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Abstract

“Standard” approaches such as regression analysis,
Fourier analysis, Box-Jenkins’ procedure, et al., which
handle a data series as a whole, are not useful for very
large data sets for at least two reasons. First, even
with computer hardware available today, including par-
allel processors and storage devices, there are no effec-
tive means for manipulating and analyzing gigabyte, or
larger, data files. Second, in general it can not be as-
sumed that a very large data set is “stable” by the usual
measures, like homogeneity, stationarity, and ergodicity
that standard analysis techniques require. Both reasons
suggest to segment the data and use “local” data analysis
on each segment. The results of these local analyses can
then be analyzed globally. We use local regression mod-
els within segments and show that analysis of optimal
local regression models can be operationally identical to
nonlinear dynamical modeling.

1 Introduction

Our focus is on identifying “unusual” segments of data
from very long streams of data series. The adjective
“unusual” is intended to convey a sense that the frac-
tion of unusual to usual segments over the whole data
stream is small. We prefer the expression “data series”
to “time series” to emphasize that the data need not ad-
mit a natural sense of “future” and “past.” Even if the
physics of the process being observed does allow a sense
of time to be identified with the data series, the anal-
ysis techniques we consider are unlike traditional time
series methods that focus on “forecasting ” or “online”
analyses. We compare a segment to a collection of its
neighbors or the whole population.

The main idea is based on partitioning the data se-
ries into relatively short segments and then modeling
each segment using a relatively simple, low-order model.
Segmentation may be either static or moving. The latter
is computationally more demanding but frequently leads
to a better visualization of unusual events. The param-
eters of the simple model are expected to have typical

values and not display significant variation over the col-
lection of usual segments. However, over the collection
of unusual segments, the model parameters are expected
to vary significantly. If the unusual segments are reflec-
tions of a limited number of distinct digressions from the
process corresponding to the usual segments, then the
relatively large variation in model parameter values over
the whole collection of unusual segments may cluster into
a few classes of relatively small variation. From a statis-
tical standpoint, we talk about a mixture of populations
of different sizes and the detection and segregation of
those populations.

We present results for the univariate case. Our meth-
ods can, in principle, be generalized to large multivariate
data sets that admit a meaningful segmentation.

The data segmentation problem is both critical and
application dependent. We assume the scientist, engi-
neer, biologist, or whoever is using these methods has an
idea about the nature, including space and time scales, of
the events or perturbations of importance for their par-
ticular application. Evidently there are applications for
which a multistage, or hierarchical segmentation struc-
ture is most appropriate, especially in the case of self-
similar processes (for example, see [3, 8, 11]). The tech-
niques discussed here can be applied at every segmen-
tation level. Developing techniques for defining hierar-
chical segmentation structures is an interesting topic for
future studies.

Most of the theoretical material included in this arti-
cle is described in terms of regression models. Hopefully
areader will be able to propagate the idea for other types
of local modeling such as autoregressive models, kernel
estimation, wavelet expansions, etc. We report on the
analysis of two data series: an atmospheric process and
a neurophysiological process.

2 Simple Local Models.

Let {y;}}¥, be observations made under conditions
{z;}¥,. The essence of the problem is that N is very
large and it may be difficult to manipulate or even to
store the set Y = {y;} %, on a relatively small computing



platform. We consider methods based on partitioning Y
into J segments of equal size, so that

yi = {yi}gi(jfl)[l+17 (1)

where N = L x J, and L is the size of the segment y;.
Another segmentation scheme is to use a sliding window
of length L, so that
i+L—1
yi = {yi}gi_j ) (2)
where J =N — L + 1.

From a computational standpoint, the segmentation
(1) is more useful because J < N, whereas the segmen-
tation (2) has J ~ N.

Let

. S il
Tjo € Xj = {xl}i:(]’71)L+1v

and suppose that x o is not close to one of the boundary
points of the segment x;. Also, define

ll]' = X]' — ZL“]'O .
We are going to study the local model

yi = g(0j;u5) + €. (3)

In this model, the first term g(6;;u;) describes the
“usual” component of the segment y; and €; repre-
sents whatever remains. The remainder contains the
“unusual” as well as a random component. Further,
g(6;5u;) is a vector valued function and #; € IR is a
vector of unknown parameters. We make standard as-
sumptions concerning the error term ;

E(ej) =0, E'((—:j,(-:]T) = O'?I,

where I is the identity matrix.

