and u� is a random component of service. We assume that in
the case of repeated measurements, all the pings travel along the same route.

Under a rather natural set of assumptions, u� is distributed exponentially with parameter ��, so
the probability density function is exponential [cf. Snyder (1975), Chap. 2]:
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p�(u) =
1

��
e�

u
�� ; u � 0; or p�(z) =

1

��
e
z���
�� ; z � �� :

Probably the second simplest choice is a Weibull distribution, which may be derived from standard
exponential distribution by setting u = (z � �)c; z > � . There are numerous publications related
to network tra�c analysis in which the applicability or non-applicability of the Poisson model (and
consequently the exponential distribution for service, delay, or travel time) are discussed in depth.
Examples are Jain and Routhier (1986), Leland et al. (1994), Frost and Melamed (1994), Paxson
and Floyd (1995), and Paxson (1996, 1997). In this study, we prefer to be within the Poisson
paradigm.

Let the ping message traverse k edges and let

Zk =
kX

�=1

z� =
kX

�=1

�� +
kX

�=1

u� = � + Uk : (2.35)

It may be shown [see, for instance, Cox (1967), Chap.1.4 and Johnson et al. (1994), Chap.19] that
for independent u�; � = 1; : : : ; k, Uk has the general Erlangian distribution:

p(U) =
kX

�=1

A�
1

��
e�

U
�� ; (2.36)

where

A� =
kY

�0 6=�

��
�� � ��0

;

and all �� are di�erent. The expected travel time is

E(Zk) =
kX

�=1

(�� + ��) = � + �
k
;

and the variance is

V ar(Zk) = V ar(Uk) =
kX

�=1

�2� :

Let x be a vector with components that may be either 1 or 0. Similar to Sect. 2.1.1, the �-th
component of the vector x indicates the �-th edge is included in the route on which the delay time
is measured. Assuming that the minimal delay times �T = (�1; : : : ; �m), m = dimx, are known and
introducing y = z � �Tx, we have in terms of the regression model that

E(yjx) = �Tx and V ar(yjx) = �2(x; �) ;

where �� = ��, �
2(x; �) =

Pm
�=1 �

2
�x

2
�; and x

Tx = k.
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Figure 2.2: Histograms for various number of edges included in a route.

The above model is a perfect candidate for the iterated estimation based on (2.33). It must be noted
that the maximum likelihood method may provide a better estimator for �1; : : : ; �m being based
on more detailed information described by a density function. The direct use of density function
(2.36) leads to computational di�culties, which make the approach impractical. One can hope
that for a large k [i.e., when a ping traverses su�ciently many edges] the probability distribution
of U can be approximated by the normal distribution due to the Central Limit Theorem [cf. Rao
(1973), Chap. 2c], and then the iterated estimator (2.31) can be used. The asymptotical (k !1)
relationship

lim
k!1

Prob

 
Uk � �

kp
V ar(Uk)

� u

!
= �(u) ; (2.37)

where �(u) stands for the standard normal distribution, �
k
and V ar(Uk) were de�ned earlier, holds

for random variables Uk if

lim
k!1

max
1���k

��p
V ar(Uk)

= 0 ;
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Figure 2.3: The histogram of travel time for two neighbor nodes.
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Normalized travel time

Density

Figure 2.4: Normalized histograms for the travel time for two neighbor nodes.
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Figure 2.5: The normalized histogram for the travel time and the simulated histogram (1000 trials) for the
standard normal distribution.
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where only those �� � are included, for which x� = 1. The above statement means that the e�ect
of individual terms in the sum becomes smaller and smaller with increasing k. Thus, to use the
normal distribution as a reasonable approximation, one must be sure that there are no dominant
terms in the sum (2.35).

We used the traceroute program [see details and further references in Stevens (1994), Chap. 8] to
collect statistics about delay times Zk. A few remote destination sites were observed. Results look
very similar for di�erent sites, and in what follows, the data (sample size is 1000) for the Vienna
University of Economics (the destination site) are discussed. The traceroute program reports the
round-trip travel times for every of k nodes that are included in the selected route.

The histograms for Uk with di�erent k are presented in Fig. 2.2, and the reader can see that the
signi�cant increase of k does not make the histograms look closer to the normal distribution. One
can notice that the distribution for node 19 has a very long right \tail". It can be explained by
the presence of di�erent tra�c conditions, and that leads to the compoundness of the travel time
distributions. Interestingly, the empirical distributions, even for the neighbor nodes look essentially
di�erent; see Fig. 2.3, in which the histograms for nodes 18 and 19 are presented. At �rst glance,
the discrepancy between two consequent distributions does not provide too much hope for the
convergence of the distributions, which is expected in (2.37). However, the picture (see Fig. 2.4)
looks much better for the normalized random variables, that is, for

Vk =
Uk � �̂

kp
�̂2(Uk)

;

where �̂
k
and �̂2(Uk) are the empirical average and variance. They replace �

k
and V ar(Uk),

respectively. Note that (2.37) takes place for the normalized random variables, when �
k
and

V ar(Uk) are given.

Still, the empirical distributions (see Fig. 2.5) are not very close to the normal distribution, and
the heavy tails require some caution in the application of asymptotical normality; see (2.37). Con-
sequently, estimator (2.34) can be considered an approximate maximum likelihood estimator with
all the nice and readily available asymptotic properties only with very serious precaution. Esti-
mator (2.33) is still a useful tool in the framework of estimation based on the �rst two moments.
Some asymptotic properties, like consistency and asymptotical e�ciency of the corresponding es-
timators, can be veri�ed following ideas from Fedorov (1974) and Malyutov (1987). However, the
details must be modi�ed to take into account outliers generated by the presence in the compound
distributions of \low weight" components responsible for the \tails."

2.3.4 Estimating Source-Destination Network Tra�c Intensities (Network To-
mography)

The problem of estimating the node-to-node tra�c intensity from repeated measurements on the
edges (links) of a network has been discussed by several authors. Vardi (1996) probably contains
the most complete and updated information on the subject. In this subsection, we use Vardi's
formulation of the problem but apply the iterated estimator instead of the EM (expected maximum
likelihood) estimator; see Dempster, Laird, and Rubin (1977). We consider the derivation of the
EM estimator unnecessarily complicated for the considered problem and much less transparent
than the iterated estimator.

Let m denote the source-destination pairs, and let these pairs be numbered � = 1; : : : ;m, where
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m � d(d � 1), and d is a number of nodes. For the sake of simplicity, we assume that each
source-destination pair uses a single route. In this case the total tra�c on the i-th edge equals

ui =
mX
�=1

G�x�i ;

where x�i = 1, if the �-th source-destination pair uses the i-th edge, and x� = 0 otherwise. Follow-
ing Vardi (1996), we assume that number of messages (communication units) G� corresponding to
the �-th pair has a Poisson distribution with the parameter ��, that is, p�(g) = �g�e

���=g!. Hence,
similar to (2.1) we can write that

E(yjxi) =
mX
�=1

��x�i ;

where xTi = (x1i; : : : ; xmi). Noting that two di�erent edges xi and xi0 may include tra�c between
the same source-destination pairs, we conclude that measurements on edges i and i0 might be
correlated. Therefore, we have to use a particular case of model (2.26), (2.27), that is,

E(YjX) = XT � ; (2.38)

C(�) = V ar(YjX) = XT�X ; (2.39)

where

X =

0
B@ x11 x12 : : : x1k

: : : : : : : : : : : :
xm1 xm2 : : : xmn

1
CA ;

� is diagonal and ��� = ��. Model (2.38), (2.39) gives us an example in which the results from
Sects. 2.2 and 2.3 must be used together: we have correlated observations, and the covariance matrix
depends on unknown parameters. Combining (2.28) and the multi-response version of (2.31) we
come to the following iterated estimator:

�̂ = lim
s!1

�s; �s =M�1
s Ys (2.40)

where M s = XC�1(�s)X
T , and Ys = YC�1(�s)X

T .

Note that to uniquely estimate all m components of the vector �, we have to be sure that rankX =
m. Obviously, rankX � n, where n is the number of edges included in the experiment, n = dimY.
For the simple graphs presented at Fig. 2.1, we can measure the tra�c only on 5 edges. At the same
time, we have 12 ordered pairs. Thus, there exists a serious problem with the identi�cation of �, even
if we can measure tra�c in both directions separately for each edge (i.e., we have 10 measurements).
It can be veri�ed that if the limit in (2.40) exists, then �̂ coincides with the maximum likelihood
estimator as proposed by Vardi (1996) in the framework of the normal approximation without
any recommendation about how to compute it. He assumed that the vector Y can be repeatedly
measured su�ciently many times so the Central Limit Theorem can be applied, and reintroduced
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the constraints �� � 0, � = 1; : : : ;m, which are not very important in the asymptotical setting and,
if needed, can be easily added to (2.40). The identi�cation of � is a recognized problem related
to \demixing in Poisson mixture models" [see, for instance, Hengartner (1997)]. Even for well
structured mixtures (in terms of our problem it means that there are some relationships between
di�erent components of �), the estimation problem of � belongs to the realm of ill-conditioned
problems.

One of the opportunities to overcome the discussed di�culty may be the introduction of prior
information. If this information can be described in terms of a prior vector �(0) and its variance
matrix D(0), then we come to the interesting mixture of the Bayesian type estimation and the
iterated estimation. Combining (2.25) and (2.40) we may derive the following iterated estimator

�̂B = lim
s!1

�s ; �s =M�1
tot;s

�
Ys +D�1

(0)�(0)
�

; (2.41)

whereM tot;s =M s+D
�1
(0) ; the matrixM s and the vector Ys are de�ned in the comments to (2.40).

2.4 NONLINEAR MODELS

If a linear (with respect to unknown parameters) regression function fT (x)� is replaced by a more
general function �(x; �) that assumes a possible nonlinearity, then we cannot use the best linear
unbiased estimator and have to be con�ned to estimators that are not based on the concept of
linearity. It may be, for instance, either the least squares method estimators or the maximum
likelihood estimators. We briey consider the �rst ones leaving to the reader some obvious gener-
alizations to use the latter [cf. Fedorov and Hackl (1997), Chap. 1, and Seber and Wild (1989)].
Thus,

�̂N = argmin
�

nX
i=1

ri�
�2(xi) [yi � �(xi; �)]

2 : (2.42)

The subscript N emphasizes that N observations are used to construct the estimator. It is known
[see, for instance, Seber and Wild (1988), Chap. 12] that under rather mild conditions �̂N is a
strongly consistent estimator, that is, it almost surely converges [cf. Rao (1973), Chap. 2c.3] to the
true vector of parameters �t. If the matrix

M(�) = lim
N!1

MN (�) ;

where

MN (�) = N�1
nX
i=1

ri�
�2(xi)

@�(xi; �)

@�

@�(xi; �)

@�T

exists and is regular in some vicinity of �t, then for su�ciently large N

N V ar(�̂N ) �=M�1
N (�̂N ) �=M�1(�t) : (2.43)
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The latter follows from the strong consistency of M�1
N (�̂N ) as an estimator of NV ar(�̂N). For

experimental design, it is important to note that unlike the linear case, the information matrix
M(�t) depends upon unknown parameters.

Most of the results discussed in Sects. 2.2 and 2.3 can be generalized in a straightforward manner.
For instance, to estimate the unknown regression parameters � in the case of the variance depending
on �, one has to use the iterated estimators based on (2.31) with the obvious replacement of fT (x)�
by �(x; �). This approach works well for \ad hoc" situations or pilot studies when a relatively small
number of cases must be analyzed. Using macros for the nonlinear least squares method [see, for
instance, SAS/STAT (1995), Chap. 29] one can almost entirely avoid programming work. Compare
this approach with our earlier study Batsell et al. (1997). However, to develop more e�cient and
compact software, the algorithms combining the iterative nature of estimators and the stepwise
Gauss-Newton updating ordinarily used in the nonlinear least squares [cf. Seber and Wild (1989),
Chap. 2.1] must be implemented. For instance, the following algorithm can replace (2.31)

�s = �s+1 +M�1(�s�1)Y (�s�1) ; (2.44)

M(�) =
nX
i=1

ri�
�2(xi; �)

@�(xi; �)

@�

@�(xi; �)

@�T
;

Y (�) =
nX
i=1

ri�
�2(xi; �) (yi � �(xi; �)) :

Note that some \standard" improvements of the Gauss-Newton iterative procedure that are popular
in the least squares method software world do not work in the considered case. For instance, the
introduction of

�s = �s�1 + sM
�1(�s�1)Y (�s�1) ;

where s provides the monotonic decrease of the sum

v2(�s) =
nX
i=1

ri�
�2(xi; �s) (yi � �(xi; �s))

2 ;

may lead to the estimator �̂ = lims!1 �s, which is not consistent; see also comments to (2.32).
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Chapter 3

REGRESSION MODELS IN

OPTIMAL MONITORING DESIGN

3.1 OPTIMALITY CRITERIA

3.1.1 Optimality of Measurements on a Network

Let us continue to work with the example from Sect. 2.1.1 and with regression model (2.1) and
(2.2), that is,

E(yjx) = �Tx and Var (yjx) = �2(x) : (3.1)

We have learned in Sect. 2.1 that given x1; : : : ; xn and r1; : : : ; rn the best estimator for the vector �
can be easily constructed, if selection is done among linear unbiased estimators. Now we can think
about the next optimization step: the selection of sites in which measurements provide most of the
information. The latter statement is rather vague and is to be justi�ed. First note that statement
(2.8) means that the best linear unbiased estimator has the covariance matrix, which is least in the
sense of Loewner's ordering [see comment to (2.10)], that is,

D = V ar(�̂) � V ar(~�) = D +� ; (3.2)

where ~� is any other linear unbiased estimator of �, and � is a non-negative de�nite matrix.

The Loewner optimization with respect to possible experimental designs � is de�ned as

�� = argmin
�
D(�) ; (3.3)

where the total number of available measurements N =
Pn

i=1 ri is assumed to be given. Un-
fortunately, in general (3.3) does not have a solution. Therefore, instead of this optimization
problem we have to pursue a more modest objective and minimize some function(s) of the co-
variance matrix D(�). For instance, it can be the average variance of estimated components of
� : trD(�) =

Pm
�=1 V ar[�̂�(�)] and in the considered simple graph m = 5 (see Fig. 2.1). Thus, we

can de�ne an optimal design as
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�� = argmin
�

trD(�) : (3.4)

If the total number of measurements is �xed (given), then (3.4) is equivalent to

�� = argmin
�

trNM�1(�) ;

and consequently to

�� = argmin
�

trM�1(�) : (3.5)

The latter optimization problem does not depend uponN explicitly and it is possible to �nd optimal
designs that work for di�erent N . Introducing the information matrix into the minimized expression
helps to overcome a few theoretical di�culties in cases when an optimal design is singular, that is,
rank M(��) < m. It may happen, for instance, when a practitioner is interested only in a subset of
unknown parameters. In these cases, \inversion" in (3.5) must be replaced by \pseudo-inversion."

The formulation of the design problem is not complete yet: we did not de�ne the set � of all
possible designs. If no repeated measurements are allowed, then � for the network in Fig. 2.1
consists of all possible combinations of N routes out of 9 in the single-host problem and N out 19
in the multihost problem (see Table 2.1). We assume that a link direction is not important, that is,
measurements on route 1-2 (a ping makes 1-2-1 round trip) and on route 2-1 (a ping makes 2-1-2
round trip) provide exactly the same information. Obviously, N � 9 in the �rst case and N � 19
in the second case.

Thus, if N is �xed then C9
N of C19

N di�erent designs must be compared using as the \quality"
measure (criterion of optimality) trM�1(�). Of course, with the modern computer power, the
optimization can be done very easily for that size of a network. However, the volume of direct
computation may be prohibitive for the larger networks.

The optimization problem becomes simpler if we expand the design space �. For instance, we can
admit the possibility of the repeated measurements. Thus, in the single-host setting during every
experimental session we may send r1; : : : ; r9 pings to site 1; : : : ; 4 using di�erent routes. Of course,
r1+ : : :+ r9 = N . Usually to emphasize that there are only N available observations, the subscript
N is added to �. Now we can write that

�� = arg min
�2�N

trM�1(�) ; (3.6)

and � = fpi; xig91, where all 9 possible routes, xi, are presented in Table 2.1. Note the weights
pi = ri=N are discrete and an optimal design �� still depends upon N .

If N is large enough and the discreteness of weights can be neglected, then (3.6) becomes a con-
tinuous (in the sense of weights) optimization problem, which can be considered within convex
design theory. Noting that zero weights mean that the corresponding routes are not included in
the experiment, one can look at the design problem as the selection of the most informative routes
and the corresponding weights or fractions of pings sent along a selected route. In other words, we
have to �nd the best xi 2 X, where X is a collection of all feasible routes (see the �rst 9 lines from
Table 2.1), and the best pi. The set X is frequently called a design region.
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As in the earlier examples, the vectors xi consist of m components that are either 1 (a link is
included in the route, xi) or 0 (a link is not included in the route xi). At �rst glance that type of
optimization problem coincides with the classical \spring-balance weighing design" problem [see,
for instance, Raghavarao (1971), Chap. 17]. However, unlike to the classical case, in which the
vector x can be any of 2m combinations of zeros (for items not included in weighing) and ones (for
items included in weighing), in our problem we have fewer feasible combinations of zeros and ones.
In the considered simple network, it is only 9 instead of 32. Therefore, it is not possible to use well
established, mature, and elegant combinatorial techniques to build optimal designs, and we have to
resort to the convex design theory, which rarely leads to analytical results but provides numerical
routines for optimal design construction. At this point it is expedient to note that construction of
a design region, X, for large networks (i.e., all feasible routes or feasible combinations of zeros and
ones) may be a di�cult problem on its own; see Sect.3.5.

