

A Multi-Agent System for Distributed Cluster Analysis

Joel W. Reed, Thomas E. Potok, and Robert M. Patton
Oak Ridge National Laboratory

P. O. Box 2008, MS 6359
Oak Ridge, Tennessee 37831

{reedjw, potokte, pattonrm}@ornl.gov

Abstract

One of the approaches used to improve the accuracy
and relevancy in information retrieval is cluster analysis.
Clustering methods determine relationships among text
documents, and allow the determination of similar groups
or clusters of documents. These methods are
computationally expensive, thereby limiting their use to a
relatively small set of documents. This paper describes a
multi-agent system to cluster large data sets. This
technique is then compared to hierarchical agglomerative
clustering using a small set of text data. Results show
that the agent-based approach can significantly reduce
the time required to cluster large data sets.

1. Introduction

There is a wealth of textual information readily
available over the Internet. There are many search
engines and portals available to retrieve this information.
Unfortunately, the retrieval accuracy and relevancy is
often quite low [2]. One of the approaches used to
improve this accuracy and relevancy in information
retrieval is to use advanced textual analysis methods, such
as cluster analysis. These clustering methods determine
relationships among text documents, and allow the
determination of similar groups or clusters of documents.
However, clustering methods are computationally
expensive, typically between O(n2) and O(n3), where n is
the number of documents to be clustered [10].
Practically, this limits its use of these methods to a
relatively small set of documents.

To address this problem, this paper describes a new
distributed clustering technique based on agent
technology. This new clustering technique is then
compared to hierarchical agglomerative clustering
(HAC). Preliminary results show that this new approach
can handle larger document sets much more quickly and
efficiently than the agglomerative hierarchical approach.

2. Background

The basic technique of hierarchical agglomerative
clustering involves several steps. First, the set of
documents is processed by removing all of the stop
words, or commonly occurring words that have little
meaning within a document. The next step is to stem the
remaining words, or to reduce them to their root form.
The words within the document set are then used to create
a vector that represents the document. A set of these
document vectors can be used to create a vector space
model (VSM) that represents the relationships between
the documents [7]. In a VSM, each unique word within a
document collection is represented as a dimension in
space and each document is represented by a vector in
that multidimensional space. The numeric representation
of a word within a document (which is a single element of
the document’s vector and a single dimension in the
VSM) is typically based on the frequency of the word
within a specific document (local term frequency), and
the frequency within the document set (global term
frequency). A word with a high frequency within a
specific document and low frequency within a set of
documents, often called Term Frequency Inverse
Document Frequency (TFIDF) [8], produces a high value.
Words with high values have been shown to be very
useful in accurately classifying and retrieving documents.
Since a word frequency over a set of documents is
required, all documents within a set must be analyzed
before a VSM can be constructed. This part of the
clustering process has a time complexity of O(n2).

The VSM can be used to define a similarity value
between a pair of documents. Typically, this value is
obtained by using Euclidian distance between the vector
endpoints or using the dot product to calculate the cosine
of the angle between the pair of document vectors. All of
the possible pairs of document in the collection can be
compared and their similarity values collected to create a
similarity matrix. This similarity matrix is needed to
compute the document clusters. The agglomerative

clustering process begins by placing each document
within its own cluster. Next, the pair of clusters that
contain the most similar documents (as defined by the
similarity matrix) are merged into a single cluster. At this
point, the similarity matrix values must be updated to
reflect the merge. This process iterates until all of the
documents are in a single cluster. This part of the
clustering process has a time complexity of O(n3).

There are several issues with this approach to
clustering. First, the TFIDF calculation cannot be easily
distributed across multiple computer systems because of
its dependence on a global term frequency. Second, using
TFIDF and HAC on a large, dynamic data set does not
work very well. As new documents are added to the data
set, global term frequencies would need to be updated,
which would ultimately require the need to re-cluster the
data set. Finally, the combined computational complexity
of TFIDF and HAC makes this approach infeasible for
large data sets.

3. Multi-agent distributed clustering

To address these issues, a multi-agent system for

distributed clustering of text documents was developed.
This approach does not depend on a global term
frequency count, and is essentially a hybrid HAC and K-
means clustering approach.

To implement this multi-agent clustering system,
several types of agents are used. At the lowest level,
there are sub-cluster agents. Each sub-cluster agent
represents a set of documents that are very similar.
Above these, there are cluster agents. Each cluster agent
represents a set of sub-cluster agents whose document
sets have some similarities, but are not as similar as
documents in a sub-cluster agent’s document set. Above
the cluster agent is the master cluster agent. These master
cluster agents manage a set of cluster agents. There is not
any implied relationship between the set of cluster agents
(and their associated documents) managed by a master
cluster agent. The master cluster agents are used to move
cluster agents between other master cluster agents on
different computer systems and therefore achieve better
load balancing. Each computer in the distributed
clustering system has only one master cluster agent.
Finally, there are document multiplexer agents in the
system. The document multiplexer agents accept new
documents (and their representative vectors) and help to
insert them into the clustering system. All of these types
of agents work together to organize a set of documents as
shown in Figure 1.