From a computational standpoint, the local model
should be easy to fit in all segments. The parameters
0;, 032-, and possibly some other functions of the data y;,
form the set of descriptors of a segment j. Generally,
p < L so that y; is reduced to the set of its descriptors.
A global analysis of the descriptors for all or a collection
of segments reveals some interesting properties of the
large data series and can identify “unusual” segments.

Although ¢(f;;u;) can be any simple function, we
use a regression model g(6;;u;) = f(u;)6;, where f(u;)
is an (L X p) matrix. Regression analysis is a highly
developed area in statistics, from both theoretical and
computational standpoints. This allows fast computa-
tion and provides some easy theoretical results. If the
{x;}Y, are equally spaced, the u; are identical for all
j. The result is a single regression with a matrix right
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Figure 1: éjl (horizontal axis) vs. éjg for liquid water
ARM data

hand side, [y1|y2|-- - |ys], producing a matrix of param-
eter estimates, [¢1]62]---|0s]. This is the case we have
implemented in Splus [9] and use in all our examples.

Consider a segment of data from measurements of lig-
uid water content of the atmosphere. This data was col-
lected under the auspices of the Atmospheric Radiation
Measurement (ARM) project [6]. The segment contains
200,000 observations taken at 20 second intervals, which
is about 46 days of measurements. We compute a least
squares fit of the simple linear model

yi =0 + 0205 +¢;

for each segment j.

Fig. 1 shows a plot of 8;; x 0;2 for J = 2,000 seg-
ments of size L = 100. Approximately 200 points are
outside the thin dark elliptical region, indicating the
200 “unusual” segments that potentially contain per-
turbations. The scatterplot appears to be a mixture
of two distributions: one tight distribution containing
roughly 1800 “usual” segments without perturbations
and a more diffuse distribution containing roughly 200
“unusual” segments with perturbations. Also note that
almost all points lie in a cone with its vertex at the ori-
gin. There exists a simple statistical explanation of this
phenomenon [4].

In spite of their simplicity, regression models are well
suited to detecting interesting features in segmented
data. In fact, as we show in Section 4, the resulting
global analysis based on some optimal local regression
models can be viewed as equivalent to nonlinear dynam-
ical models. Because we are not limited to regression
models, our analysis can be viewed as a generalization



of nonlinear dynamical models.

Any function of the data vector y; can be used as
a descriptor of segment j, although it should be easy
to compute. Two examples are the maximum absolute
deviation and the sum of squared deviations. Large de-
viations clearly indicate the presence of something “un-
usual” that is not explained by the simple model.

3 Optimal Regression Models

Here we consider some recommendations on the selection
of the matrix f(u;).

For simplicity, consider y; as realizations of some ran-
dom vector y. In total we have J such realizations. As-
sume the covariance structure of y is known. Let

K=E|y-Ey)-EW)'].  ®

be the known covariance kernel. Implicitly we also as-
sume there are no perturbations or short-term tends. We
introduce the eigenvalues, A,, and eigenvectors, 1, of
the covariance matrix K, so that

Aoﬂ/’a = Kd’a:

Define matrix ¥ = (¢1,%2,...,%1), and note that
U'W¥ = I, where I is the identity matrix. Any vector Yj
may be represented in the form

MZh2 A 20 (5)

y; = ¥0;, where 0; =¥ly;. (6)

In fact, the optimization problem

M* = argmin|ly; — M|z, (7)
where M is an L X p orthogonal matrix and || - ||2 is the

Euclidean norm, has a solution M* = W¥,, the first p
columns of ¥. This is completely analogous to principal
components.

Usually the A; decrease rapidly, so we can use the first
p < L values of 6;, denoted by 8,; as descriptors of y;.
That is, the regression model

yi = ¥plj +¢;

is optimal in the sense described above.
If we now allow some of the y; to contain perturba-
tions,

p
Z 9‘]2_0/\;1 > X%—J(p)a
a=1

for some small 0 < § < 1 (1 — 0 is the corresponding
confidence level for the y2-distribution with p degrees of
freedom) indicates the presence of a perturbation in the

j-th segment. We can say that § x J is approximately
the number of falsely identified usual segments.