The optimality criterion (objective function) that was used in (3.4) � (3.6) is only one of many
possible alternatives. For instance, if a practitioner is in a pessimistic mood, then minimization of

max� V ar
h
�̂�(�)

i
can assure him/her that even for the worst case the selected design provides a

reasonable result. Another alternative may be the minimization of

max
x

V ar
h
�̂T (�)x

i
;

that is, we try to select a design that guarantees that estimators of delay times for any route have
the variance that does not exceed some level.

3.1.2 Most Popular Criteria

Popularity of any given criterion may be explained by at least two reasons:

� Is it practically useful and expedient?

� Can the corresponding design/optimization problem be solved at moderate expense?

For various collections of optimality criteria see Atkinson and Donev (1992), Atkinson and Fedorov
(1988), Bandemer et al. (1977), Box and Draper (1987), Box et al. (1978), Fedorov (1972), Fedorov
and Hackl (1997), Pazman (1986), and Pukelsheim (1993). Table 3.1 contains a few criteria and
this collection covers all our needs. Note that the table, together with optimality criteria, contains
some additional entries that will be explained later. In the framework of examples from Sects. 2.1.1
and 3.1.1 the listed criteria from Table 3.1 may be commented as follows:

The �rst criterion is probably most celebrated in the statistical literature and usually is called
D-criterion. A D-optimal design minimizes determinant jD(�)j of the covariance matrix D(�) (or
equivalently, ln jD(�)j or maximizes jM(�)j or ln jM(�)j). The determinant jD(�)j is called \the
normalized generalized variance". The generalized variance is jD(�)j = N�mjD(�)j . In the case of
normally distributed measurements y; the logarithm � lnN�mjD(�)j coincides with the Shennon
information gained in an experiment based on �. It may be noted that D-optimal designs minimize
the volume of the concentration ellipsoid [cf. Fedorov (1972), Chap. 1.8].

The second criterion listed in the table is a modi�cation of D-criteria when an experimenter is
interested only in a subset of parameters. For instance, in the above example, one may wish to
estimate mean delay times only for edges 2 and 3. Then
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Table 3.1: Various optimality criteria 	(�), their sensitivity functions �(x; �) and majorization constants

C.

	(�) �(x; �) C

log jDj d(x) = fT (x)Df(x) m

log jD`j � d(x)� dk(x) `
dk(x) = fTk (x)Dkfk(x),
fT (x) = (fT` (x); f

T
k (x))

trAD, A � 0 fT (x)DADf(x) trAD

d(x0) d2(x; x0) d(x0)
d(x; x0) = fT (x)Df(x0)R

Z d(x)dx
R
Z d

2(x; z)dz
R
Z d(x)dxP�

i=1 �i(f
T (x)Pi)

2 �max

�max(D) �minPi =MPi,
� is a multiple of �min,P�

i=1 �i = 1, 0 � �i � 1

trD fT (x)D+1f(x) trD

� D` is a submatrix of D corresponding to ` parameters, k = m� `.

D` =

 
D22 D23

D32 D33

!
:

The third line of the table describes the linear criteria. Matrix A is called elements of the utility
matrix. For instance, if edges 2 and 3 are of interest, then

A =

0
BBBBB@

0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

1
CCCCCA :

If an experimenter believes that the importance of various parameters can be described by some
weights w�, then A�� = ���w� may be a good choice for the utility matrix.

The next two entries deal with the response estimator variance and are the particular cases of the
linear criteria. Indeed, from (2.20) we know that

d(x) = N�1d(x) = N�1fT (x)Df(x)

and consequently the variance of the function �Tf(x) at the point of interest x0 is

d(x0) = fT (x0)Df(x0) = trf(x0)f
T (x0)D = trAD ;

where A = f(x0)f
T (x0), rankA = 1. For the average (over the set Z) variance of estimated response

function we have
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Z
Z
d(x)dx =

Z
Z
fT (x)Df(x)dx = trD

Z
Z
f(x)fT (x)dx = trAD ;

where A =
R
Z f(x)f

T (x)dx. In the latter case, usually rank A = m, whereas before m is a total
number of unknown parameters. Whenever rank A is less than the total number of unknown
parameters, some caution is necessary: an optimal design �� could be singular [i.e., rankM(��) <
m]. To handle these cases, one either has to use pseudo-inverse matrices M�(�) or some kind
of regularization. For instance, the �rst of the above utility matrices can be replaced by A =
f(x0)f

T (x0) + I, where  is a small positive constant and I is the identity matrix [cf. Fedorov
and Hackl (1997), Chap. 2.6, and Pukelsheim (1993), Chap. 7].

In the network monitoring setting, one may wish to minimize the (normalized) variance d(x0) when,
for instance, it is necessary to get the most precise information about a particular route x0. The
average variance criterion can be used if, for instance, the behavior of a response function over
some time interval is of interest, and the \time" variable is included in the regression model. The
popular spatial averaging must be replaced by summation over the selected set of routes, that is,

A =
kX
i=1

f(xi)f
T (xi) ;

and x1; : : : ; xk is the set of routes or nodes about which we want to learn most.

The last two criteria listed in Table 3.1 are frequently used in theoretical exercises. Minimization
(E-optimality) of the largest eigenvalue �max(D) of the dispersion matrix D results in the ellipsoid
of concentration with the least maximal principal axis. Noting that [cf. Rao (1973), Chap. 1c]

�max = argmax
�

�TD�

�T�
;

we conclude that

fT (x)Df(x)

fT (x)f(x)
< �max

for any route x and, therefore, E-optimal designs assure a low upper bound on the variance of the
response function at point x. In terms of Sects. 2.1.1 and 3.1.1 with f(x) = x for every feasible
route x

d(x) = xTDx � q�max ;

where q = xTx is the \length" of the route x or the total number of edges included in x.

The concluding criterion in Table 3.1 is popular because

(m�1trD)1= = m�1trD (average variance);  = 1;

lim
!0

(m�1trD)1= = jDj1=m (D � criterion) ;
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lim
!1

(m�1trD)1= = �max (E � criterion) :

Thus, analyzing one criterion we get results for three most widely used criteria. In general, the
optimal monitoring design problem can be formulated as

� = argmin
�2�

	(�) ;

where the function 	 may coincide with any of the discussed optimality criteria and � is the set of
all feasible designs.

3.2 PROPERTIES OF OPTIMAL DESIGNS

Optimality criteria, which were discussed in Sect. 3.1, may be used in various settings including
nonlinear models and models with the correlated observations. However, the careful analysis of
the design space � is needed for every speci�c case. For instance, in regression problems with
observational errors generated by some auto-regression schemes (see, for instance, Kiefer and Wynn
(1984)) the concept of repeated observations is not very useful and � contains only designs without
repeated observations [i.e., r1 = : : : = rN = 1]. In this section we are concerned with regression
models with independent observation, i.e., with models described by (2.4) and (2.5). To make the
notations and formulae simpler, we assume that �2(x) � 1.

For all results of this section, it is essential that the information matrix M(�) can be presented as
a sum of information matrices of individual observations; see (2.21) and (2.22). Another important
assumption is that the function 	(�) introduced in (3.7) is convex, that is,

	 [(1� �)�1 + ��2] � (1� �)	(�1) + �	(�2); 0 � � � 1 ;

and has a directional derivative  (��; �) at �� for any �� = (1� �)�� + ��; 0 � � < 1.

If the above assumptions hold, then:

Theorem 3.1 A necessary and su�cient condition for a design �� to be optimal is ful�llment of
the inequality

 (��; �) � 0

for any feasible design � 2 �.

This result is widely used in experimental design theory [Cook and Fedorov (1995), Fedorov and
Hackl (1997), Chap. 2.3] and is essential for the proof of Theorem 3.2. Note that all the criteria
from Table 3.1 satisfy conditions of the above theorem.

To formulate one of the main theorems of experimental design theory we have to complement the
above by the assumption about boundness of functions f(x) (or individual matrices m(x)) on X
and assume that � consists of all possible probability distributions (measures) on X. With this
additional assumption, we can state for all the criteria from Table 3.1 the following theorem holds:
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Theorem 3.2 1. A necessary and su�cient condition for �� to be optimal is that

�(x; ��) � C(��)

where the functions � and the constants C are de�ned in Table 3.1.

2. If the design �� has nonzero measure on X 0 � X; then the function �(x; ��) reaches its upper
bound C(��).

3. The optimization problems,

�� = argmin
�

	(�)

and

�� = argmin
�

max
x�X

�(x; �)

are equivalent (i.e., have identical sets of solutions).

4. There exists an optimal design with no more than m(m+ 1)=2 supporting points.

The proof of this theorem and its various modi�cations can be found in Fedorov and Hackl (1997),
Chap. 2. We recommend this source only because it contains the closest formulation of the above
results. There are a number of books on experimental design theory and applications that contain
alternative formulations and proofs; among them Bandemer et al. (1977), Fedorov (1972), Pazman
(1986), Pukelsheim (1993), and Silvey (1980). Note that the sensitivity function �(x; �), constant
C(��); and the directional derivative  (��; �) are related as

 (��; �) = C(�)� �
Z
�(x; ��)�(d�) : (3.7)

So far, we have assumed that �2(x) � 1. If it is not so, then in all formulae, f(x) must be replaced
by ��1(x)f(x). In particular, every element in the second column [corresponding to �(x; �)] of
Table 3.1 must be divided by �2(x) to be used in Theorem 3.2.1 or in the numerical procedures
considered later.

The second section of the theorem partly explains why the function �(x; ��) is called \sensitivity
function". All observations are recommended to be placed at sites, in which the value of this
function is maximal. Later, discussing the numerical procedure, we will see that a design � can
be improved if observations from sites with the low �(x; �) are relocated to sites with the higher
values of �(x; �).

The third section of the theorem leads to very useful results: it establishes the equivalence of some
optimality criteria. For instance, the designs, which minimize the generalized variance jDj of the
parameter �, also mimimize the maximal (over the design region X) variance of the regression
function estimator. Hence, at least in some cases, a practitioner can avoid a painful process of
optimality criterion selection. D-criterion is also equivalent to some criteria used in model testing
[cf. Fedorov and Hackl (1997), Chap. 5, Fedorov and Khabarov (1986), and Kiefer (1958)].

The �nal section concludes that for any design problem with an optimality criterion included in
Table 3.1, there exists a solution with a �nite number of support points (sites). It means that a
reader who is not comfortable with the Stiltjes integral, can replace all integrals in the above and
following discussions by �nite sums. Actually, the boundary m(m+ 1)=2 is too high for practical
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needs and in many applications there exist optimal designs with the number of support points that
is equal or moderately more than m.

Theorem 3.2 is very helpful in the construction of optimal designs in cases when the set of basis
functions f(x) contains some simple components, for instance, fT (x) = (1; x1; x2; :::; xm�1) in a
multivariate case, or fT (x) = (1; x; x2; :::xm�1) in a univariate case, or fT (x) = (1; sinx;
cos x; :::; sinkx; cos kx; m = 2k+1); and the design region, X, has a regular structure (interval,
cube, or sphere). Most of those type design problems have been explored, optimal design have
been constructed and tabulated. From our experience, there are not too many problems in optimal
monitoring, which belong to the above simple realm.

Theorem 3.2 and correspondingly Table 3.1 do not assume the presence of prior information about
estimated parameters. In our examples and studies, prior information expressed in terms of a
prior covariance matrix D0 = ��2ND0 may be available. It is not di�cult to adapt Table 3.1 and
Theorem 3.2.1 for cases with prior information. For instance, for D-criterion

�(x; �) = dtot(x; �) = fT (x)Dtot(�)f(x) ;

C(�) = trDtot(�)M(�) ;

and for linear criteria

�(x; �) = fT (x)Dtot(�)ADtot(�)f(x) ;

C(�) = trDtot(�)ADtot(�)M(�) ;

where D�1
tot (�) = Mtot(�) = M(�) +D�1

o . The subscript \tot" emphasizes that the corresponding
functions or matrices include prior information and information from the experiment based on the
design �.

3.3 NUMERICAL METHODS

3.3.1 The First Order Algorithms

In this study, we use only the �rst order algorithms, which are based on the linear approximation of
the criterion 	(�) in the vicinity of any intermediate point �s [cf. Bandemer et al. (1977), Cook and
Nachtsheim (1980), Fedorov and Uspensky (1975), Nguyen and Miller (1992)]. The discussions of
methods of higher orders can be found, for instance, in Fedorov and Hackl (1997), Chap. 3.2; Ga�ke
and Heiligers (1996); and Ga�ke and Mathar (1992). These methods provide numerical results with
higher precision, but in their present form look impractical for the large size monitoring problems.

The main idea of the �rst order algorithms is to �nd a correction design �� that leads to the greatest
decrement of the optimality criteria, that is, to �nd

� = argmin
�

	 [(1� �)�s + ��] : (3.8)
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Assuming that the step � is small enough to neglect terms of the higher order than s(�), we come
to [see (3.7)]:

� = argmin
�2�

[	(�s) + � (�s; �)] �= argmin
�2�

�
C(�s)�

Z
�(x; �s)�(dx)

�
: (3.9)

Note that the optimization problem

� = argmax
�2�

Z
�(x; �s)�(dx)

has a solution that coincides with a design atomized at the point

xs = argmax
x2X

�(x; �s) :

Therefore, one can construct the following simple iterative procedure:

1. Given �s; �nd

xs = argmax
x2X

�(x; �s) :

2. Construct

�s+1 = (1� �s)�s + �s�(xs) ;

where the design �(xs) has weight 1 at point xs.

3. Compare �(xs; �s) with C(�s); and if it is close enough (see Theorem 3.2), then stop compu-
tation. Otherwise go back to step 1.

The above procedure requires justi�cation for theoretical analysis and for its implementation in
practice.

It is interesting to note that for D-criterion at each step the iterative procedure recommends to add
some additional weight to a point where the variance of an estimated response function is largest.
In other words, place more observations at sites where you know less.

3.3.2 Practical Algorithms and Pilot Software

In our pilot studies, we used the following version of the iterative procedure for optimal monitoring
design:

1. Given a design �s; jM(�s)j > 0: Find

xs = argmax
x2X

�
�(x+; �s); �(x

�; �s)
	

where
x+ = argmax

x2X
�(x; �s) ;

33



and
x� = arg min

x2Xs

�(x; �s) :

The set Xs contains all support points of design �s.

2. Given �s; xs and �s construct

�s+1 = (1� �s)�s + �s�(xs) :

3. Compare 	(�s) and 	(�s+1). If 	(�s) � 	(�s+1) > 0 select ��+1 = �s and continue with
step 4. Otherwise, select �s+1 = �s, where 0 <  < 1 (usually  = 1

2), and continue with
step 4.

4. If �(x+; �s) � C(�s) � �, where � is some small preselected constant, stop calculations.
Otherwise, continue with step 1, given �s+1 :

The above procedure converges for any criterion from Table 3.1 but the fourth one (E-criterion);
see details in Atkinson and Donev (1992), Chap. 4; Fedorov (1972) Chaps. 3 and 4; Fedorov and
Hackl (1997), Chap. 3; and Pilz (1991), Chap. 12. Note that the \practical" version of the algorithm
contains opportunity for direct deleting of the \bad" points. It happens when xs = x�. In the cited
publications, other choices of the sequence f�sg are discussed. One of them is �s = (N0+s)

�1, where
N0 is a member of support points in �0. When there is no prior information, some simple recursions
can be applied to helping avoid multiple inversions of information matrices and calculations of their
determinants:

(1� �s)D(�s+1) = D(�s)� �(x; �s)
T (x; �s)

1� �s + �d(x; �s)
; (3.10)

jD(�s+1)j = jD(�s)j
(1� �)m�1(1� �+ �d(x; �s))

; (3.11)

where d(x; �) = fT (x)D(�)f(x), D(�) =M�1(�); and (x; �) = D(�)f(x). In the presence of prior
information, the analogues of (3.10) and (3.11) become tediously long and we did not use them in
our software. Actually, we used a modi�ed version of procedure 1�4, which is called the \exchange"
algorithm [cf. Mitchell (1974), Nguyen and Miller (1992)]:

1. There is a design �s, jM(�s)j > 0 : Find

x+s = argmax
x2X

�(x; �s) :

Construct matrix

M+
s =M(�s) + �sf(x

+
s )f

T (x+s ) ;

and �nd

x�s = arg min
x2Xs

�+(x; �s) ;

where the function �+(x; �s) is de�ned exactly as �(x; �s); but the matrix M(�s) must be
replaced by M+

s .
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2. Add weight �s to point x+s ; and delete exactly the same weight from point x�s . Call new
design �s+1.

Steps 3 and 4 are identical to the original procedure.