Incorporating a new document into the distributed
clustering system requires several steps. First, a
document vector representing the document must be
created. The document vector is then used to evaluate
how the document compares to the documents that

already exist in the clustering system. Finally, either the
document is given to a software agent representing a set
of document very similar to it, or if the document is
unlike any currently in the system, a new software agent
is created to represent it.

Figure 1. Multi-agent architecture

A new document is first processed into a document
vector, which will represent the document’s content. This
vector can then be used to compare it with other
documents or sets of documents. To create a document
vector, all of the words in the document are filtered by a
set of rules. Word below a minimum length (typically 3
or 4 characters) and common words like “and” and “the”
are ignored. Once this is complete, the remaining words
are processed into a set of tokens. This process can be as
simple as creating a token for each word in the document
or it can use some very complex algorithms to group
several word together into a single token. We use a
reasonable simple algorithm that creates a token for each
word in the document and creates a token for each pair of
adjacent words that are not separated by a word below the
minimum allowable length or a stop word. Each word or
phrase in the token list is replaced with a canonical
synonym if it exists. For example, all occurrences of "bin
laden", "usama bin laden", "usama", and "osama" are
replaced with the token "osama bin laden". Next, each
token is stemmed [3][4]. A vector is created by taking
each value in the token list and associating it with its
frequency in the original document. The final document
vector is obtained by normalizing this vector. Once this
vector is calculated, the new document can begin the
evaluation process.

The document evaluation process calculates where a
new document will best fit into the clusters of documents
already in the system. This process begins when the
document multiplexer agent receives a new document and
its representative document vector. As soon as this

Computer System A

Master
Cluster
Agent

Cluster
Agent

Cluster Agent

Sub-Cluster
Agent

Document
Multiplexer

Agent

Computer System B

Sub-Cluster
Agent

Sub-Cluster
Agent

Sub-Cluster
Agent

Sub-Cluster
Agent

Sub-Cluster
Agent

Master
Cluster
Agent

Cluster Agent Cluster
Agent

Sub-Cluster
Agent

Computer System C

Sub-Cluster
Agent

Sub-Cluster
Agent

Sub-Cluster
Agent

Sub-Cluster
Agent

Sub-Cluster
Agent

Document

happens, the document vector is sent to all of the master
cluster agents for evaluation. The master cluster agent
then passes the vector to each of the cluster agent that it
oversees. As mentioned above, each of these cluster
agents is responsible for a set of sub-cluster agents, which
are responsible for a set of documents. The sub-cluster
agent maintains a single composite vector that represents
all of the documents it oversees. Likewise, each cluster
agent maintains a single composite vector that represents
all of the sub-cluster agents under it. These composite
vectors are calculated by summing the vectors to be
represented and the normalizing the result. Each of the
cluster agents then evaluates the new document, by
comparing the document’s vector to its own composite
vector using cosine measure, Euclidean distance, or one
of the other common methods. The comparison result is
sent back to the master cluster agent. The master cluster
agents collect all of the comparisons and send the closest
one back to the multiplexer agent. Similarly, the
multiplexer agent will collect all of the values from the
master clusters agents and find the best match value. This
value will indicate either that a cluster of documents
similar to the new document already exists in the system
or that no similar documents are in the system. If a
cluster of similar documents exists, the new document
needs to be incorporated into that cluster; otherwise, a
new cluster needs to be created.

Once the document evaluation process is complete, if
the document multiplexer agent has decided that a similar
set of document exists in the system, the new document
needs to be incorporated into that document set. The
multiplexer agent will send the document and its vector to
the master cluster agent that it determined represented a
similar cluster set. The master cluster agent will then
forward the document and vector to the cluster agent,
which responded with the closest similarity value.
During the evaluation process, the document vector was
compared to the cluster agent’s composite vector rather
than to each sub-cluster’s composite vector, so to find out
which sub-cluster agent contains the most similar
documents, this must occur now. Each sub-cluster agent
compares the document vector to its composite vector and
sends the similarity value up to the cluster agent above it.
The cluster agent examines all of the similarity values and
determines whether the document is close enough to a
sub-clusters document set to be added to it or whether a
new sub-cluster agent needs to be created for the
document.

If the new document evaluation process determined
that there were no other documents similar to the new
document, then a new cluster agent must be created for it.
First, the multiplexer agent will query master cluster
agents to see what their current load is like. The
multiplexer agent will determine which master cluster
agent has the least load and it will send the document and

vector there. The master cluster agent will create a new
cluster agent, which will create a new sub-cluster agent
for the new document.

Because of the process used to add documents to the
system, the set of documents represented by a sub-cluster
agent are very similar and likewise, the set of sub-cluster
agents represented by a cluster agent contain documents
less similar, but still related to one another. These
relationships can be used to generate any type of desired
clustering visualization. At the cluster agent level and at
the sub-cluster agent level, the composite vectors can be
compared to one another to determine relationships
between sets of documents.

4. Comparison

As a data source for comparing HAC and the multi-
agent approach described here, the Text Retrieval
Conference (TREC) 1996 corpus was used. This corpus
contains 130,000 documents of worldwide news events
[9]. To compare the two clustering methods, several sets
of randomly selected documents were chosen from the
TREC corpus.