Next, if the covariance kernel K is not known, we can
estimate it from a “clean” subset of the data segments.
The idea is that we can define the “usual” in terms of
a relatively small collection of segments and use the re-
sulting model to identify the “unusual” in the remaining
segments. Let the matrix Y be defined by a collection

of “usual” segments as columns y; — . Then, estimate

K by

. 1 T
K=—-YY".
N

4 Nonlinear Dynamical Models

Here we describe a moving window approach with an
unknown covariance kernel from a nonlinear dynami-
cal modeling perspective (often referred to as analysis
of chaotic data). We use some basic terminology and
results from nonlinear dynamical modeling, see for ex-
ample [1], but we hope that the reader can adapt.

Let y; be a moving window segmentation

Yi = Wir Yitk Yit2kr - - Yirrk) s (8)

for a given pair (L, k). Suppose we have a “clean” set
of segments that is representative of a background or
“usual” process from which we estimate K as defined in
(3). Next, we construct the representation (6) from the
eigenvectors of K. The sequence {y;}¥ , describes a tra-
jectory in the y state space, E{; , which is the Euclidean
L-space. That is,

{yi}il, C Ey.
The transformation (6)
¥: El - Ef,
thus produces the trajectory
{T(yi) ity = {0:}i C By

A good choice for the parameter pair (L, k) produces
eigenvalues {); }le that decrease rapidly, so that in gen-
eral ¥ can be replaced by ¥,,, where p < L is the number
of a few selected significant eigenvalues. Normally this
is the p largest eigenvalues, but often we may want to
exclude some significant eigenvalues such as one repre-
senting the “level” or “trend” in the data series.

We are not trying to accurately model the background
process but rather separate the unusual from the usual.
Define the projection P} : E} — E} by

PYO) = (Bm,,---,0m,)" € L{g; Y1,



where L{1; }J . spanned

by the eigenvectors {¢; }] 'y and {my, ...,
the p selected eigenvalues. Further, define

B = Py({#:})),

is the linear subspace of EQL
mp} index

the projection into the p-dimensional subspace
L{; }J ', Of the trajectory {6;}}X, in E} con-
structed from the “clean” set of segments. We assume
that the background process projects to a relatively
small, dense region B for a small value of p.

The above assumptions concerning the background
process versus perturbations implies that the region
B is a concentrated region in state space associated
with usual data segments and that unusual segments
of the data series will produce trajectory segments in
L{t;};2,,, that move outside B. Let T be a character-
istic time scale associated with the background process.
We define a background event, or a usual segment of the
observed data series as any trajectory segment that re-
mains in B for at least a duration T;. More formally, a
segment I'; of [; time steps,

= {6
is a usual segment if
Pg)(eijfl) g B:
Py(r;) c B,
Py (0i,41,) € B,
ljxts, > T,

where %, is the sample time for the data series. In turn,
we define the trajectory segment

A = {65,

which separates segments I'; and I'j;;, to be the j-th
perturbed segment. The length in time steps of A; is

pj = (i = 1) = (i + 1) + L =541 = (5 + 1))
Note that this definition allows a perturbed trajectory
segment to pass through the region B so long as the
time it takes is less than the time scale T;. The data
series segment corresponding to Aj; is, by definition, a
perturbation, or unusual segment.

Clearly, treating a sequence of local model descriptors
from a moving window segmentation as a trajectory, is
operationally identical to the nonlinear dynamics pro-
cess described in this section. The two procedures are
derived from a very different theoretical viewpoint but
they operate the same. One could argue, that the lo-
cal modeling approach is a generalization of the nonlin-
ear dynamics approach, which is limited to the models

based on a principal components analysis. In an applica-
tion area, where good local models are known the local
modeling approach offers advantages in interpretation of
what is “usual” and what is “unusual.”

5 Report on two Applications.

Let us begin with a data series collected under the
auspices of the Atmospheric Radiation Measurement
(ARM) project [6]. The data series are measurements of
liquid water content of the atmosphere near Oak Ridge,
Tennessee, over a period of 257 days beginning in March
of 1994. The observations are taken at 20 second inter-
vals but contain gaps, some over a day in duration. Our
exercise is based on a subset with 122,786 observations
covering a little over 28 days. It is the longest subset
without any major gaps. From a physical point of view,
the background process (the usual) is a relatively clear
day with dry conditions. Perturbations (the unusual)
include cloud, rain, and fog events as well as many in-
strument malfunction events. An important feature of
the ARM data series is that the perturbations occur on
several scales.