The sequence f�sg may be selected as it was done before with one exception. Whenever weight at
the point to be deleted is less than �s, the latter must be reset to be equal to that weight. The
�rst stage of step 1 must be redone with the new �s or all the weights must be rescaled to make
their sum equal to 1. The recursion formulas can be easily derived and are

(M+
s )

�1 =M�1(�s)� �s(x
+; �s)

T (x+; �s)

1 + �sd(x+; �s)
; (3.12)

jM+
s j =

jM(�s)j
1 + �sd(x+; �s)

: (3.13)

For the deleting step in expressions for (x+; �s) and d(x
+; �s); the matrix D(�s) must be replaced

by (M+
s )

�1. It is desirable to provide to a practitioner the capability of choosing the \length
of excursions" (i.e., the number of consecutive additions and deletions of points). In the above
presentation this length is equal to 1. More technical details on the pilot software developed at
ORNL can be found in Flanagan (1997).

The above two procedures di�er for the cases with prior information and lead in many cases
to almost identical results (i.e., to the same �nal precision and computational time). Indeed,
recursions (3.10) and (3.11) cannot be used if the matrix D(�) is composed from prior and newly
gained information, that is, D(�s) = [M0 +M(�s)]

�1. The reason for that is technical: at each
step we decrease all elements of the matrix D(�s). Applying (3.10) to [M0 +M(�s)]

�1 ; we change
the structure of the combined matrix M0 +M(�s) through multiplication of the latter by (1� �s)
when we introduce the design �s+1 = (1� �s)�s + ��(xs). At the same time, constructing

M+
s =Mtot(�) + �sf(x

+
s )f

T (x+x ) =M0 +M(�s) + �f(x+s )f
T (x+s )

and using (3.12), we leave the prior matrix M0 unchanged. Thus, the exchange algorithm together
with (3.12) provides opportunity to work with prior information or, what is even more important
for us, to use some regularization techniques (see Sect.3.5), in which the original problem of min-
imization of jD(�)j = jM(�)j�1 is replaced by minimization of jI +M(�)j�1, where  is some
adjustable small positive number.

In the pilot Fortran program used in various examples for network monitoring, the following inputs
are necessary:

a. a priori information (or covariance) matrix M0 (or D0);

b. initial design �0 with jM(�0)j > 0;

c. transformed design set

F = ff : f(x); x 2 Xg ;
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d. step reduction constant , initial �0, stopping rule constant � and/or the maximal number
of iterations.

The output includes:

a. �nal value of the optimality criterion 	(�) and maxx �(x; �
�);

b. �nal design �� and matrices M(��), D(��), Mtot(�
�), Dtot(�

�).

3.4 EXAMPLES

3.4.1 Optimal Designs for Simple Networks

Let us continue consideration of the example from Sect.2.1 in its simplest single host version and
�2(xi) � 1. All feasible routes are given in Table 2.1 (�rst 9 rows). The use of the exchange
algorithm with M0 = 0 gives a D-optimal allocation of weights and sites to be \pinged", which is
presented in Table 3.2 (second column). The calculations were stopped when

max
x

�(x; �s)� C(�) = max
x

d(x; �s)�m � 0:01:

If we consider weights as fractions of experimental time, then most of the available time must be
spent at routes p3 and p5 while measurements at route p7 are less informative, and, therefore, this
route is not included in the optimal design at all. One can note that we have a very moderate
improvement comparatively to the uniform design (�rst column, it was used as the initial design
for the iterative procedure). An explanation is a rather simple. There are not very many feasible
routes to choose from; we have 5 unknown parameters and only 9 feasible routes. From Table 3.2
it is easy to see that the deletion of routes with smaller weights and rounding of weights leads to a
deterioration of the design characteristics (see columns 4 and 5). But the most drastic deterioration
occurs when we leave only 5 routes. It is interesting to point out that the last two columns
correspond to two di�erent attempts made with the exchange algorithm (with di�erent �0). In
both cases, � � 1=5. In general, the exchange algorithm does not converge to D-optimal discrete
design. We recommend making several attempts to get the best design with weights proportional
to � (which does not change!).

3.4.2 Multihost Experiments vs One-host Experiments

For multihost experiments and �2(x) � 1 on the same network, the design set X contains 19 routes
(i.e., we have a richer choice comparatively to the single host case). The value of jD(��)j drops to
� 100 compared to � 450 in the one host situation; compare Tables 3.2 and 3.3. Thus, the multihost
experiment is better, and the results con�rm the common sense conclusion that cooperation is good.

The maximal (among all 19 routes) value of the response variance d(x; ��) has the same value as in
the single host case and equals � 5 (see Sect.1 of Theorem 3.2 and recollect that C(��) = m = 5),
that is, to the number of estimated parameters. However, do not forget that this maximum is over
the larger number of feasible routes: 19 vs 9.

The last three columns in Table 3.3 show the designs built with an exchange algorithm with �xed
�. Starting from 7 support points this algorithm produces reasonable results both in terms of the
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Table 3.2: Experimental designs for the single-host case of the network example with 4 nodes and
5 edges.

I II III IV V VI
Uniform D-optimal Rounded Exchange-Type

Continuous 6 points 6 points 5 points (a) 5 points (b)

N 9 9 9 9 9 9
n 9 8 6 6 5 5

p1 1/9 .14 .15 1/6 0 1/5
p2 1/9 .14 .15 1/6 1/5 1/5
p3 1/9 .18 .20 1/6 0 1/5
p4 1/9 .14 .15 1/6 1/5 1/5
p5 1/9 .18 .20 1/6 0 1/5
p6 1/9 .14 .15 1/6 0 0
p7 1/9 0 0 0 1/5 0
p8 1/9 .04 0 0 1/5 0
p9 1/9 .04 0 0 1/5 0

jDj 563 450 463 486 3125 781
maxi d(xi; �) 5.91 5.01 5.83 6.00 15.0 15.0

determinant jDj and response variance values. Interestingly, all the constructed designs \avoid"
routes with a single edge (i.e., routes 2, 4, 7, and 10).

3.4.3 Measurement Errors Depending on the Route Length

In both considered cases we make a strong assumption that the variance of the observed variable is
identical for all feasible routes, i.e., �2(x) � 1. Selecting it to be equal to 1 is, of course, the matter
of scaling. Let us explore situations when the variance of the observed variable depends upon a
route. Similar to Sect.2.1.1, we assume that �2(x) = xTx = `, where ` is a number of nonzero
components of the vector x. Unlike that example, we assume that all observations are uncorrelated.

Our two choices of the measurement variances are quite extreme ones. The constant variance of
measurements could be a good approximation of reality if all variations in delay times for pings occur
due to various activities at the destination sites (nodes), and all sites can be considered similar.
The cumulative model with �2(x) = xTx works if variations of delay times may be explained by
activities on each edge (link), and all these edges have similar technical characteristics.

We repeated most calculations made for the model with the constant variance to verify how changes
in the model can inuence the structure of optimal designs. Note that in all calculations, function
f(x) must be replaced by ��1(x)f(x). Previously, the max d(x; �) must be close to m = 5 for the
computed optimal designs. Now, ��2(x)d(x; �) must be close to the same number.

Tables 3.4 and 3.5 contain information similar to Tables 3.2 and 3.3.

There exist no remarkable changes for the single host problem. However, for the multiple host
problem with a richer choice of optimal routes, the changes are dramatic. For �2(x) � 1; all the
\shortest" routes (e.g., 2, 4, 7, 10, 17) are not in the support set of the D-optimal design; for
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Table 3.3: Experimental designs for the multi-host case of the network (4,5) example.

I II III IV V VI
Uniform D-optimal Rounded Exchange-Type

Continuous 14 points 5 points 7 points (a) 7 points (b)

n 9 14 14 5 7 7

p1 1/19 .07 1/14 0 1/7 0
p2 1/19 0 0 0 0 0
p3 1/19 .05 1/14 0 0 1/7
p4 1/19 0 0 0 0 0
p5 1/19 .05 1/14 0 1/7 0
p6 1/19 .07 1/14 0 1/7 1/7
p7 1/19 0 0 0 0 0
p8 1/19 .06 1/14 1/5 0 0
p9 1/19 .06 1/14 1/5 1/7 1/7
p10 1/19 0 0 0 0 0
p11 1/19 .05 1/14 0 0 0
p12 1/19 .07 1/14 0 0 0
p13 1/19 .06 1/14 0 1/7 0
p14 1/19 .06 1/14 1/5 0 1/7
p15 1/19 .12 1/14 1/5 1/7 1/7
p16 1/19 .12 1/14 1/5 1/7 1/7
p17 1/19 0 0 0 0 0
p18 1/19 .05 1/14 0 0 0
p19 1/19 .07 1/14 0 0 1/7

jDj 193 100 105 195 127 127
maxi d(xi; �) 6.76 5.00 5.95 15.0 6.84 6.84

�2(x) = xTx; the D-optimal design consists entirely of the \shortest" routes! A rather simple
lesson might be learned by the accumulated experience. If the variance of observation does not
di�er too much for di�erent routes, then select the longest (but not having too many edges in
common) routes; if the variance increases noticeably with the increase of the route length, then
select the shortest routes.
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Table 3.4: Experimental designs with �2(x) = xTx for single-host case network (4,5).

I II III IV V
Uniform D-optimal Rounded Exchange-Type

Continuous 6 points 5 points (a) 5 points (b)

n 9 9 6 6 5

p1 1/9 .07 0 1/5 0
p2 1/9 .17 1/6 1/5 1/5
p3 1/9 .14 1/6 1/5 1/5
p4 1/9 .17 1/6 1/5 1/5
p5 1/9 .14 1/6 1/5 1/5
p6 1/9 .07 1/6 0 1/5
p7 1/9 .12 1/6 0 0
p8 1/9 .06 0 0 0
p9 1/9 .06 0 0 0

jDj 7589 6214 7775 9375 9375

maxi
d(xi;�)

�2(xi)
6.66 5.00 8.00 10.00 10.00

39



Table 3.5: Experimental designs with �2(x) = xTx for multi-host case of network (4,5).

I II III IV
Uniform D-optimal Exchange-Type

Continuous 6 points (a) 6 points (b)

n 19 5 6 6

p1 1/19 0 0 0
p2 1/19 1/5 1/6 1/6
p3 1/19 0 0 0
p4 1/19 1/5 1/6 1/6
p5 1/19 0 0 0
p6 1/19 0 1/6 0
p7 1/19 1/5 0 1/6
p8 1/19 0 0 0
p9 1/19 0 1/6 0
p10 1/19 1/5 0 1/6
p11 1/19 0 0 0
p12 1/19 0 0 0
p13 1/19 0 0 0
p14 1/19 0 1/6 0
p15 1/19 0 0 0
p16 1/19 0 0 0
p17 1/19 1/5 1/6 1/6
p18 1/19 0 0 0
p19 1/19 0 0 1/6

jDj 5251 3125 3888 3888

maxi
d(xi;�)

�2(xi)
5.99 5.00 6.00 6.00
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Figure 3.1: Network graph with 8 nodes and 12 edges.

The picture is less clear if the network to monitor is more complex and the setting is neither single-
host nor multihost. To illuminate that, we considered the network presented in Fig. 3.1, which
is still relatively simple. It was assumed that only two hosts can do measurements. The feasible
routes for pings are listed in Table 3.6. The computed designs are presented in Tables 3.7 and 3.8
for cases with �2(x) � 1 and �2(x) = xTx; correspondingly.

Whenever we constructed discrete designs with the small number of support points, using exchange
algorithm, we started with a \small" a priori information matrix M0, jM0j > 0. The reason for
this was the high probability of getting a singular initial design if the latter is generated at random.
After a few iterations, the calculations were terminated, and the design constructed at the latest
iteration was used as the initial design for the original problem, in which M0 = 0. That trick
can be considered as some kind of regularization of possibly singular initial designs. In general,
starting with M0 = I, where  some positive constant, we avoid singularities in the iteration
procedure, which are frequent (at least in our experience) for even moderately complex networks.
Computations may be repeated with diminishing  and with the use of designs constructed with
the larger -s as initial designs for the smaller -s.

41



Table 3.6: Routes for the network (8,12) with two hosts.

From-To Route Edges
Hosts Number 1 2 3 4 5 6 7 8 9 10 11 12

1 - 3 1 1 1 0 0 0 0 0 0 0 0 0 0
1 - 3 2 0 0 0 0 0 0 0 1 0 1 0 0
1 - 3 3 0 1 0 0 0 0 0 1 1 0 0 0
1 - 3 4 0 0 1 0 0 0 0 1 0 0 1 0
1 - 6 5 0 0 0 0 0 1 1 1 0 0 0 0
1 - 6 6 1 1 1 1 1 0 0 0 0 0 0 0
1 - 6 7 0 0 0 0 1 0 1 1 0 0 0 1
1 - 2 8 1 0 0 0 0 0 0 0 0 0 0 0
1 - 2 9 0 0 0 0 0 0 0 1 1 0 0 0
1 - 2 10 0 1 0 0 0 0 0 1 1 1 0 0
1 - 2 11 0 1 1 0 0 0 0 1 0 0 1 0
1 - 4 12 0 0 0 0 0 0 0 1 0 0 1 0
1 - 4 13 1 1 1 0 0 0 0 0 0 0 0 0
1 - 4 14 1 0 0 0 0 0 0 0 1 0 1 0
1 - 4 15 1 0 0 0 0 0 0 0 0 1 1 0
1 - 4 16 0 1 1 0 0 0 0 1 0 1 0 0
1 - 4 17 0 0 0 1 0 0 1 1 0 0 0 1
1 - 5 18 1 0 0 1 0 0 0 0 1 0 1 0
1 - 5 19 1 1 1 1 0 0 0 0 0 0 0 0
1 - 5 20 0 0 0 1 0 0 0 1 0 0 1 0
1 - 5 21 0 0 0 0 0 0 1 1 0 0 0 1
1 - 5 22 0 0 0 0 1 1 1 1 0 0 0 0
1 - 5 23 1 0 1 1 0 0 0 0 1 1 0 0
1 - 5 24 1 0 0 0 1 1 1 0 1 0 0 0
1 - 7 25 0 0 0 0 0 0 1 1 0 0 0 0
1 - 7 26 0 0 0 1 0 0 0 1 0 0 1 1
1 - 7 27 1 0 0 0 0 0 1 0 1 0 0 0
1 - 8 28 0 0 0 0 0 0 0 1 0 0 0 0
1 - 8 29 1 0 0 0 0 0 0 0 1 0 0 0
1 - 8 30 1 1 0 0 0 0 0 0 0 1 0 0
1 - 6 31 0 0 0 1 1 0 0 1 0 0 1 0
1 - 6 32 0 0 0 1 0 0 0 1 0 0 1 1
1 - 7 33 1 1 0 0 0 0 1 0 0 1 0 0
1 - 7 34 1 1 1 1 0 0 0 0 0 0 0 1
1 - 7 35 1 1 1 0 0 0 1 0 0 0 1 0
1 - 7 36 1 1 1 1 1 1 0 0 0 0 0 0
1 - 8 37 1 1 1 0 0 0 0 0 0 0 1 0
1 - 8 38 1 1 1 1 0 0 1 0 0 0 0 1
4 - 2 39 0 1 1 0 0 0 0 0 0 0 0 0
4 - 2 40 0 0 0 0 0 0 0 0 1 0 1 0
4 - 2 41 0 1 0 0 0 0 0 0 0 1 1 0
4 - 2 42 1 0 0 0 0 0 0 1 0 0 1 0
4 - 2 43 0 0 1 0 0 0 0 0 1 1 0 0
4 - 2 44 1 0 1 0 0 0 0 1 0 1 0 0
4 - 3 45 0 0 1 0 0 0 0 0 0 0 0 0
4 - 3 46 0 0 0 0 0 0 0 0 0 1 1 0
4 - 3 47 0 1 0 0 0 0 0 0 1 0 1 0
4 - 3 48 0 0 0 1 0 0 1 0 0 1 0 1
4 - 3 49 0 1 0 1 0 0 1 0 1 0 0 1
4 - 3 50 1 1 0 0 0 0 0 1 0 0 1 0
4 - 5 51 0 0 0 1 0 0 0 0 0 0 0 0
4 - 5 52 0 0 0 0 0 0 1 0 0 0 1 1
4 - 5 53 0 0 1 0 0 0 1 0 0 1 0 1
4 - 5 54 0 1 1 0 0 0 1 0 1 0 0 1
4 - 5 55 0 0 0 0 1 1 1 0 0 0 1 0
4 - 6 56 0 0 0 1 1 0 0 0 0 0 0 0
4 - 6 57 0 0 0 0 0 1 1 0 0 0 1 0
4 - 6 58 0 0 0 0 1 0 1 0 0 0 1 1
4 - 6 59 0 0 1 0 0 1 1 0 0 1 0 0
4 - 6 60 0 0 0 1 0 1 0 0 0 0 0 1
4 - 7 61 0 0 0 1 0 0 0 0 0 0 0 1
4 - 7 62 0 0 0 0 0 0 1 0 0 0 1 0
4 - 7 63 0 0 0 1 1 1 0 0 0 0 0 0
4 - 7 64 0 0 1 0 0 0 1 0 0 1 0 0
4 - 7 65 0 1 1 0 0 0 1 0 1 0 0 0
4 - 7 66 1 1 1 0 0 0 1 1 0 0 0 0
4 - 8 67 0 0 0 0 0 0 0 0 0 0 1 0
4 - 8 68 0 0 1 0 0 0 0 0 0 1 0 0
4 - 8 69 0 0 0 1 0 0 1 0 0 0 0 1
4 - 8 70 0 1 1 0 0 0 0 0 1 0 0 0
4 - 8 71 1 1 1 0 0 0 0 1 0 0 0 0
4 - 8 72 0 0 0 1 1 1 1 0 0 0 0 0
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Table 3.7: Experimental designs for the two-host case of network (8,12), �2(x) � 1.