Six sets of documents were created that varied in size.
For the purposes of this paper, the primary focus of the
comparison is on the time required and the memory usage
needed for clustering. Both approaches were performed
on a single machine and were implemented using Java.
For larger or distributed data sets, the multi-agent
approach could be used on multiple machines.

Table 1 and Figure 2 show the time results of both
approaches. Notice that for smaller data sets, the multi-
agent approach performed poorly, requiring nearly twice
the amount of time. This is due to the communication
overhead of the agent architecture. However, this
communication overhead becomes insignificant once the
document set reaches 500 in size. The speed-up then
becomes increasingly significant as the number of
documents increases. In fact, the multi-agent system
could handle 2000 documents in less time than the
TFIDF/HAC approach could handle 1000 documents.

Table 1. Time Comparison

Number of
Documents

Multi-agent
Time (seconds)

TFIDF/HAC
Time (seconds)

50 2.9 1.8
100 6.3 3.3
250 24.1 15.6
500 71.1 119.8

1000 195.3 868.1
2000 576.0 N/A

Time vs Number of Documents

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800 900 1000

Number of Documents

T
im

e
(s

ec
on

ds
)

Multi-agent
clustering
HAC

Figure 2. Comparison of time between the multi-

agent and HAC approaches

Table 2 and Figure 3 show the memory usage

comparison between the two approaches. Notice that the
usage is not significantly different. Notice also that as the
data set doubled in size, nearly doubled as well. While
the agent architecture does not store or use global term
frequency counts, the memory usage for the multi-agent
system remains approximately the same due to the
memory requirements of the agent infrastructure and
communication.

Table 2. Multi-agent clustering memory usage

Number of
Documents

Multi-agent
Memory Usage

(MB)

TFIDF/HAC
Memory Usage

(MB)
50 9.4 13.5

100 12.9 17.6
250 22.5 29.3
500 49.8 52.2

1000 101.2 109.1
2000 212.6 N/A

Memory Usage vs Number of Documents

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900 1000

Number of Documents

M
em

or
y

U
sa

ge
 (M

B
)

Multi-agent
clustering
HAC

Figure 3. Comparison of memory usage between the

multi-agent and HAC approaches

There are a number of complex issues in comparing
clustering results. In a preliminary experiment, we had
several human subjects manually cluster a set of
documents so that the results could then be compared to
both the HAC and multi-agent clustering methods. The
multi-agent approach yielded results closer to the
manually generated clusters than the HAC method.
Clearly more analysis is required; however, using our test
dataset, we can not reject the hypothesis that the multi-
agent clustering method achieves results very similar to
manually derived sets.

5. Conclusion

The distributed agent-based clustering worked
surprisingly fast for large document sets. In addition, it
allows for distributed processing of documents, and a
hybrid k-mean and hierarchical clustering result. With
this approach, it will be possible to cluster massive
amounts of textual information in relatively short
amounts of time, due to the scalability of the agent
architecture. We plan to explore further the scalability of
the agent architecture presented in this paper.

6. References

[1] Mark T. Elmore Thomas E. Potok and Frederick T.
Sheldon “Dynamic Data Fusion Using An Ontology-Based
Software Agent System”, Proceedings of the IIIS Agent Based
Computing, Orlando, 7/2003.

[2] D. Hawking, N. Craswell, P. Thistlewaite, D. Harmon,
“Results and Challenges in Web Search Evaluation”, Computer
Networks, Vol. 31, No. 11-16, pages 1321-1330, 1999.

[3] J. B. Lovins, “Development of a Stemming Algorithm”,
Mechanical Translation and Computational Linguistics, Vol. 11,
pages 22-31, 1968.

[4] M. F. Porter, “An Algorithm for Suffix Stripping”,
Program, Vol. 14, No. 3, pages 130-137, 1980.

[5] Thomas E. Potok, Mark Elmore, Joel Reed and Frederick
T. Sheldon, “VIPAR: Advanced Information Agents discovering
knowledge in an open and changing environment” Proc. 7th
World Multiconference on Systemics, Cybernetics and
Informatics, 7/2003.

[6] Joel W. Reed and Thomas E. Potok, “A Multi-Agent
System for Analyzing Massive Scientific Data” Proceedings of
the International Conference on Software Engineering, 2003.

[7] G. Salton, M. Lesk, “Computer Evaluation of Indexing and
Text Processing”, Journal of the ACM, Vol. 15, No. 1, pages 8-
36, 1968.

[8] G. Salton, C. Buckley, “Term Weighting Approaches in
Automatic Text Retrieval”, Information Processing and
Management, Vol. 24, No. 5, pages 513-523, 1988.

[9] E. Voorhees, and D. Harman, “Overview of the Fifth Text
REtrieval Conference (TREC-5),” Proceedings of the Fifth Text
Retrieval Conference.

[10] Y. Zhao, and G. Karypis, “Evaluation of Hierarchical
Clustering Algorithms for Document Datasets”, University of
Minnesota, Technical Report #02-022, 2002.