The second data series is a subset taken from
one channel of a sixteen channel electroencephalogram
(EEG) record for an epileptic patient [7]. The complete
EEG record is 23 minutes, recorded at the sampling rate
512 Hz, and it includes a seizure. A 90 second segment,
which occurs well in advance of the recorded seizure,
is used for the analyses presented here. EEG records
typically include a great deal of “artifact,” representing
head movement, eye movement, muscle tension, grinding
teeth, etc., in addition to unmasked neurophysiological
activity. If we associate neurophysiological activity with
the background process, then artifact is a perturbation
relative to that background process.

The results presented for the regression model in Sec-
tion 2 use non-overlapping windows of size L = 50, which
corresponds to the segmentation (1).

The nonlinear dynamical process model in Section 4
uses a moving window paradigm of (8). However, a con-
clusion is reached about a collection of windows, rather
than about an individual segment, as with local regres-
sion. The window length used here for both data series
is approximately L = 20.

Local Regression Models. We begin with the
ARM data. It is partitioned into segments of L = 50
observations for a total of 2,455 segments. We fit a
quadratic model to each of the segments. This pro-
duces five values that characterize each segment: the
three model coefficients and two measures of lack of fit
(o and ls norms of residuals). This gives a data set of
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Figure 2: Clustering results for 2,455 segments of ARM
data series. Usual segments are black and unusual seg-
ments are clustered in color.

2,455 observations on the five variables.

The five variables are used to select unusual (per-
turbation) segments. Certainly segments with a poor
quadratic fit (high [, and l> norm of residuals) can be
considered to contain perturbations, but also segments
with unusually steep slope or a strong quadratic coef-
ficient can be considered as parts of perturbations. In
the ARM data we take the extreme (large in absolute
value) 15% in any of the four variables as perturba-
tion segments. After separating the usual from the un-
usual, the unusual segments are clustered with a model-
based clustering algorithm [2] on all five variables. Two
projections, intercept versus maximum deviation and
quadratic coefficient versus maximum deviation, of the
resulting clusters are in Fig 2. The black points (about

76% of data) represent the usual segments and colors in-
dicate the three unusual clusters. The cluster colors are
mapped to the segments in Fig 3 of a section of the ARM
data series that contains many unusual segments (days
64 and 65). The red unusual segments are instrument
anomalies and most of the other unusual segments are
related to weather phenomena. A more compute inten-
sive but probably better separation of the usual from the
unusual can be obtained with multivariate density esti-
mation techniques (see [10]). The 15% cutoff quantile is
arbitrary, but a cutoff can be estimated from the data.
For example, given a sufficiently smooth unimodal den-
sity estimate of a variable, the quantile that determines
the extremes as perturbations can be numerically esti-
mated as the point at which the density estimate most
rapidly “flattens out” into a tail (a maximum in its sec-
ond derivative).

The EEG data is partitioned into 460 segments of
L = 100 observations. We fit a quadratic model to each
segment and keep the five values (three model coeffi-
cients and two measures of fit) that characterize it. This
provides 460 observations on five variables.

As in the ARM data, we take the extreme 15% in
any of four of the variables as perturbation segments. A
plot of a section of the data series (seconds 345 through
360) is in Fig 3 showing the usual segments in black and
unusual segments in color.

A Nonlinear Dynamical Model. Referring to [5]
for details, we find that the atmospheric(ARM) and neu-
rophysiological(EEG) data sets can be modeled using the
parameter pair values

ARM : (L, k) (8,3),
EEG: (L,k) = (9,3).

Further, for both example data series we find that the
dominate structure of the background process is included
in the subspace of EaL spanned by the first three eigen-
vectors, Ej = L{t;}3_,, so that p = 3. If there is a long
term trend in the background process, we expect that to
be reflected primarily in the first coefficient, 6, of the
regression model. Consequently, we use the coefficients
(62,65), which is equivalent to setting (mi,ms) = (2,3).
Thus B is the projection into the two dimensional sub-
space L{t;}3_, of the trajectory {#;}}*, in Ej con-
structed from the training set {y;} ;. Finally, we find
that appropriate time scales for defining usual events are

ARM : T, =
EEG:T, =

180 x t, = 1hr,
100 x £, ~ 2.

The analysis results for the ARM and EEG data are
displayed in Fig. 4. The same sections of the data are
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Figure 4: Nonlinear dynamical model results for the
same data series as in Fig. 3. ARM data is on the left

and EEG data is on the right. Perturbation segments

are in color.

Figure 3: Local regression results for a portion of the
ARM data series (days vs. cm) on the left and a portion

of the EEG data series (seconds vs.