I II III
D-optimal Exchange-Type
Continuous 15 point (a) 12 point (b)

n 32 15 12

p4 .02 0 0
p5 .03 0 0
p6 .03 0 0
p9 .06 1/15 1/12
p12 .01 0 0
p22 .05 1/15 0
p23 .03 0 1/12
p24 .05 1/15 1/12
p26 .02 0 0
p28 .02 0 1/12
p29 .02 1/15 0
p31 .04 1/15 0
p32 .06 1/15 1/12
p33 .04 0 1/12
p34 .03 0 0
p35 .02 0 0
p36 .05 1/15 1/12
p41 .03 0 0
p43 .01 0 0
p44 .04 1/15 1/12
p48 .03 1/15 0
p49 .03 0 0
p50 .02 0 0
p53 .01 0 0
p54 .04 1/15 1/12
p57 .03 1/15 0
p58 .05 1/15 1/12
p59 .04 1/15 1/12
p60 .05 1/15 1/12
p65 .03 0 0
p66 .03 1/15 0
p72 .03 0 0

jDj :221 � 108 :613 � 108 :206 � 109

maxi
d(xi;�)

�2(xi)
12.00 22.50 43.50
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Table 3.8: Experimental designs for the two-host case of network (8,12), �2(x) = xTx.

I II III
D-optimal Exchange-Type
Continuous 15 points 12 points

n 39 15 12

p1 .02 0 0
p2 .04 1/15 1/12
p3 .04 1/15 1/12
p4 .03 1/15 0
p6 .03 1/15 1/12
p7 .05 1/15 1/12
p8 .02 0 0
p10 0.00 0 1/12
p13 .01 0 0
p16 .02 0 0
p18 .02 0 0
p19 .01 0 0
p20 .01 0 0
p21 .01 0 0
p26 .03 0 0
p32 .02 0 0
p33 .01 1/15 0
p39 .04 1/15 0
p40 .04 1/15 1/12
p41 .03 0 1/12
p42 .02 0 0
p43 .04 1/15 0
p45 .04 1/15 1/12
p46 .02 0 0
p48 .01 0 0
p49 .02 0 0
p51 .05 1/15 1/12
p53 .01 0 0
p56 .05 0 0
p57 .03 0 1/12
p58 .04 0 0
p59 .02 0 0
p60 .05 1/15 1/12
p61 .02 0 0
p62 .02 0 0
p63 .04 1/15 1/12
p64 .01 0 0
p67 .01 1/15 0
p69 0.00 1/15 0

jDj :758� 1014 :247� 1015 :482 � 1015

maxi
d(xi;�)

�2(xi)
12.02 21.63 30.67

44



3.5 ESNET EXAMPLE I

3.5.1 Model and Main Assumptions

After testing the proposed algorithm and software with simple examples, we can proceed with a
more realistic problem. Let us consider a simpli�ed graph of the Energy System Network (ESnet)
backbone; see Fig. 3.2. For this graph, we have 34 nodes and 39 edges. Let us assume that we
want to know delay times on all 39 edges.

Let \pinging" be our measurement tool. It is assumed that any route without loops is feasible in the
planned monitoring. This assumption is the most vulnerable for a critique, because the standard
\ping" software does not allow selection of a route. Nevertheless, we do make this assumption to
show what can be gained if the route selection is possible.

Thus, we have E(yjx) = �Tx, where the vectors � and x have 39 components. Components of the
vector � are, for instance, travel times, and components of the vector x equal 1 if the corresponding
edge belongs to a route, and 0 otherwise. Concerning the variance of observation we handle two
cases:

V ar(yjx) � const and V ar(yjx) = const� xTx: (3.14)

The �rst case may be a reasonable approximation if uncertainties in y are explained by measurement
errors. The second choice tries to relate uncertainties in y to the number of edges included in the
route x. We do not consider either of these models as a very practical choice. However, they
correspond to rather divergent and extreme cases and may help to understand major changes in
optimal routing, which occur due to di�erent assumptions on the random behavior of measurements.

In the Poisson-type process setting, it is expedient to choose

V ar(yjx) =
mX
�=1

�2�x
2
� + �2 (3.15)

where �true are the true values of mean travel times and �
2 describes various \interferences" on line.

The problem with model (3.15) is that the information matrix, and correspondingly, covariance
matrix depend on unknown values; see Sect. 2.3. In this case, optimal designs also depend (in
general) on those values. There are at least three approaches to handling the design problem [see
Fedorov and Hackl (1997), Chaps. 2.6 and 5.6]:

� Bayesian approach, in which we introduce a prior �0 and its covariance matrix D0 and then
solve the design problem with the averaged objective function.

� Minimax approach, in which the optimal design is built for the worst � 2 �, where the set �
is assumed to be given.

� Sequential design, which assumes multi-stage experiments.

We spend most of our discussion with models (3.14) and only at the end of this section return to
model (3.15). As before we use the D-criterion in all computations.
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Figure 3.2: Model of ESnet backbone used for computational experiments.

46



3.5.2 Construction of Support Sets

To determine an optimal experimental design, we �rst need a mechanism for generating a set of
routes that can be used as input to the Optimal Design Construction (ODC) software. To do this,
we �rst generate all valid routes for a speci�ed network, and then apply one or more �lters to
generate the subset that will be processed by the software as a design region (or set) X.

Separating the generation of all valid routes (when it is not prohibitive due to the size of the
considered network) from the �ltering (it is necessary to create the �nal input for ODC) has
several advantages. One advantage is that the complete set of routes need only be generated once.
The post-processing �ltering step can be done as many times as needed to run ODC in di�erent
con�gurations or for the various optimality criteria. The separation also facilitates validating the
correctness of the generated routes and the visualization of results through graphical representation.
We have developed programs and scripts to assist in the validation and the visualization of the
results.

The method for generating all routes through a network (see Fig. 3.2) starts with a list of edges as
in Table 3.5.2, each edge being represented as a pair of nodes. Attaching node names to the node
numbers, as in Table 3.5.2, is not required by the route generation code ROUTES but is useful
for later visualization of results. In particular, generated routes can be overlayed on the graph of
the ESnet network. From the list of edges, ROUTES creates an incidence matrix [cf. Reingold,
Nievergelt and Deo (1977), Chap. 8]. This matrix is su�cient to represent the network as an
undirected graph.

The routine ROUTES generates the set of routes incrementally, generating the set of length-(k+1)
routes from the set of length-k routes. This is done by extending a length-k route by one previously
unused edge from one of the end nodes of that route. ROUTES checks that the added edge does
not create a route previously generated and does not introduce a cycle. In addition to the validity
checks built into the ROUTES program, we have run separate validity checking scripts on the
output of various test problems and have visually inspected the graphical representation of the
routes.

After ROUTES produces the complete set of valid routes as output, the results are �ltered to
produce a smaller set of routes for input to ODC. This �ltering may include but is not limited to

� Select set of routes for a given set of hosts.

� Select routes whose lengths fall within a speci�ed range. The length of a route is based on
number of edges (unit weighting of edges) but arbitrary weighting of edges is also possible.

� Select routes such that the selected set has a Hamming distance no less than a speci�ed
number. In this context, the Hamming distance will be the minimum number of di�erent
edges for any two routes in the set.

Additionally, �ltering ROUTES allows us to produce transformed inputs for ODC. For instance,
for some models we need the normalized vectors xi. So far we have used

x0�i =
x�iq
xTi xi

and x0�i =
x�i
xTi x

:
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Table 3.9: List of ESnet edges used in computational experiments.

Edge Node 1 Node 2 Edge Node 1 Node 2
1 1 4 21 7 29
2 1 15 22 8 14
3 1 31 23 10 34
4 2 9 24 10 23
5 3 23 25 12 17
6 4 26 26 13 22
7 4 21 27 13 27
8 4 8 28 16 19
9 4 11 29 16 17
10 4 23 30 16 29
11 4 30 31 16 26
12 4 6 32 17 32
13 4 27 33 17 21
14 4 5 34 21 29
15 4 18 35 23 25
16 5 20 36 23 23
17 5 18 37 23 24
18 6 9 38 27 28
19 6 24 39 31 34
20 7 11
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Table 3.10: List of ESnet nodes used in computational experiments.

ID Site Acronym Site Name

1 ALB POP Sprint POP (Albuquerque, NM)
2 AMES Ames Laboratory, ISU (Ames, IA)
3 ARM Atmospheric Radiation Measurement Project (Lamont, OK)
4 ATM
5 BNL Brookhaven National Laboratory (Upton, NY)
6 CHI POP Sprint POP (Chicago, IL)
7 CIT California Institute Of Technology (Pasadena, CA)
8 FIX WEST NASA Ames Research Center (Mountain View, CA)
9 FNAL Fermi National Accelerator Laboratory (Batavia, IL)
10 FSU Florida State University SCRI (Tallahassee, FL)
11 GA General Atomics (San Diego, CA)
12 INEL Idaho National Engineering Lab (Idaho Falls, ID)
13 JLAB Thomas Je�erson National Accelerator Facility (Newport News, VA)
14 KEK Japan-Tsukuba via link out of FIX-West (KEK) (Tsukuba, Japan)
15 LANL Los Alamos National Laboratory (Los Alamos, NM)
16 LBNL Lawrence Berkeley National Laboratory (Berkeley, CA)
17 LLNL Lawrence Livermore National Laboratory (Livermore, CA)
18 MIT Massachusetts Institute of Technology - LNS (Cambridge, MA)
19 NASA NASA Ames Research Center (Mountain View, CA)
20 NEVIS Columbia University Nevis Lab (Irvington, NY)
21 OAK POP Sprint POP (Oakland, CA)
22 OER DOE HQ - O�ce of Energy Research (Germantown, MD)
23 ORNL Oak Ridge National Laboratory (Oak Ridge, TN)
24 ORO Oak Ridge Operations (Oak Ridge, TN)
25 OSTI O�ce of Scienti�c and Technical Information (Oak Ridge, TN)
26 PNNL Paci�c Northwest National Laboratory (Richland, WA)
27 PPPL Princeton Plasma Physics Laboratory (Princeton, NJ)
28 PPPL(2) Princeton Plasma Physics Laboratory (Princeton, NJ) (additional site)
29 SLAC Stanford Linear Accelerator (Stanford, CA)
30 SPRINT POP Sprint POP Connecticut Avenue (Washington, DC)
31 SNLA Sandia National Laboratories Albuquerque (Albuquerque, NM)
32 SNLL Sandia National Laboratories Livermore (Livermore, CA)
33 SRS Savannah River Site (Aiken, SC)
34 UTA University of Texas at Austin (Austin, TX)
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3.5.3 D-optimal Designs for ESnet under Various Assumptions

All Host Case.

Let us assume that we have the maximum freedom of choice, i.e., any route listed by ROUTES
can be included in the constructed design. In other words, we may select both host nodes and
destination nodes without any constraints. In total ROUTES listed 3918 feasible routes. We
started to run OCD with the initial design with weights uniformly distributed between all feasible
routes similar to the above simple examples. Unfortunately, the subroutine (modi�ed pivoting)
did not invert the corresponding 39 � 39 information matrix M(�0) reliably. The replacement of
this subroutine by more sophisticated one (for instance, LINPAC inversion routine) did not help.
Selection of routes for the initial design at random led to the similarly disappointing results, and
therefore, we proceeded with the regularized approach.

As was mentioned in the concluding part of Sect. 3.3.2, ODC software allows incorporation of prior
information if the latter can be expressed in terms of a prior information matrix M0; see also Sect.
2.1.5. In terms of computation, the incorporation of a prior information means that instead of the
inversion of M(�0); which is needed only at the �rst iteration, the matrix Mtot(�0) = M(�0) +M0

is inverted.

In the considered example we do not assume the presence of any prior information but use the
ability of our software to handle cases with prior information to solve a regularized design problem,
that is, to construct

��() = argmax
�
jM(�) + Ij (3.16)

where  is a small positive number and I is the identity matrix. If  is small enough, then there is
a hope that M [��()] is well de�ned and can be reliably inverted.

In all our calculations, we selected  = 0:01 and ran ODC software with the initial design either
with 50 randomly selected routes or with 50 shortest routes. Lately, we found that the selection of
50 shortest routes (the possible choice is not unique) was e�ective and can be used in problems of
smaller dimensions even without regularization.

We applied a stopping rule based on the value of the step length �s. To secure the reliability of
the �nal results, we also checked the value of the di�erence (de�ciency)

�s = max
x

d(x; �s)�m (3.17)

recollecting that [cf. Fedorov and Hackl (1997), Chap. 3.1]

jD(�s)j
jD(��)j � e�s : (3.18)

Note that m is the number of unknown parameter and equals 39 in the considered case.

To analyze dependence of the computed results on the �nal �s we ran the program in the mode with
a �xed step length. The �nal design for a larger � was used as the initial design for a smaller �. The
results are presented in Table 3.11. In this table the \de�ciency" is de�ned as maxx d(x; �f )� 39,
where the maximum of the variance d(x; �f ) of the predicted response is selected among all 3918
possible values; subscript f stands for the �nal design. The \determinant ratio" is a ratio of jD(�f )j
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for given � to the same determinant for the least � (i.e., for � = 0.0005, when jD(�f )j = 0:22�1041).
The number of routes is the number of di�erent routes included in the �nal design �f . The weights
of di�erent routes are, in general, di�erent. Comparing the second and third columns from the table
with inequality (3.18), one may conclude that the latter inequality is too rough. In practice, we
have the better results than what follows from inequality (3.18). The ratio of the determinants for
�=0.01 and �=0.0005 looks large. However, in terms of variances of the estimated parameters the
discrepancy is much less impressive. It is approximately 39

p
7:73 ' 1:05. Hence, for practical needs

even computations with the relatively large �=0.005 lead to a decent result. Additionally, one can
notice that the computed designs for the smaller step lengths contain more supporting routes. It
may be a tedious task to distribute available time between 514 routes with di�erent weights. Note
that for any initial random design we never got maxx d(x; �0) less than a few hundred, even for the
regularized problem (3.16). However, further trials might have generated better results.

Table 3.11: Comparison of results for the di�erent �nal step lengths.

Step length De�ciency Determinant Number of
ratio routes

0.01 13.7 7.73 98
0.005 5.0 1.9 167
0.0025 2.5 1.23 268
0.001 1.0 1.05 423
0.0005 0.4 1.0 514

We think that in most practical cases the \rougher" design constructed with �=0.01 can be used.
In Table 3.5.3, we reproduce a typical printout for the �nal design �f for that step length. Only
two support route have weights di�erent from 0.01. So it is very easy to schedule the corresponding
measurements.

Computing optimal designs for the case, in which all host and all destination nodes are feasible,
we select a \team" of experimenters and a set of nodes to be interrogated. Because the graphs
are undirected, the rules can be changed: all host nodes can be considered as destination nodes
and, corresponding, all destination nodes can be claimed as host nodes. From the convexity of the
D-criterion, it follows that there exists an optimal design, which is symmetrical with respect to
replacement of host nodes by destination needs [i.e., if the route (a,...,b) enters the optimal design,
then the route (b,...,a) is also include in the same design]. With the decrease of the step length �,
there is a tendency to include almost all nodes either as hosts or destinations. But a few nodes, for
instance, 4 and 6, never appear on the list.

One- and Two-Hosts Cases

It is a rare opportunity when a large number of hosts can be involved in an experiment. Therefore,
it is interesting to evaluate how much we lose working with one or two hosts compared to the
unconstrained case.
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Table 3.12: (Part 1 of 2) The computed design for � = 0:01.

Route Number Weight Edges of Support Route

62 0.010 6 9
82 0.010 8 11
117 0.020 14 15
136 0.010 27 38
209 0.010 6 9 20
268 0.010 8 10 24
273 0.010 8 12 18
279 0.010 8 14 16
331 0.010 11 12 18
335 0.010 11 14 16
378 0.020 26 27 38
427 0.010 1 3 13 27
466 0.010 5 8 10 22
549 0.010 7 9 21 34
663 0.010 10 12 19 24
700 0.010 12 13 18 27
781 0.010 1 3 8 23 39
791 0.010 1 3 10 37 39
797 0.010 1 3 12 19 39
1176 0.010 10 12 18 23 24
1258 0.010 1 2 10 23 24 39
1260 0.010 1 2 5 12 19 37
1301 0.010 1 3 10 23 37 39
1310 0.010 1 3 12 19 23 39
1356 0.010 4 7 12 18 25 33
1372 0.010 4 10 15 18 19 37
1399 0.010 6 7 28 31 32 33
1400 0.010 6 7 21 28 31 34
1443 0.010 6 10 25 29 31 36
1548 0.010 7 9 20 29 31 33
1584 0.010 7 10 20 21 34 36
1595 0.010 7 10 30 31 34 35
1657 0.010 7 14 16 20 21 34
1673 0.010 7 15 16 17 32 33
1765 0.010 10 13 23 24 27 39
1791 0.010 12 14 17 19 35 37
1808 0.010 1 2 7 25 29 30 34
1880 0.010 1 3 12 19 23 24 37
1881 0.010 1 3 12 19 24 37 39
1990 0.010 5 12 13 19 26 27 37
2098 0.010 6 14 16 30 31 33 34
2100 0.010 6 14 17 20 21 30 31
2119 0.010 7 8 22 29 30 32 34
2146 0.010 7 10 18 19 25 33 37
2168 0.010 7 11 20 21 29 30 33
2201 0.010 7 13 26 27 28 29 33
2204 0.010 7 13 20 21 26 27 34
2213 0.010 7 13 25 29 30 34 38
2215 0.010 7 14 16 21 29 30 33
2254 0.010 9 10 20 21 28 30 37
2304 0.010 9 13 20 21 27 30 31
2311 0.010 9 13 20 21 30 31 38
2359 0.010 12 15 16 17 19 35 37

In the one-host case, ORNL (node 23) was selected as a host node. Only 231 routes are feasible and
can be used in computations (compared with 3918 for all-host case). With �=0.001, the computed
design has the determinant jD(�f j = 0:36�1052; compare with jD(�f j = 0:22�1041 for the previous
case. For the two-host case (ORNL and LBNL), there are 524 feasible routes. It was found that
jD(�f j = 0:24�1049. Table 3.13 contains information on the variance of all 39 estimated parameters
for the all-hosts, one- and two-hosts cases. From comparison of determinants and variances for the
di�erent cases we may conclude that cooperation is very useful and allows accumulation of more
information given the same total number of measurements.

The Partner Selection

After conclusion that cooperation is good, we may make another step and try to select the best
partner. Theoretically, it looks rather simple. The COD software must be run for all possible 33
pairs, which include ORNL, if the latter is the initiator of \teaming". The results of these runs
are shortly described in Table 3.5.3, in which the variances of the parameter estimators and the
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Table 3.12: (Part 2 of 2) The computed design for � = 0:01.

Route Number Weight Edges of Support Route

2365 0.010 1 2 6 30 31 32 33 34
2494 0.010 2 3 10 14 17 23 24 39
2520 0.010 4 6 12 18 20 21 30 31
2551 0.010 5 6 12 19 29 31 32 37
2568 0.010 6 8 21 22 29 31 33 34
2648 0.010 6 13 30 31 32 33 34 38
2659 0.010 6 15 17 21 29 31 33 34
2733 0.010 7 15 16 17 25 29 30 34
2736 0.010 8 9 20 21 22 25 29 30
2845 0.010 9 15 16 17 20 21 30 31
2863 0.010 1 2 9 20 21 28 29 33 34
2955 0.010 1 3 13 23 24 26 27 36 39
2965 0.010 1 3 15 16 17 23 24 36 39
2970 0.010 2 3 6 10 23 24 28 31 39
3034 0.010 4 7 10 18 19 28 30 34 37
3041 0.010 5 9 10 20 21 29 31 33 34
3058 0.010 6 10 23 24 25 30 31 33 34
3095 0.010 6 13 26 27 30 31 32 33 34
3116 0.010 7 12 19 21 29 30 33 35 37
3122 0.010 7 12 19 20 21 23 24 34 37
3199 0.010 9 13 20 21 28 29 33 34 38
3203 0.010 9 14 17 20 21 28 29 33 34
3221 0.010 1 3 6 23 24 29 31 32 35 39
3261 0.010 1 3 7 23 24 29 31 33 37 39
3270 0.010 1 3 5 7 23 24 28 30 34 39
3312 0.010 1 3 4 11 18 19 23 24 37 39
3340 0.010 2 3 8 12 19 22 23 24 37 39
3370 0.010 4 9 12 18 20 21 29 31 33 34
3399 0.010 6 12 19 23 24 25 29 31 37 39
3411 0.010 6 12 19 25 30 31 33 34 36 37
3429 0.010 7 12 19 23 24 28 30 34 37 39
3435 0.010 9 10 20 21 23 24 29 30 32 39
3443 0.010 9 10 18 19 20 21 29 30 32 37
3473 0.010 9 12 19 20 21 32 33 34 36 37
3510 0.010 1 3 7 21 23 24 29 30 33 36 39
3534 0.010 1 3 9 20 21 23 24 28 30 35 39
3563 0.010 1 3 4 13 18 19 23 24 37 38 39
3565 0.010 1 3 4 14 17 18 19 23 24 37 39
3702 0.010 1 3 7 18 19 23 24 30 31 34 37 39
3720 0.010 1 3 5 9 20 21 23 24 25 33 34 39
3721 0.010 1 3 9 20 21 23 24 25 33 34 35 39
3742 0.010 2 3 7 10 20 21 23 24 29 30 33 39
3846 0.010 2 3 7 12 19 23 24 29 30 32 34 37 39

determinants of the covariances matrices for the computed designs are presented. It appears that
CIT is the best partner for ORNL. In Table 3.5.3 the best and worst partners are compared.

Variance Depending on Routes

Intuitively it is clear that the increase of the measurement variance with the increase of the route
length might result in selection of shorter routes for optimal monitoring designs. We experimented
with V ar(Y jx) = xTx. For the all-hosts case, the optimal monitoring design looks natural and
almost trivial. It includes all one-edge routes with relatively large weights (between 0.02 and 0.025)
and distributes small weights (0.002, 0.003) between the longer routes. The longest route contains
10 edges. See more details in Table 3.16. Strangely enough the computed design has 2- and 5-edges
routes but skips 3- and 4-edges routes. For more realistic one and two hosts cases, the optimal
designs contains the larger portion of longer routes, and only the shortest ones can be identi�ed on
an intuitive level (see Tables 3.5.3 and 3.5.3).
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Table 3.13: Comparison of parameter estimators and variances for di�erent monitoring schemes.

Edge All hosts 2 hosts 1 host
1 10.8506 18.4519 20.4076
2 11.1233 20.6538 26.5529
3 23.3553 43.9910 49.2563
4 23.3336 43.0290 50.6497
5 16.8525 34.3890 38.4615
6 15.5287 29.8379 44.1772
7 7.9504 8.6672 26.7796
8 19.6434 34.4523 43.3488
9 5.7673 29.0536 44.4625
10 6.4051 5.8516 10.5631
11 19.4606 34.4523 43.4883
12 8.4291 13.0099 14.1725
13 15.7592 34.4651 44.6929
14 12.6968 33.4043 43.3851
15 18.8220 33.9145 44.3778
16 17.4377 32.8024 36.7196
17 17.3032 32.8071 36.7196
18 14.3867 26.2262 32.9405
19 19.1655 38.7371 43.0290
20 17.6391 45.5270 35.1296
21 13.3079 25.1410 26.2582
22 38.4753 66.6800 72.7548
23 26.4606 55.5669 60.6493
24 16.3087 29.5349 39.4100
25 12.4533 24.6633 25.9346
26 32.5310 66.6910 74.0741
27 23.4582 66.7000 74.0741
28 13.3242 34.4810 27.2631
29 7.0935 11.7790 13.3515
30 6.7655 9.3346 12.9401
31 12.6046 29.1031 24.9268
32 12.6969 25.0673 25.9392
33 7.4444 12.1627 13.6535
34 6.8715 5.2495 12.6264
35 16.9016 34.4078 38.4615
36 16.7393 34.4571 38.4615
37 15.7152 29.4935 38.8207
38 15.3252 66.7000 74.0741
39 26.7182 55.5786 60.6493

Determinant 0.22E+41 0.24E+49 0.36E+52
Average of variances 16.2335 32.7311 38.0384
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Table 3.14: Data for selecting node to partner with ORNL.

Node Determinant Average of variances Maximal variance

1 0.94E+50 35.1554 39.6849
2 0.88E+49 34.3190 39.8497
3 0.14E+51 36.3375 39.8139
4 0.10E+52 36.5121 39.5497
5 0.16E+50 33.9359 39.7020
6 0.16E+51 35.9283 39.6957
7 0.25E+48 31.0723 39.7940
8 0.57E+50 33.6918 39.9377
9 0.87E+49 33.4465 39.8512
10 0.43E+50 34.5181 39.6482
11 0.25E+48 31.1211 39.7295
12 0.12E+48 30.8987 39.7371
13 0.16E+50 31.4065 40.0000
14 0.57E+50 34.5396 39.9724
15 0.52E+49 33.4762 39.8790
16 0.24E+49 32.7354 39.6367
17 0.65E+48 31.8312 39.7653
18 0.52E+49 32.5790 39.8984
19 0.35E+48 31.6782 39.8419
20 0.52E+49 33.3984 39.9093
21 0.17E+49 32.5455 39.7407
22 0.16E+50 32.3056 40.0000
24 0.34E+50 34.0752 39.8571
25 0.14E+51 36.3117 39.7863
26 0.28E+48 30.9673 39.7613
27 0.57E+50 32.8992 39.7912
28 0.98E+49 31.6014 39.8461
29 0.18E+49 32.4952 39.6027
30 0.57E+50 34.5609 39.9717
31 0.31E+50 33.9804 39.8702
32 0.12E+48 30.8987 39.7371
33 0.14E+51 36.2623 39.6947
34 0.36E+50 34.1160 39.9167
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Table 3.15: The best (CIT) and worst (ATM) nodes to partner with ORNL.

Node CIT ATM
Determinant 0.249E+48 0.103E+52
Number of routes 233 155

18.5 20.0
21.0 22.7
43.3 49.8
42.6 50.0
34.8 39.4
28.0 39.0
8.9 21.5
34.6 39.4
29.4 39.2
6.1 4.9
34.6 39.4
13.0 13.7
34.6 39.4
33.5 37.3
34.0 38.5
32.8 36.4
32.8 36.4
26.1 29.3

Variances of 37.0 43.7
parameter 28.4 35.4
estimators 8.7 26.5

65.6 74.1
54.1 62.5
28.9 32.6
22.4 26.0
64.5 74.1
65.6 74.1
28.1 27.3
9.5 13.3
8.6 13.0
23.9 24.8
22.3 25.7
9.5 13.7
8.8 12.8
34.8 39.4
34.8 39.4
28.1 32.5
65.6 74.1
54.1 62.5
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Table 3.16: Optimal design for all hosts, �2 = xTx, � = 0:001.

Route Number Weight Edges of Support Route

1 0.022 1
2 0.025 2
3 0.025 3
4 0.025 4
5 0.022 5
6 0.022 6
7 0.020 7
8 0.020 8
9 0.025 9
10 0.025 10
11 0.025 11
12 0.025 12
13 0.020 13
14 0.022 14
15 0.022 15
16 0.025 16
17 0.025 17
18 0.025 18
19 0.025 19
20 0.025 20
21 0.025 21
22 0.025 22
23 0.025 23
24 0.022 24
25 0.025 25
26 0.025 26
27 0.025 27
28 0.025 28
29 0.025 29
30 0.025 30
31 0.025 31
32 0.025 32
33 0.025 33
34 0.025 34
35 0.022 35
36 0.025 36
37 0.022 37
38 0.025 38
39 0.025 39
40 0.002 1 2
49 0.002 1 13
50 0.002 1 14
56 0.002 5 24
57 0.002 5 35
59 0.003 5 37
60 0.002 6 7
61 0.002 6 8
68 0.002 6 15
70 0.002 7 8
75 0.003 7 13
77 0.002 7 15
84 0.003 8 13
86 0.002 8 15
87 0.003 8 22
92 0.003 9 14
113 0.002 13 14
131 0.002 24 37
133 0.003 25 32
149 0.002 35 37
833 0.002 3 23 24 35 39
847 0.003 4 12 13 18 38
1034 0.003 7 10 28 30 34
3417 0.002 6 13 20 21 26 34 27 29 31 33 34
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Table 3.17: Optimal design for one host, �2 = xTx.

Route Number Weight Edges of Support Route

1 0.025 5
2 0.005 10
3 0.025 24
4 0.025 35
5 0.025 36
6 0.025 37
7 0.010 1 10
8 0.020 6 10
10 0.025 8 10
11 0.020 9 10
12 0.025 10 11
14 0.025 10 13
15 0.010 10 14
16 0.025 10 15
18 0.020 23 24
19 0.020 1 2 10
20 0.020 1 3 10
24 0.025 8 10 22
25 0.015 9 10 20
26 0.020 10 12 18
27 0.020 10 12 19
28 0.025 10 13 27
29 0.025 10 13 38
30 0.015 10 14 16
31 0.020 10 14 17
34 0.020 18 19 37
35 0.020 23 24 39
36 0.010 1 3 10 39
39 0.020 4 10 12 18
40 0.020 4 18 19 37
41 0.015 6 10 28 31
45 0.015 7 10 25 33
47 0.010 7 10 32 33
48 0.015 7 10 21 34
50 0.005 7 12 19 37
54 0.025 10 13 26 27
55 0.020 10 15 16 17
56 0.005 11 12 19 37
60 0.005 1 2 12 19 37
64 0.020 2 3 23 24 39
65 0.010 6 10 25 29 31
66 0.015 6 10 29 31 32
68 0.005 6 10 21 30 31
71 0.010 7 10 28 29 33
72 0.005 7 10 29 30 33
73 0.010 7 10 29 31 33
74 0.010 7 10 20 21 34
75 0.010 7 10 28 30 34
77 0.010 7 10 30 31 34
86 0.010 12 14 16 19 37
88 0.010 12 15 17 19 37
92 0.005 1 3 9 23 24 39
99 0.005 6 10 29 31 33 34
101 0.005 6 10 30 31 33 34
105 0.010 7 10 21 29 30 33
106 0.005 7 10 25 29 30 34
107 0.015 7 10 29 30 32 34
110 0.005 7 12 19 32 33 37
113 0.010 9 10 20 21 28 30
115 0.005 9 10 20 21 30 31
129 0.005 1 3 13 23 24 38 39
133 0.005 6 10 21 29 31 33 34
134 0.015 6 10 25 30 31 33 34
139 0.005 6 12 19 21 30 31 37
141 0.005 7 10 20 21 29 30 33
149 0.010 9 10 20 21 25 29 30
154 0.015 9 10 20 21 32 33 34
206 0.005 1 3 6 23 24 29 31 33 34 39
207 0.010 1 3 6 20 21 23 24 30 31 39
210 0.005 1 3 7 23 24 25 29 30 34 39
217 0.010 9 12 19 20 21 28 29 33 34 37
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Table 3.18: (Part 1 of 2) Optimal design for two hosts, �2 = xTx.

Route Number Weight Edges of Support Route

1 0.026 5
3 0.026 24
4 0.026 28
5 0.009 29
6 0.013 30
7 0.022 31
8 0.026 35
9 0.026 36
10 0.023 37
11 0.007 1 10
12 0.015 6 10
15 0.018 8 10
16 0.016 9 10
17 0.018 10 11
19 0.018 10 13
20 0.003 10 14
21 0.020 10 15
23 0.016 21 30
24 0.022 23 24
25 0.020 25 29
26 0.020 29 32
27 0.002 29 33
29 0.017 1 2 10
30 0.014 1 3 10
31 0.004 1 6 31
33 0.005 6 8 31
34 0.003 6 9 31
36 0.005 6 11 31
38 0.005 6 13 31
39 0.006 6 14 31
40 0.002 6 15 31
45 0.018 8 10 22
46 0.011 9 10 20
47 0.016 10 12 18
48 0.013 10 12 19
49 0.019 10 13 27
50 0.018 10 13 38
51 0.018 10 14 16
52 0.020 10 14 17
55 0.020 18 19 37
56 0.009 20 21 30
57 0.018 23 24 39
58 0.008 29 33 34
59 0.001 30 33 34
60 0.001 1 2 6 31
61 0.001 1 3 6 31
62 0.008 1 3 10 39
63 0.001 1 7 29 33
67 0.011 4 10 12 18
68 0.018 4 18 19 37
74 0.003 6 8 22 31
83 0.002 6 12 18 31
86 0.003 6 13 27 31
87 0.003 6 13 31 38
91 0.003 7 8 29 33
92 0.003 7 8 30 34
93 0.002 7 9 29 33
94 0.003 7 9 30 34
95 0.009 7 10 25 33
97 0.009 7 10 32 33
98 0.010 7 10 21 34
100 0.003 7 11 29 33
101 0.002 7 11 30 34
105 0.002 7 13 29 33
106 0.003 7 13 30 34
107 0.003 7 14 29 33
108 0.003 7 14 30 34
109 0.001 7 15 29 33
110 0.001 7 15 30 34
111 0.003 8 12 19 37
113 0.001 9 12 19 37
115 0.017 10 13 26 27
116 0.012 10 15 16 17
117 0.003 11 12 19 37
118 0.003 12 13 19 37
120 0.003 12 15 19 37
121 0.008 21 29 33 34
122 0.011 25 30 33 34
123 0.011 30 32 33 34
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Table 3.18: (Part 2 of 2) Optimal design for two hosts, �2 = xTx.