Unusual segments are in color.

wv) on the right.



shown as for the local regression results in Fig. 3. The
results are similar.

The ARM data has features that vary over a broad
range of scales. Thus, the results illustrated in Fig. 4,
which shows perturbations coded on the given data se-
ries, reveal segments that are clearly unusual to the eye,
but also mark other segments that do not appear to be
unusual. Color coding is according to duration of per-
turbation event.

Features in the EEG data are not as widely dis-
tributed across scales as the ARM data. The right por-
tion of Fig. 4 is the perturbation coded data series. We
find that the technique is very efficient at identifying ar-
tifact (eye blinks, muscle tension, etc.). Further detail
of this analysis, is reported in [4].

6 Conclusions.

“Standard” approaches such as regression analysis,
Fourier analysis, Box-Jenkins’ procedure, et al., which
handle a data set as a whole, are not admissible for
very large data sets for at least two reasons. First, even
with computer hardware available today, including par-
allel processors and storage devices, there are no effec-
tive means for manipulating and analyzing gigabyte, or
larger, data files. Second, in general it can not be as-
sumed that a very large data set is “stable” by the usual
measures, like homogeneity, stationarity, and ergodicity,
that standard analysis techniques require. Both reasons
dictate the necessity to use “local” data analysis meth-
ods whereby the data is segmented and ordered, where
order leads to a sense of “neighbor,” and then analyzed
segment, by segment. The idea of local data analysis is
central to the study reported here.

We show that optimal local regression models can be
operationally equivalent to nonlinear dynamical model
analysis.

The methods described in this article are universal
and may be used with virtually no a priori information
about the process represented by the data. Clearly, any
independent information about the process that serves
to distinguish between the usual and the unusual of in-
terest, such as time scales for example, can, and should
be used in a particular application.

The segmented and ordered data structure construct
taken together with the local analysis philosophy lends
itself directly to parallel computational implementation.
Also, the techniques described in this study are ex-
tendible to multivariate form.

References

[1] H.D.I. Abarbanel, R. Brown, J.J. SiDorowich, and
L.S. Tsimring. The analysis of observed chaotic data
in physical systems. Rev. Mod. Phys., 65:1331-1392,
1993.

[2] Jeffrey D. Banfield and Adrian E. Raftery. Model-
based gaussian and non-gaussian clustering. Bio-
metrics, 49:803-821, 1993.

[3] J. Beran. Statistics for Long-Memory Processes.
Chapman and Hall, New York, New York, 1994.

[4] D. J. Downing, V. Fedorov, W. F. Lawkins, M. D.
Morris, and G. Ostrouchov. Large datasets: Seg-
mentation, feature extraction, and compression.
Technical Report ORNL/TM-13114, Oak Ridge Na-
tional Laboratory, 1996.

[5] D. J. Downing, V. V. Fedorov, W. F. Lawkins,
M. D. Morris, and G. Ostrouchov. Analysing per-
turbations and nonstationarity in time series using
techniques based on the theory of chaotic nonlinear
dynamical systems. Technical Report ORNL/TM-
13115, Oak Ridge National Laboratory, Oak Ridge,
TN 37831, 1995.

[6] D. O. E. Atmospheric radiation measurement pro-
gram plan. Technical Report DOE/ER-0441, U. S.
Department of Energy, Office of Health and En-
vironmental Research, Atmospheric and Climate
Research Division, National Technical Information
Service, 5285 Port Royal Road, Springfield, Virginia
22161, 1990.

[7] L. M. Hively, N. E. Clapp, C. S. Daw, W. F.
Lawkins, and M. L. Eisenstadt. Nonlinear analy-
sis of eeg for epileptic seizures. Technical Report
ORNL/TM-12961, Oak Ridge National Laboratory,
Oak Ridge, TN 37831, 1995.

[8] A. N. Kolmogorov and V. A. Uspenskii. Algorithms
and randomness. Theory Probab. Appl., 32:389-412,
1988.

[9] Statistical Sciences. S-PLUS Guide to statistical
and mathematical analysis, Version 3.2. StatSci,
a division of MathSoft Inc., Seattle, 1993.

[10] David W. Scott. Multivariate Density Estimation:
theory, practice, and visualization. John Wiley &
Sons, Inc., New York, 1992.

[11] A. Shen. Algorithmic complexity and randomness:
Recent developments. Theory Probab. Appl., 37:92—
97, 1995.