Route Number Weight Edges of Support Route

124 0.002 1 2 7 29 33
125 0.004 1 2 7 30 34
126 0.003 1 2 12 19 37
127 0.001 1 3 6 31 39
128 0.002 1 3 7 29 33
129 0.002 1 3 7 30 34
131 0.002 1 3 12 19 37
133 0.001 1 9 20 21 30
134 0.021 2 3 23 24 39
135 0.004 4 6 12 18 31
138 0.001 6 7 25 31 33
139 0.002 6 7 31 32 33
140 0.001 6 7 21 31 34
151 0.004 6 13 26 27 31
152 0.006 6 15 16 17 31
153 0.002 7 8 22 29 33
154 0.003 7 8 22 30 34
156 0.001 7 9 20 29 33
157 0.002 7 9 20 30 34
161 0.002 7 10 29 30 33
166 0.009 7 10 20 21 34
168 0.001 7 10 29 30 34
173 0.002 7 12 18 29 33
174 0.002 7 12 18 30 34
179 0.002 7 13 27 29 33
180 0.002 7 13 27 30 34
181 0.003 7 13 29 33 38
182 0.002 7 13 30 34 38
183 0.002 7 14 16 29 33
184 0.002 7 14 16 30 34
187 0.002 7 15 17 29 33
188 0.002 7 15 17 30 34
189 0.002 8 9 20 21 30
190 0.003 8 12 19 22 37
193 0.002 9 11 20 21 30
196 0.001 9 13 20 21 30
197 0.002 9 14 20 21 30
198 0.001 9 15 20 21 30
199 0.003 12 13 19 27 37
200 0.003 12 13 19 37 38
201 0.003 12 14 16 19 37
202 0.004 12 14 17 19 37
204 0.004 20 21 29 33 34
205 0.001 1 2 9 20 21 30
208 0.001 1 3 7 29 33 39
209 0.002 1 3 7 30 34 39
214 0.001 1 3 11 23 24 39
215 0.001 1 3 12 19 37 39
217 0.001 1 3 13 23 24 39
220 0.002 4 7 12 18 29 33
221 0.002 4 7 12 18 30 34
246 0.001 7 12 19 25 33 37
248 0.001 7 12 19 32 33 37
249 0.001 7 12 19 21 34 37
251 0.003 7 13 26 27 29 33
252 0.002 7 13 26 27 30 34
253 0.002 7 15 16 17 29 33
254 0.002 7 15 16 17 30 34
255 0.002 8 9 20 21 22 30
264 0.001 9 12 18 20 21 30
267 0.001 9 13 20 21 27 30
268 0.001 9 13 20 21 30 38
273 0.002 12 13 19 26 27 37
274 0.001 12 15 16 17 19 37
280 0.001 1 3 8 22 23 24 39
283 0.001 1 3 12 18 23 24 39
286 0.001 1 3 13 23 24 27 39
287 0.001 1 3 13 23 24 38 39
288 0.002 1 3 14 16 23 24 39
290 0.002 1 3 15 17 23 24 39
293 0.002 4 9 12 18 20 21 30
328 0.001 8 9 20 21 29 33 34
337 0.001 9 11 20 21 29 33 34
341 0.002 9 13 20 21 26 27 30
342 0.002 9 13 20 21 29 33 34
343 0.001 9 14 20 21 29 33 34
344 0.002 9 15 16 17 20 21 30
345 0.001 9 15 20 21 29 33 34
497 0.001 1 3 9 20 21 23 24 25 33 34 39
499 0.001 1 3 9 20 21 23 24 32 33 34 39
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3.6 NETWORK CHALLENGES: PROBLEMS TO EXPLORE

3.6.1 Multiresponse Models

Almost any study on network performance analysis stresses the fact that it is not di�cult to measure
a variety of technical characteristics, such as delays, jitter, loss of packets, tra�c intensities, queue
lengths, etc. [see, for instance, Brownlee (1995), (1996); Cla�y (1994); and Paxson (1997)]. The �rst
reference is an example of a particular collection of measurement tools. The other two references
contain an extensive bibliography on measurement e�orts, together with descriptions of the most
popular metrics. Generally, a host site can measure, at every experimental session, a few response
variables corresponding to a selected host-destination pair, route, or link/channel, server, etc.

Model (2.4) and (2.5) must be replaced now by the multiresponse model [cf. Fedorov and Hackl
(1997), Chap. 1.3 and Fedorov (1972), Chap. 5]:

E(yjx) = F T (x)� and V ar(yjx) = �(x) ; (3.19)

where y is a k-dimension random vector, F (x) = (f (1)(x); : : : ; f (k)(x)) is a given (m � k)-matrix
function, � is a vector of unknown parameters, and �(x) is a k � k matrix.

If all the elements of the matrix �(x) are known, then the generalization of results previously
discussed is straightforward [compare with (2.11)� (2.15)]:

�̂ =M�1Y ; (3.20)

where

M =
kX
i=1

riF (xi)�
�1(xi)F

T (xi); (3.21)

Y =
kX
i=1

riF (xi)�
�1(xi)yi: (3.22)

Some handy simpli�cations for (3.20)�(3.22) can be derived when di�erent component responses
(components of y) depend upon disjoint subsets of the vector �, that is, when

E(y(j)jx) = fT(j)(x)�(j)

and

F (x) =

8>>><
>>>:
f(1)(x) 0 : : : 0

0 f(2)(x) : : : 0

: : : : : : : : : : : :
0 0 : : : f(k)(x)

9>>>=
>>>;

:

The corresponding formulae can be found, for instance, in Muirhead (1982), Chap. 10 and Seber
(1984), Chap. 8.
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The information matrix (3.21) may be conveniently rewritten as

M =
kX
i=1

rim(xi) ;

where m(x) is the information matrix of the vector measurement at the point x. Note that
rankm(xs) � 1 while previously rankm(xs) = 1. Transition to the normalized information ma-
trix gives

M(�) =

Z
X
m(x)�(dx) (3.23)

and we can immediately apply all the results from Sects. 3.1�3.5 with some minor formal changes.
For instance, the sensitivity function for the D-criterion is now

�(x; �) = tr��1(x)d(x; �) ; (3.24)

where the (k � k) normalized variance matrix of the estimated vector response function is de�ned
as d(x; �) = F T (x)M�1(�)F (x). Thus, the generalization is obvious if the matrix �(x) is given.

However, the situation worsens when this matrix is unknown. In single response cases, a solution of
any design problem without prior information (i.e., M0 = 0) does not depend upon �2 if the latter
is constant. That is why we could assume that �2 � 1 without loss of generality. For instance, a
D-optimal design must be (see Theorem 3.2.1) a solution of the minimax problem

�� = argmin
�2X

max
x2X

��2d(x; �) ;

which obviously does not depend on �2. For multiresponse models, a D-optimal design coincides
with one of the solutions of the similar minimax problem

�� = argmin
�2�

max
x2X

tr��1d(x; �) ;

which unfortunately depends, in general, on the structure of the matrix �.

Not much is known about the design problem with unknown �. One of the simplest approaches is
to proceed with some initial experiment to estimate the matrix � and then to continue replacing
in all calculations � by its estimate �̂. The corresponding estimation problem is discussed, for
instance, in Fedorov and Hackl (1997), Chap. 1.3. Another alternative approach can be based on
the fact that

��1
maxM(�) �M(�) � ��1

minM(�) (3.25)

where �max and �min are the greatest and least eigenvalues of the matrix � and

M(�) =

Z
X
F (x)F T (x)�(dx)
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[i.e., M(�) is the information matrix for the case in which all components of the observed vector
are not correlated]. If it may be assumed that �max and �min are not far apart, then the design

�0 = argmin
�

	[M(�)]

may be a reasonable approximation for the optimal design ��. Indeed, from (3.25) it follows that
for any criterion from Table 3.1

	
h
��1
maxM(�0)

i
� 	

h
��1
maxM(��)

i
� 	 [M(��)] � 	

h
M(�0)

i
� 	

h
��1
minM(�)

i
:

If the covariance matrix of the response vector changes in X and is to be estimated, then even the
estimation problem (to our knowledge) belongs to an unknown realm. One possible approach can
be based on parameterization of �(x) with the consequent use of the iterated estimator technique
discussed in Sect. 2.3.

3.6.2 Selection of the Response Component to Measure

One interesting problem for the multiresponse case is of practical interest and was not explored
in experimental design theory. Let us consider the simplest case when the covariance matrix � is
known and constant. In all previous discussions, we were concerned only with an optimal choice of
the pairs fpi; xign1 assuming that at every support point xi, all components of the response vector y
are measured. If the measurement of each component leads to some expense (time, storage space,
for example), then we can consider the optimization problem in which, together with the choice of
pi and xi, the most informative components of y must be selected to be measured.

One of the possibilities is to introduce a dummy variable x0, which has k (i.e., number of y-s
component) levels and to include it in the list of controlled variables. Another way to transform
the problem into something that can be handled with convex design theory is the introduction of
k dummy two-level variables. At present we are trying to combine ideas from Batsell et al. (1998),
Fedorov (1996) and Fedorov and Flanagan (1998) to develop an algorithm, which allows building
of optimal designs for the discussed problem.

3.6.3 Di�erent Convergence Rates of Parameter Estimators

So far we have been interested in the \mean" behavior of the response function(s). If we return to
the example from Sect. 2.2.1, then the parameters �� = ��, � = 1; : : : ;m are of interest. For this
parameter, the information matrix increases as � N (or the covariance matrix decreases as � N�1)
and therefore it can be normalized by N�1; see (2.34). This fact allows us to apply the results
of convex design theory or at least the version with information matrix depending upon unknown
parameters; see Atkinson and Fedorov (1988), Fedorov and Hackl (1997), Chap. 2.6.

A very interesting and unexplored problem arises when the parameters �T = (�1; : : : ; �m) (in
notations of examples 2.3.1) are not given and must be estimated together with ��, � = 1; : : : ;m.
An example of such a problem can be found in Cottrell (1998). There exist estimators for the
parameter � with the variances decreasing faster than N�1; see related results in Akahira and
Takeuchi (1995), Chaps. 1 and 2, and Johnson, Kotz and Balakrishnan (1994), Chap. 7. For
instance, for the single link case (i.e., � is scalar), the maximum likelihood estimator for s is

63



�̂ = min
1�i�N

yi ;

where N is a number of observations made on this single link. The variance of �̂ is

V ar(�̂) =
�2

N2
:

The subscript � is skipped in both formulae.

On an intuitive level, it is clear that an optimal design must essentially depend on the total number
of available measurements. Perhaps in the �rst and probably smaller part of the designed exper-
iment, the e�orts must be directed to estimate s; and then the large portion must be associated
with the better estimation of �� = �2� , � = 1; : : : ;m. We are not familiar with any attempt to
design experiments for the above case.

3.6.4 Other Types of the Information Matrix Normalization

In (2.21) or in the more general case (2.22), we divide the information matrix by the total number
of observations, and optimal designs maximize (in the sense of a selected criterion) the information
(matrix) per observation. In terms of examples from Sect. 3.4, it means maximization of the gain
per ping. In many cases it is a very reasonable approach. However, it is not di�cult to imagine
situations in which other normalizations would look more natural. For instance, if our \expenses"
are proportional to the total number of edges included in observed routes, then, this normalization
results in optimal designs that include shorter routes than in the examples of Sect. 3.4. If the
generation of pings consumes most of the experimental time, then the basic (i.e., normalization
by number pings) approach must be used. If the ping travel time is the main contributor then
the second approach may be used. The two above ways of normalization are simple and are
recommended for the practical use.

The direct and explicit normalizations of the information matrix by experimental time (or by cost)
are also possible. For instance, one can introduce the total time

T = (total time that is necessary to generate all pings) + (sum of travel times):

Note the sum of travel times equals
P

i �i
Pm

�=1 ��x�i and depends upon unknown parameters �.
Thus, we have to �nd

�� = argmin
�

	[M(�)] ; T (�) � T : (3.26)

We do not know how to transform (3.26) to the optimization problem similar to (3.8). Most
probably, the techniques developed for the constrained design problem must be applied to (3.26)
[cf. Cook and Fedorov (1995)].

3.6.5 Heavy Tailed Distributions

In a number of studies related to the network analysis, it was noted that the observed variables
have the heavy tailed distributions; see, for instance, Willinger et al. (1995a,b); Willinger, Taqqu
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and Erramilli (1996); and Samorodnitsky and Taqqu (1994), Chap. 1. There are a few possible
explanations for that phenomenon. In this section we prefer to stay within the Poisson model
paradigm which includes (or leads to) the heavy tail distributions in a very natural way.

To see that, we return again to the example from section 2.3.3 and assume that the previously �xed
parameters �� (mean service/travel/arrival times) are randomly distributed. For instance, let us
assume that � = ��1 (we skip the subscript �) has a gamma distribution, that is,

p(�) =
��1e��=s

s�()
: (3.27)

Then the resulting distribution density of the total traveling time Z is

�p(z) =
s

(1 + sz)+1
; (3.28)

see, Johnson, Kotz, and Balakrishnan (1994), Chap. 20.2. Note that E(�) = s and V ar(�) = s2.
The expectation s can be considered as the mean intensity of the Poisson process corresponding
to an exponentially distributed random variable z with p(z) = 1

�e
�z=� and random s.

Density (3.28) is the density of the Pareto distribution, which is, probably, one of the most popular
heavy tailed distributions. If  � 2, then for the Pareto distribution the second moment and,
consequently, the variance, does not exist.

However, all the ideas and results in most of Chap. 1 and Chap. 2 are essentially based on the
existence of the �rst and second moments and, in particular, on the concept of the best linear
unbiased estimation. Thus, we have to reconsider the whole approach, and the �rst thing to do
is to replace the objective functions based on either dispersion matrix or information matrix with
something else. For instance, it may be the volume or other quantitative characteristics of the
con�dences regions. To our knowledge, this area was never touched in the statistical literature
related to experimental design.
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Chapter 4

NONPARAMETRIC APPROACH

IN OPTIMAL MONITORING

4.1 BEST LINEAR PREDICTOR

4.1.1 Introduction

In two previous chapters, data analysis and optimal monitoring methods were essentially based
on the regression model concept. We have assumed that there exists a function that de�nes the
response, given input/independent variables or predictors. For instance, in example 2.1.1, it was
the linear function that connected the total travel time with delays at every given edge. Further
deliberation allowed us to describe the distribution of \noise" term. As a result, we had a stochastic
model of a known structure but containing unknown parameters that had to be estimated. The
series of examples in Chaps. 2 and 3 shows �nd the collection of various assumptions. Linear-
ity of the response function with respect to parameters, additiveness of observational errors, and
independence of errors are most frequently used.

Better knowledge of an analyzed system allows better design of experiments to collect additional
information. However, there exists a danger in which a practitioner may (involuntarily) replace
the lack of knowledge by seemingly reasonable assumptions that lead to a design mathematically
optimal but practically useless if the guess is wrong.

This chapter discusses methods that are based on a possibly minimal set of assumptions. In
particular, we abandon the use of the response function; see (2.2) and (2.3). Instead of the latter
one, we make a very modest assumption that the performance characteristics of di�erent sites are
correlated. However, in some cases, in which the probability distributions of observed characteristics
are heavily tailed, the standard concept of \covariance" (or \correlation") cannot be used because
the corresponding expectations may not exist; see, for instance, Athreya, Lahiri and Wu (1998).

Nevertheless, the existence of covariances is a much milder assumption than the assumption of a
speci�c functional relationship. All of the following results are based on the covariance structure(s)
and do not explicitly include unknown parameters. Hence, the approach is called here nonpara-
metric. However, the terminology is slightly di�erent from what is used in classical nonparametric
statistics [cf. Conover (1980)]. Let S sites/nodes X = (x1; : : : ; xS) be monitored by one host. To
keep notation simple, we will mainly analyze the case in which only one variable (characteristic,
metric) is measured by a host at all S sites. Unlike the previous chapters we do not assume that
a route connecting the host site and a destination site can be chosen at our wish. We assume
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that only a round trip time of a ping is available. In general, several variables can be measured,
for instance, ow-rate delays of various types, queue lengths, etc. A few hosts may be involved in
measurement and data collection. The ideas and techniques developed for the univariate single host
case can be extended for multivariate and multi-host situations, and the possible generalization will
be discussed later. In what follows, we use results by Fedorov and Flanagan (1997) and by Batsell
et al. (1998) together with some new �ndings and examples. The simpler versions of the considered
statistical problem had attracted the attention of statisticians a long time ago in areas related to
statistical communication theory [cf. Ermakov (1983), Chap. 9, interrogation of parallel communi-
cation channels]. In these earlier studies, the considered problems are close to what is considered
here when the covariance matrix is diagonal and the criterion of optimality is equivalent to our
D-optimality criterion. Probably, the closest formulations of the problem (in a di�erent setting)
may be found in Fedorov and Mueller (1989) and Sacks and Schiller (1988). However, in the latter
two publications, neither necessary and su�cient conditions of optimality nor convergence of the
proposed numerical procedures was discussed.

Let the measurements be at a relatively short period, and time trends can be neglected. The
following model may be applied

yj(xi) = uj(xi) + "j(xi) ; (4.1)

where uj(xi) describes the i-th node at the j-th observation and "j(xi) is the corresponding ob-
servational error, j = 1; : : : ; ri. Note that in (4.1) the de�nition of xi is di�erent from what has
been used in the previous chapter. In this chapter it is just a \label" of the i-th site. All terms
in (4.1) are assumed to be random variables. The �rst term, u(xi), describes the random behavior
of the monitored network, while the second term is related to observational errors or short-time
disturbances. As in the previous chapters, the same characters are used both for random variables
and their realizations. The latter are standardly marked by additional indices [i.e., u(xi) stands for
the random variable, and uj(xi) is its realization].

Let the vector

U = (u(x1); : : : ; u(xS))
T

describe the network performance consisting of S nodes (sites to monitor), and let

Eu(U) = U0; V aru(U) = E�

h
(U � U0)(U � U0)

T
i
= K ;

where the S � 1 vector U0 and the S � S covariance matrix K are given. The subscript u (or ")
means that expectation or variance is taken with respect to u (or "); subscripts "ju(or uj") are used
for conditional expectations. The transform U ! U � U0 zeroes the expectation of U . Therefore,
in what follows we assume that Eu(U) = 0. The observational errors "(xi) are assumed to have
zero means and to be uncorrelated:

E"ju ("j(xi)) � 0; E"ju

�
"j(xi)"j0(xi0)

� � �2�ii0�jj0:

Introduction of �2 depending on x does not lead to any signi�cant changes and is not considered
here. The \label" xi might be omitted (replaced by subscript \i") to simplify notation. However,
we will continue to use it to make it easier to bridge our results with what was discussed in the
previous chapters.
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Note that we do not use any properties of the set X. For instance, we do not introduce a distance
between two points xi and xi0 [cf. Fedorov (1996) and Sacks and Schiller (1988)]. The concept
of a distance is much less natural in communication network measurements than in meteorology
or seismology where the physical distance k xi � xi0 k between observing stations may de�ne the
behavior of elements K(xi; xi0) of the matrix K as functions of k xi�xi0 k. Introduction of concepts
similar to \distance," such as the number of switches or complexity of routes between xi and xi0 ,
may lead to more e�cient and realistic modeling of communication networks, but is beyond the
scope of this paper.

We assume that designs are de�ned as:

�n = fpi; xign1 ; pi = ri=N; N =
nX
i=1

ri; xi 2 X; n � S:

Frequently, pi is called the weight of the node xi. As before, nodes xi are called support nodes/points
of the design �n.

Let K(�n) be a submatrix of K, which corresponds to the nodes x1; : : : ; xn, and let K(x; �n) be a
column vector of covariances between u(x) and u(x1); : : : ; u(xn). We also introduce the matrices
K(Z; �n) = (K(x1; �n); : : : ;K(xq; �n)), where x1; : : : ; xq 2 Z � X, and K(Z) is a submatrix of K
corresponding to these nodes, and the weight matrix W (�n) will be diagonal with the elements
Wii = N��2pi�ii.

4.1.2 Best Linear Predictor

Let Y (�n) be the vector of averaged observations made according to �n:

Y (�n) =

0
BB@

1
r1

Pr1
j=1 yj(x1)
...

1
rn

Prn
j=1 yj(xn)

1
CCA =

0
B@

Y1
...
Yn

1
CA :

It must be emphasized that Y (�n) is considered here as a random variable. One can verify by direct
minimization that the predictor

Û(Z) = KT (Z; �n)
�
K(�n) +W�1(�n)

��1
Y (�n) (4.2)

minimizes the matrix of expected squared residuals

D
�
�n; ~U(Z)

�
= Eu;"

��
~U(Z)� U(Z)

��
~U(Z)� U(Z)

�T �

among all linear estimators ~U(Z) = LY (�n) such that Eu;"

h
~U(Z)

i
= 0: The statement about

unbiasness is trivial because E [y(�n)] = 0. Thus,

D(�n) = D
�
�n; Û(Z)

�
� D

�
�n; ~U(Z)

�
; (4.3)
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where inequality must be understood in the sense of ordering of nonnegative de�nite matrices, see
comments to inequality (3.2). From (4.1) and (4.2), it follows that

D(�n) = K(Z)�KT (Z; �n)
�
K(�n) +W�1(�n)

��1
K(Z; �n) : (4.4)

4.2 DESIGNS WITH CONTINUOUS WEIGHTS

In what follows, we consider the methods that allow the minimization of some given functions of
the matrix D(�n); for instance, trD(�n), ln jD(�n)j; maxiDii(�n), etc., compare with Sect. 3.1. In
other words, we explore the following optimization problem;

��n = argmin
�n

	 [D(�n)] ; (4.5)

where 	 is a selected objective function (criterion of optimality). In (4.5), the number of nodes
(or supporting points) n is �xed, and the total number of available observations N =

Pn
i=1 pi is

assumed to be given. In general, n may be optimized as well.

4.2.1 Properties of Optimal Designs

Two features of the optimization problem (4.5) may cause serious computational hurdles. Weights
pi are discrete, and the optimal number of supporting points must be found, in general. The
problem is simpli�ed both theoretically and numerically if we allow weights to be continuous so
that 0 � pi � 1,

Pn
i=1 pi = 1, and make n = S. If an optimal n is less than S, then some of

the weights equl zero. In other words, similar to Chapter 3, instead of ��n, we are looking for
approximate solutions that usually work well for larger N .

For n = S and Z coinciding with X, it follows from (4.5) and the identity [see, for instance, Harville
(1997), Chap. 18]: (A+B)�1 = A�1 �A�1(A�1 +B�1)�1A�1 that for any design �

D(�) =
�
K�1 +W (�)

��1
; (4.6)

where the subscript n is skipped to simplify notations. The matrix K is assumed regular. If Z is
a subset of X, then the covariance matrix (4.4) is an obviously de�ned submatrix of (4.6). The
subscript S will be skipped if it does not lead to ambiguity. Comparison of (4.6) with (2.24) and the
consequent comments allow us to consider the covariance matrix K as a carrier of prior information
about the monitored network and the matrix W (�) as a carrier of newly accrued information.

Now we can reformulate the design problem as

�� = argmin
�

�
	
�
K�1 +W (�)

��1
�
; (4.7)

where � can be any probability distribution with the support X.

If the function 	 is a convex function of � and has a directional derivative  (��; �) at �� for any
� = (1� �)�� + �� and 0 � � < 1; then:
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Theorem 4.1 A necessary and su�cient condition for a design �� to be optimal is ful�llment of
the inequality

 (��; �) � 0 (4.8)

for any feasible design �.

This result is well known in optimization theory of convex functions and is widely used in experi-
mental design theory [cf. Cook and Fedorov (1995), Fedorov and Hackl (1997), Chap. 2]. For the
D-criterion, 	(D) = ln jDj, we have found that

 (��; �) = trD(��) (W (��)�W (�)) : (4.9)

Noting that

trD(�)W (�) = ��2N
SX
i=1

Dii(�
�)pi ;

we derive that the following results.

Theorem 4.2 A necessary and su�cient condition for a design �� to be D-optimal (i.e., minimiz-
ing jD(�)j) is that

max
i
Dii(�

�) � �2

N
trW (��)D(��) (4.10)

and equality holds at all points where p�i > 0.

A D-optimal design also minimizes the maximal variance of prediction:

�� = argmin
�

max
i
Dii(�):

In this theorem and in what follows maxi means maximization over all points from X (i.e., 1 � i �
S). Thus, observations in a D-optimal or minimax design must be placed at points (sites) where
prediction might be the worst. It is illuminating to compare the concluding part of the above
theorem with part 3 of Theorem 3.2.

For linear criteria 	(D�1) = trAD; where A � 0 is the utility matrix, we have

 (��; �) = trD(��)AD(��) (W (��)�W (�)) ;

and the following result holds.

Theorem 4.3 A necessary and su�cient condition for a design �� to be linear optimal is that

max
i
fD(��)AD(��)gii �

�2

N
trW (��)D(��)AD(��) ;
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and the equality holds at all points where p�i > 0.

If A = I, i.e., the average variance of prediction must be minimized, then the theorem tells us that
an optimal design �� allocates observations at sites in which the predicted value Û(x�) of U(x�)
might have the greatest average squared covariance with all other Û(x); x 2 X. If the matrix A
is diagonal and the elements Aii describe the \importance" of node i, then the average squared
variance is naturally replaced by the weighted average one.

Note that, unlike the results from Section 3.2 and in particular Theorem 3.2, the properties and
characteristics of optimal designs considered in this section do depend on the ratio �2=N . For
instance, in the trivial case of the diagonal covariance matrix K and minimax or D� criteria, we
must allocate measurements in the following manner. For the smaller N , all measurements must
be done at the node with the largest variance Ki1i1 . As soon as

N

�2
� 1

Ki2i2

� 1

Ki1i1

;

some part of measurements must be done at the node with the second largest variance Ki2i2 . With
further increase in the available number of measurements, our e�orts should be extended to a
larger number of nodes to keep inequality (4.10) ful�lled. We have to remember that the fraction
of measurements piN at node i is treated in Theorems 4.1�4.3 as a continuous variable. With
\pinging" or \tracerouting", the rounding procedure could be very simple as was discussed in the
previous chapters.

4.3 FIRST ORDER ALGORITHMS

The above theorems help to develop and analyze various �rst order algorithms for construction of
optimal designs. For computer networks the matrices processed during computations are large. It
is therefore especially important to use recursions that are computationally simple and stable. The
most convenient algorithms in this sense are �rst order exchange-type (compare with Sect. 3.3).
The main idea is similar to what was proposed in that section: at each stage, add that new point
that improves the current design most, and delete from the same (or just corrected) design the point
that contributes least. We start with the simplest version of that kind of algorithm for D-criteria.

Let the initial design �0 be such that all weights p0i = bi�0, where bi is an integer and
PS

i=1 p0i = 1:
For instance, we may choose bi � 1 and �0 = 1=N: That choice of initial weights and step length
keeps the total weight equal to 1, helping to keep the computation simple.

1. Given �t and D(�t) �nd

a = argmax
i
Dii(�t): (4.11)

Add �t to the weight of point xa to construct the design �+t and the matrix D(�+t ). Note
that the sum of the weights in the design �+t is greater than 1.

2. Find

d = argmin
i2It

Dii(�
+
t ) ; (4.12)
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where It is the set of all supporting points of �t, i.e., points with nonzero weights at step t.
Delete �t from the weight of point xd to modify �

+
t and to construct the design �t+1 in which

the sum of the weights is restored to 1 as it was in �t.

3. If

jD(�t+1)j=jD(�t)j < 1�  ; (4.13)

where  is a small positive number less than 1, then put �t+1 = �t and go to (1). Otherwise
make �t+1 = �t=2 and then go to (1).

Computations may be stopped when �t is su�ciently small. Another simple stopping rule may be
based on the inequality that for any design �

ln
jD(�)j
jD(��) �

N

�2
max
i
Dii(�)� trW (�)D(�) ; (4.14)

which is a direct corollary of the convexity of ln jD(�)j as a function of � [compare with Fedorov
and Hackl (1997), Chap. 3.1].

The choice of p0i and �0 is a matter of convenience. For instance, the above choice guarantees that
no more than ��1

t observations are needed to avoid any \fractional" observation in design �t, which
is a frequent case in the continuous design theory setting. Actually, in the \classical" version of the
exchange algorithm, � equals N�1 where N is a preselected number of observations. The algorithm
with �t � N�1 was applied to the construction of spatial designs by Sacks and Schiller (1988) in
the setting in which repeated observations were not allowed. Unfortunately, in this case, the limit
design (if it exists) is generally not an optimal one. That is why we introduced the possibility of
in�nitely reducing the step length �.

The rule for adding and deleting weights becomes obvious if we note that

jD(�+t )j =
jD(�t)j

1 + �tDaa(�t)
(4.15)

and

D(�+t ) = D(�t)� �tC
+(�t)

1 + �tDaa(�t)
; (4.16)

where C+
ij (�t) = Dai(�t)Daj(�t) and �t = ��2N�t. The above formulae may be derived using the

fact that D(�+t ) =
�
K�1 +W (�t) + �t`a`

T
a

��1
=
�
D�1(�t) + �t`a`

T
a

��1
, where f`agi = �ia. In the

versions of (4.15) and (4.16) for the deletion procedure �t must be replaced by ��t and �t by �+t.

Similar to the classical results of experimental design theory, we established the following result.

Theorem 4.4 The sequence fjD(�t)jg converges and

min
�
jD(�)j � lim

t!1
jD(�s)j � (1� )�1min

�
jD(�)j:
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The proof is based on monotonicity of the iterative procedure and convexity of ln jD(�)j as a
function of � and Theorem 4.2.

The iterative procedure 1-3 admits various improvements. For instance, the number of \forward"
steps (i.e., the length of the forward excursion), may be selected by a user instead of being equal
to 1 as in the original formulation. Consequently, the same number of \backward" steps must be
done to keep the total weight of supporting points in � to be equal to 1. An alternative to the user
de�ned length of the excursion can be the continuation of forward steps until the increase of the
standardized determinant (1 + `�)�S jD(�+` )j is decreasing. Here, ` is the number of accomplished
forward steps, and �+` is an \extended" design with the total weight 1+`�. Obviously, the backward
excursion must return the total weight to 1. Note that formulae (4.15), (4.16), and their siblings
for the deletion steps are convenient recursions for large size-problems.

4.4 ESNET EXAMPLE II

4.4.1 Covariance Matrix Estimation and Optimal Design

We have used the Department of Energy's ESnet backbone, a portion of the Internet, as a testbed
for the proposed numerical procedure. Using a network host computer at ORNL, we interrogated
39 other sites (see Table 4.1) to construct a reasonable estimate K̂ for the matrix K and to use K̂
in the numerical procedure instead of K. We have used the script written by T. Dunigan (ORNL),
which is based on the (ping) software (see Stevens(1994), Chap. 7) to measure the response time for
each interrogation. Because of the lower priority that network routers may give to ping requests,
the minimum response time (among three ping requests per interrogation) is used as the response
variable. This also reduces the probability of \missing" observations (i.e., there is more hope that
at least one ping out of three will result in a response). All 39 sites were interrogated 50 times
in random order during approximately 3 hours on a weekday in mid-March 1997. We estimated
the elements of matrix K for each pair of sites separately without imposing any conditions like
positive-de�niteness of K̂, for instance. We have to abandon the simplest and traditional estimator
(see notations in Sect. 4.1)

K̂ =
1

k

kX
`=1

(Y` � �Y )(Y` � �Y )T ; �Y =
1

k

kX
`=1

Y` ; (4.17)

which guarantees non-negativeness of the matrix K̂, because of the total number of interrogations
with all 39 components of the vector Y reported is much less than 39. If K < 39, then rank
K̂ < 39. In addition, the fact that the matrix K is not very well estimated (and that is not
important for a pure illustration example), the singularity of the matrix K̂ causes the formal
obstacle: we cannot compute the matrix K̂�1. The information on more sophisticated methods
of estimation of covariance matrices can be found in Dixon (1992), Vol. 2, Chap. 8D; Little and
Rubin (1987), Chap.. 1 and 3; Muirhead (1982) Chap. 4.3.

The value of the standard error � was estimated by averaging di�erences between results of neigh-
boring in time interrogations over the whole set of interrogations for all sites. We found that
� ' 8:0ms. This may not be the best estimator, especially if one takes into account heterogeneity
of ESnet. However, for our illustrative purposes, it is not important. For the real applications, the
use of more sophisticated estimators is crucial because the form of an optimal design depends on
both K and �2=N .
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Table 4.1: Site identi�ers

ID Site Acronym Site Name

1 JLAB Thomas Je�erson National Accelerator Facility (Newport News, VA)
2 ARM Atmospheric Radiation Measurement Project (Lamont, OK)
3 FNAL Fermi National Accelerator Laboratory (Batavia, IL)
4 SNL Sandia National Laboratories Albuquerque (Albuquerque, NM)
5 KEK KEK, Japan
6 NYU* New York University Courant Institute (New York, NY)
7 MSRI* Mathematical Sciences Research Institute, Univ. CA (Berkeley, CA)
8 ANL-MR1 Argonne National Laboratory-Main Router 1
9 AMES AMES Laboratory, Iowa State University (Ames, IA)
10 FSU* Florida State University (Tallahassee, FL)
11 CIT California Institute of Technology (Pasadena, CA)
12 MIT* Massachusetts Institute of Technology (Cambridge, MA)
13 FNAL-MR1 Fermi National Accelerator Laboratory-Main Router 1
14 GAT General Atomics (San Diego, CA)
15 UTA University of Texas at Austin (Austin, TX)
16 SRS* Savannah River Site (Aiken, SC)
17 SLAC Stanford Linear Accelerator (Stanford, CA)
18 INEL* Idaho National Engineering Laboratory (Idaho Falls, ID)
19 LLNL Lawrence Livermore National Laboratory (Livermore, CA)
20 AUCK* University of Auckland (Auckland, New Zealand)
21 DOE Department of Energy (Washington, DC)
22 PPPL Princeton Plasma Physics Laboratory (Princeton, NJ)
23 UTK University of Tennessee (Knoxville, TN)
24 LANL-MR1 Los Alamos National Laboratory - Main Router 1 (Los Alamos, NM)
25 NASA* AMES Research Center, NASA (San Francisco, CA)
26 BNL Brookhaven National Laboratory (Upton, NY)
27 PPPL-local additional PPPL site
28 CU Columbia University Academic Information Systems (New York, NY)
29 ANL Argonne National Laboratory (Argonne, IL)
30 Pro.PPPL additional PPPL site
31 PNNL* Paci�c Northwest National Laboratory (Richland, WA)
32 OSTI O�ce of Scienti�c and Technical Information (Oak Ridge, TN)
33 NEVIS* Columbia University Nevis Laboratory (Irvington, NY)
34 LBNL-MR1 Lawrence Berkeley National Laboratory - Main Router 1
35 LLNL-MR2 Lawrence Livermore National Laboratory - Main Router 2
36 NERSC* National Energy Research Scienti�c Computing, LBNL (Berkeley, CA)
37 LBNL Lawrence Berkeley National Laboratory (Berkeley, CA)
38 SNL/LLNL Sandia National Laboratories at LLNL (Livermore, CA)
39 YALE* Yale University (New Haven, CT)

75



Table 4.2: Various designs to monitor ESNet sites (N = 10; � = 8:0ms)

Variance of the Prediction, Dii

Site Site D-optimal D-optimal Rounded Uniform

ID Site Variance Weight Continuous 10 points All 39 points

1 JLAB 96.8 .0000 23.7 24.2 12.8
2 ARM 72.0 .0000 35.1 42.0 25.1
3 FNAL 90.7 .0000 21.2 23.2 8.2
4 SNL 8.8 .0000 2.8 2.8 1.9
5 KEK 56.2 .0000 31.1 31.5 18.4
6 NYU 1042.7 .0970 58.0 56.4 176.7
7 MSR1 289.2 .0128 57.9 61.2 39.8
8 ANL-MR1 100.9 .0000 32.7 32.6 19.8
9 AMES 83.5 .0000 26.0 27.9 11.7
10 FSU 1497.7 .1010 58.0 58.5 194.8
11 CIT 19.3 .0000 8.3 8.9 4.9
12 MIT 1002.6 .1000 57.8 57.9 187.6
13 FNAL-MR1 6.1 .0000 5.4 5.5 3.8
14 GAT 60.5 .0000 21.5 23.0 13.2
15 UTA 54.0 .0000 17.7 18.4 12.3
16 SRS 978.5 .0985 57.9 57.1 181.3
17 SLAC 93.0 .0000 26.0 31.8 14.9
18 INEL 1537.9 .1010 58.0 58.5 194.7
19 LLNL 57.8 .0000 27.7 28.2 15.5
20 AUCK 1967.8 .1036 57.9 60.0 210.8
21 DOE 25.3 .0000 12.4 12.7 6.9
22 PPPL 41.9 .0000 11.4 12.2 5.2
23 UTK 0.4 .0000 0.3 0.3 0.3
24 LANL-MR1 51.7 .0000 21.1 21.8 10.7
25 NASA 949.6 .0978 58.9 56.8 177.8
26 BNL 183.8 .0000 56.7 56.8 33.9
27 PPPL-local 126.0 .0000 48.2 51.3 23.1
28 CU 75.3 .0000 23.9 23.9 15.7
29 ANL 88.3 .0000 22.4 24.1 10.1
30 Pro.PPPL 35.3 .0000 15.6 15.6 9.4
31 PNL 365.1 .0853 57.9 51.0 130.1
32 OSTI 0.4 .0000 0.3 0.3 0.3
33 NEVIS 402.1 .0809 57.9 52.8 70.3
34 LBNL-MR1 62.4 .0000 16.4 17.4 7.0
35 LLNL-MR2 58.9 .0000 25.5 26.9 12.7
36 NERSC 121.2 .0236 58.0 74.7 47.2
37 LBNL 86.7 .0000 21.3 22.0 10.7
38 SNL/LLNL 131.8 .0000 43.1 46.3 20.9
39 YALE 1137.1 .0987 58.0 57.3 183.6
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Table 4.3: Dependence of the optimal design structure on �2=N .

Site Site �2=N
ID Site Variance 500 10 1 0.1

1 JLAB 96.8
2 ARM 72.0 .046
3 FNAL 90.7
4 SNL 8.8
5 KEK 56.2 .028 .046
6 NYU 1042.7 .024 .100 .080 .062
7 MSR1 289.2 .038 .052
8 ANL-MR1 100.9
9 AMES 83.5
10 FSU 1497.7 .218 .106 .080 .064
11 CIT 19.3
12 MIT 1002.6 .052 .104 .080 .064
13 FNAL-MR1 6.1
14 GAT 60.5 .008
15 UTA 54.0 .042
16 SRS 978.5 .026 .102 .080 .064
17 SLAC 93.0
18 INEL 1537.9 .220 .106 .080 .064
19 LLNL 57.8 .006
20 AUCK 1967.8 .328 .110 .080 .064
21 DOE 25.3
22 PPPL 41.9
23 UTK 0.4
24 LANL-MR1 51.7
25 NASA 949.6 .100 .080 .064
26 BNL 183.8 .054 .056
27 PPPL-local 126.0 .038 .030
28 CU 75.3
29 ANL 88.3
30 Pro.PPPL 35.3
31 PNL 365.1 .082 .076 .062
32 OSTI 0.4
33 NEVIS 402.1 .088 .062 .060
34 LBNL-MR1 62.4
35 LLNL-MR2 58.9
36 NERSC 121.2 .064 .058
37 LBNL 86.7
38 SNL/LLNL 131.8 .026
39 YALE 1137.1 .132 .102 .080 .062
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There exists another problem with the estimator (4.17), which was not mentioned by Fedorov and
Flanagan (1997), but deserves to be discussed. From the de�nition of vector Y [see (4.1)], it follows
that

E(K̂) = K +� ; (4.18)

where � is a diagonal matrix and the diagonal elements �ii describe the variance generated by
the measurement error "i. If at each single measurement of the i-th component ri repeated ping
interrogations are performed, then �ii = �2=ri. Thus, the estimator (4.17) must be corrected
by subtracting an independent estimator �̂ of the matrix �. This correction may lead to non-
positive de�nite estimators of K. The similar corrections must be done for the pairwise estimators
of elements of the matrix K, and, of course, with the similar side e�ects. We postpone further
discussion of the problem and for this example retain the simplest estimators

K̂ij =
1

aij

X
`2Aij

(yi` � �yi)(yjl � �yj) ; (4.19)

where Aij is a set of all measurements in which both yi and yj are included and �ij is the size of
this set. The estimators of means yi and yj may be averages with respect to observations available
for every component.

The �rst order algorithm was applied to the matrix constructed according to (4.19). The diagonal
elements of matrix K̂ appear in Table 4.2. The table also reports the optimal weights for each
site and the variance of prediction (the diagonal elements Dii) for the D-optimal continuous and
rounded designs. Also reported is the variance of prediction for the uniform design containing all
39 sites. The optimal design is nearly four times more e�cient than the 39-point uniform design.
The number of pings sent to a particular site must be proportional to the corresponding weight.
In practice, we use \rounded" weights. This rounding may lead to some increase in the maximal
variance of prediction. For instance, when only 10 points with the largest weight are selected and
all their weights are set to 0.1, then maxiDii = 74:0, which is not signi�cantly larger than maxiDii

for the continuous D-optimal design.

We selected a relatively small number of available observations (N = 10) to emphasize the di�erence
between continuous and discrete designs. In reality, it takes a few minutes to send hundreds of
pings to di�erent sites. Therefore, the approximation of reasonable weights is not a serious problem
in that type of experiment. Actually, one may introduce the optimal partitioning of available time
periods for a given experimental session for monitoring various sites instead of the selection of an
optimal number of pings.

It seems that covariances between di�erent sites do not play a very important role. All measure-
ments should be at the sites with the largest variances. This fact agrees with our comments at the
end of Sect. 3.3.

As we have mentioned before, the structure of optimal designs depends on the ratio �2=N . Table
4.3 contains the optimal designs for �2=N = 500; 10; 1; 0:1. The tendency is clear: for the
larger measurement errors (or for the smaller number of available measurement), all e�orts must
be directed to measure at the sites having the largest variance. However, starting with �2=N = 1
some sites (see # 6 and # 36 for the design with �2=N = 1), have variances that are less than the
variances at the sites not included in the optimal design (see # 38 for the design with �2=N = 1).
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This means that the designs with the small ratio �2=N depend on the covariances between di�erent
sites.

The following observation can be useful for a practitioner. All support points from the optimal
designs with the larger ratio �2=N have the support sets that are the subsets of the optimal designs
with the smaller ratio �2=N . Therefore, it is reasonable to start measurements at sites with the
large variances and to place the rest of the available measurements at other support points. This
recommendation, to some extent, contradicts the \randomization" principle, which is popular in
the experimental design theory. Randomization usually helps to avoid the adverse impact of spatial
or longitudinal time trends. Perhaps, some compromising approaches like strati�ed randomization
may help to follow our recommendation and still to avoid e�ects of time trends that are important
only if measurement on networks take a relatively long period.

4.4.2 Modeling the Covaraince Matrix

Following the hint at the end of Sect. 4.4.1, let us try to model the covariance matrix k. To do
this we can, for instance, use the information reported by the \traceroute" software [see Stevens
(1994), Chap. 8], which reports all edges on the network graph traversed to reach a destination
node. Delays for each edge also can be evaluated from the above mentioned information.

We assume that during the interrogation process (based on \ping" software) the host and the
destination node are connected by a single route, which coincides with the route most frequently
reported by the \traceroute" software. This assumption essentially simpli�es modeling and is suf-
�ciently accurate for our illustrative needs.

Each route i may be described by the vector �i containing q components, where q is the number of
di�erent edges among all routes connecting the host site (ORNL) and all destination nodes (39 in
the considered case). Similar to Sect. 2.1.1 �i� = 1, if the �-th edge is included in the i-th route,
and �i� = 0 otherwise, � = 1; : : : ; q.

Let the (q � q) matrix � describe our \theoretical" knowledge of characteristics of the q edges. In
the simplest cases � may be diagonal and ��� = �2�, where �� may be, for instance, the delay time
at the �-th edge.

Assuming that the covariance between traveling times from the host site to nodes i and j is explained
by the time intervals that interrogating \pings" spend on common edges, we may conclude that
[compare with (2.19)]

Kij = �Ti ��j :

For our numerical example we use the rough approximation ��� � 100. The particular value of
��� is selected to make comparable the scales from this section and from the previous one. The
results of computations are described in Table 4.4, which is similar to Table 4.3. As before, the
support points of the optimal designs coincide with the nodes having the larger variances kii. The
non-zero covariance inuence is noticeable starting from �2=N � 100.
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Table 4.4: Dependence of the optimal design structure on �2=N , k is modeled.

Site Site �2=N
ID Site Variance 500 100 10

1 JLAB 300 0.03
2 ARM 400 0.03
3 FNAL 500 0.06 0.04
4 SNL 400 0.01 0.03
5 KEK 700 0.10 0.04
6 NYU 300 0.03
7 MSR1 200
8 ANL-MR1 200
9 AMES 400 0.01 0.03
10 FSU 500 0.06 0.04
11 CIT 500 0.06 0.04
12 MIT 500 0.06 0.04
13 FNAL-MR1 200 0.01
14 GAT 300 0.03
15 UTA 800 0.11 0.13 0.05
16 SRS 200 0.01
17 SLAC 300 0.03
18 INEL 1300 0.35 0.18 0.05
19 LLNL 400 0.01 0.03
20 AUCK 1400 0.37 0.18 0.05
21 DOE 300 0.02
22 PPPL 300 0.01
23 UTK 300 0.03
24 LANL-MR1 200
25 NASA 300 0.01
26 BNL 400 0.03
27 PPPL-local 300 0.02
28 CU 400 0.03
29 ANL 400 0.03
30 Pro.PPPL 300 0.02
31 PNL 400 0.03
32 OSTI 200 0.01
33 NEVIS 500 0.02
34 LBNL-MR1 200
35 LLNL-MR2 200
36 NERSC 300 0.02
37 LBNL 400 0.03
38 SNL/LLNL 400 0.03
39 YALE 900 0.17 0.14 0.05
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4.5 SIMPLE HEURISTIC ALGORITHM

4.5.1 Short Survey of the Older Results

In the ESnet example, we use the "plug in" idea, that is, all unknown elements in the design
procedure (in our case the covariance matrix K and the variance of measurement error �2) must
be estimated using preliminary measurements, and then the corresponding estimates are to replace
unknown values. A rigorous mathematician may argue with the applicability of that idea in general,
but intuitively, one expects to get designs that are close to optimal if the preliminary data set was
informative enough. In most cases the \plug in" approach is practical and e�ective. Interestingly
enough, sometimes the two step design procedure (�nd estimates { compute design) can be replaced
by a computationally more e�ective one-step procedure. Moreover, that replacement helps to
illuminate some basic facts about optimal designs.

The procedure, which we intend to discuss was invented in studies related to meteorology [see
Megreditchan (1979, 1989)]. It is intuitive and simple. Let fy`(xi)grn11 be a data set accumulated
by n observing stations (compare with nodes/sites) during ` = 1; : : : ; r observing session. In
meteorology they observe precipitation, temperature, atmospheric pressure. In our case, there may
be delays, packet loss, reachability, etc.

Now we want to reduce the total number of sites (stations in meteorology, but from now on we
shall use network terminology) in the belief that data collected on all of them are redundant. The
redundancy means that the behavior of some sites can be explained by measurements that are
made at other sites. One of the simplest \explanatory" models is the linear regression:

y`(xi0) =
X
i6=i0

�iy`(xi) + "` ; (4.20)

where "j comprises whatever is unexplained and uncertain. As soon as this model is selected, the
sums of squared residuals

v(xi0) = min
�

rX
l=1

2
4X
i6=i0

�iy`(xi)� y`(xi0)

3
5
2

(4.21)

must be computed for all i0 = 1; : : : ; n. The site i� with the least v(xi0) is considered \well explained"
by other sites and is removed from the monitoring set and from the consequent computations. The
procedure is repeated until either the number of sites is small enough to guarantee the cost range
of future measurements or until the values of u(xi0) increase dramatically compared to their initial
values.

In practice (at least in meteorology), the approach worked very well. Fedorov and Mueller (1989)
have found that its e�ciency can be theoretically explained for a rather broad class of practical
problems. In particular, the above procedure coincides with the backward excursion of the exchange
type algorithm of optimal experimental design for the regression model with random coe�cients.
This model can be used to approximate the covariance structure of the observed random �elds in
meteorology. Here we show that the similar result is true for the problem of selection of optimal
monitoring network.
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4.5.2 Approximate Duality of Two Approaches

Let us assume that the estimator K̂ de�ned by (4.2) can be used, that is, we assume that in all
measurements, all components of the vector Y are successfully measured. Without loss of generality,
we can select i0 = 1 and present K̂ as

K̂ =
1

r

 
zT1 z1 zT1 Z�1

ZT
�1z1 ZT

�1Z�1

!
=

 
K̂1;1 K̂1;�1

K̂�1;1 K̂�1;�1

!
; (4.22)

where

zT1 = (y1(x1); : : : ; yr(x1)) ;

ZT
1 =

0
B@

y1(x2) : : : yr(x2)
...

...
...

y1(xn) : : : yr(xn)

1
CA =

0
B@
zT2
...
zTn

1
CA :

If at every interrogation session k pings are sent, than y`(xi) is an average of k measured travel
times.

Let us assume that, suggested by (4.20), (4.21), we \regress" z1 on z2; : : : ; zn. It is known that
the sum of squared residuals reaches its minimum if [compare with Section 2.1 and Rao (1973),
Chap. 4a]

�̂1 = (ZT
�1Z�1)

�1ZT
�1z1 ; (4.23)

and that the minimum equals

v(x1) = zT1 z1 � zT1 Z�1(Z
T
�1Z�1)

�1z�1 : (4.24)

Two presentations, (4.23) and (2.11) are identical because, for the linear response function
P

i6=1 �iyi
we haveM = ZT

�1Z�1 and Y = ZT
�1z1. To bridge the Megreditchan idea and the numerical method

proposed in Sect. 4.4, let us note that

1

r
v(x1) = K̂1;1 � K̂1;�1K̂�1;�1K̂�1;1 :

For the larger r due to the consistency of the estimator K̂; we can state that

K̂ ' K + I�2=k ;

where, as before, �2 is the variance of the measurement error, k is a number of repeated measure-
ments at every `-th session, and I is the identity matrix. Combining the two last expressions we
come to the following approximation
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1

r
v(x1) ' K1;1 + �2=k �K1;1(K�1;�1 + I�2=k)�1K�1;1 = �2=k +D11(�u) ; (4.25)

where �u is the design with uniformly distributed weight (i.e., pi = 1=n; N = nr). To derive (4.25)
we applied the formula for the inversion of partitioned matrices [see, for instance, Harville (1997)
Chap. 8.5]. Using permutation we can easily verify the more general result:

1

k
v(xi) ' �2=k +Dii(�u) : (4.26)

From this approximation it follows that the minimization of v(xi) has approximately the same
solution as the minimization of Dii(�u), that is, we delete the site i

�, if

i� = argmin
i
Dii(�u) : (4.27)

Comparison of (4.26) and the deleting stage of the iterative procedure from Sect. 4.3 shows that
deleting redundant sites accordingly to the Megreditchan method is nothing else but the backward
excursion with � = 1

k ;
1

k�1 ; : : : for minimax or D� criteria. That is probably why the Megreditchan

method leads to very reasonable subsets. Thus, instead of computing K̂ and consequent application
of the \plug in" approach we may apply the least square method (software is widely available) to
run the backward excursions and delete redundant sites.

Duality between these two approaches allows extension of the Megreditchan idea and inclusion of
the forward excursions. Indeed, after deleting q1 sites, we can think about adding q2 < q1 sites,
then deleting q3, then adding back q4 < q3 sites, etc. The site that must be added in each case is
de�ned by �nding

i� = max
i
v(xi) ; (4.28)

where i belongs to set of the previously deleted sites.

The original and generalized Megreditchan methods are computationally simple and intuitively
attractive, and we recommend their use. However, the following facts must be remembered:

1. The method cannot be used directly when measurements contain missing components.

2. The step length � does not diminish. Therefore theoretically, we cannot guarantee conver-
gence to an optimal design.

3. The method improves the D� or minimax criterion. For other criteria, di�erent delet-
ing/adding rules would be necessary. To our knowledge they have not been proposed so
far.
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