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Abstract 
 

One of the approaches used to improve the accuracy 
and relevancy in information retrieval is cluster analysis.  
Clustering methods determine relationships among text 
documents, and allow the determination of similar groups 
or clusters of documents.  These methods are 
computationally expensive, thereby limiting their use to a 
relatively small set of documents.  This paper describes a 
multi-agent system to cluster large data sets.  This 
technique is then compared to hierarchical agglomerative 
clustering using a small set of text data.  Results show 
that the agent-based approach can significantly reduce 
the time required to cluster large data sets. 
 
 
1. Introduction 
 

There is a wealth of textual information readily 
available over the Internet.  There are many search 
engines and portals available to retrieve this information.  
Unfortunately, the retrieval accuracy and relevancy is 
often quite low [2].  One of the approaches used to 
improve this accuracy and relevancy in information 
retrieval is to use advanced textual analysis methods, such 
as cluster analysis.  These clustering methods determine 
relationships among text documents, and allow the 
determination of similar groups or clusters of documents.  
However, clustering methods are computationally 
expensive, typically between O(n2) and O(n3), where n is 
the number of documents to be clustered [10].  
Practically, this limits its use of these methods to a 
relatively small set of documents. 

To address this problem, this paper describes a new 
distributed clustering technique based on agent 
technology.  This new clustering technique is then 
compared to hierarchical agglomerative clustering 
(HAC).  Preliminary results show that this new approach 
can handle larger document sets much more quickly and 
efficiently than the agglomerative hierarchical approach. 

 
2. Background 
 

The basic technique of hierarchical agglomerative 
clustering involves several steps.  First, the set of 
documents is processed by removing all of the stop 
words, or commonly occurring words that have little 
meaning within a document.  The next step is to stem the 
remaining words, or to reduce them to their root form.  
The words within the document set are then used to create 
a vector that represents the document.  A set of these 
document vectors can be used to create a vector space 
model (VSM) that represents the relationships between 
the documents [7].  In a VSM, each unique word within a 
document collection is represented as a dimension in 
space and each document is represented by a vector in 
that multidimensional space.  The numeric representation 
of a word within a document (which is a single element of 
the document’s vector and a single dimension in the 
VSM) is typically based on the frequency of the word 
within a specific document (local term frequency), and 
the frequency within the document set (global term 
frequency).  A word with a high frequency within a 
specific document and low frequency within a set of 
documents, often called Term Frequency Inverse 
Document Frequency (TFIDF) [8], produces a high value.  
Words with high values have been shown to be very 
useful in accurately classifying and retrieving documents.  
Since a word frequency over a set of documents is 
required, all documents within a set must be analyzed 
before a VSM can be constructed.  This part of the 
clustering process has a time complexity of O(n2). 

The VSM can be used to define a similarity value 
between a pair of documents.  Typically, this value is 
obtained by using Euclidian distance between the vector 
endpoints or using the dot product to calculate the cosine 
of the angle between the pair of document vectors.  All of 
the possible pairs of document in the collection can be 
compared and their similarity values collected to create a 
similarity matrix.  This similarity matrix is needed to 
compute the document clusters.  The agglomerative 



clustering process begins by placing each document 
within its own cluster.  Next, the pair of clusters that 
contain the most similar documents (as defined by the 
similarity matrix) are merged into a single cluster.  At this 
point, the similarity matrix values must be updated to 
reflect the merge.  This process iterates until all of the 
documents are in a single cluster.  This part of the 
clustering process has a time complexity of O(n3). 

There are several issues with this approach to 
clustering.  First, the TFIDF calculation cannot be easily 
distributed across multiple computer systems because of 
its dependence on a global term frequency.  Second, using 
TFIDF and HAC on a large, dynamic data set does not 
work very well.  As new documents are added to the data 
set, global term frequencies would need to be updated, 
which would ultimately require the need to re-cluster the 
data set.  Finally, the combined computational complexity 
of TFIDF and HAC makes this approach infeasible for 
large data sets. 

 
3. Multi-agent distributed clustering 

 
To address these issues, a multi-agent system for 

distributed clustering of text documents was developed.  
This approach does not depend on a global term 
frequency count, and is essentially a hybrid HAC and K-
means clustering approach. 

To implement this multi-agent clustering system, 
several types of agents are used.  At the lowest level, 
there are sub-cluster agents.  Each sub-cluster agent 
represents a set of documents that are very similar.  
Above these, there are cluster agents.  Each cluster agent 
represents a set of sub-cluster agents whose document 
sets have some similarities, but are not as similar as 
documents in a sub-cluster agent’s document set.  Above 
the cluster agent is the master cluster agent.  These master 
cluster agents manage a set of cluster agents.  There is not 
any implied relationship between the set of cluster agents 
(and their associated documents) managed by a master 
cluster agent.  The master cluster agents are used to move 
cluster agents between other master cluster agents on 
different computer systems and therefore achieve better 
load balancing.  Each computer in the distributed 
clustering system has only one master cluster agent.  
Finally, there are document multiplexer agents in the 
system.  The document multiplexer agents accept new 
documents (and their representative vectors) and help to 
insert them into the clustering system.  All of these types 
of agents work together to organize a set of documents as 
shown in Figure 1. 

Incorporating a new document into the distributed 
clustering system requires several steps.  First, a 
document vector representing the document must be 
created.  The document vector is then used to evaluate 
how the document compares to the documents that 

already exist in the clustering system.  Finally, either the 
document is given to a software agent representing a set 
of document very similar to it, or if the document is 
unlike any currently in the system, a new software agent 
is created to represent it. 

 

 
Figure 1.  Multi-agent architecture 

A new document is first processed into a document 
vector, which will represent the document’s content.  This 
vector can then be used to compare it with other 
documents or sets of documents.  To create a document 
vector, all of the words in the document are filtered by a 
set of rules.  Word below a minimum length (typically 3 
or 4 characters) and common words like “and” and “the” 
are ignored.  Once this is complete, the remaining words 
are processed into a set of tokens.  This process can be as 
simple as creating a token for each word in the document 
or it can use some very complex algorithms to group 
several word together into a single token.  We use a 
reasonable simple algorithm that creates a token for each 
word in the document and creates a token for each pair of 
adjacent words that are not separated by a word below the 
minimum allowable length or a stop word.  Each word or 
phrase in the token list is replaced with a canonical 
synonym if it exists.  For example, all occurrences of "bin 
laden", "usama bin laden", "usama", and "osama" are 
replaced with the token "osama bin laden".  Next, each 
token is stemmed [3][4].  A vector is created by taking 
each value in the token list and associating it with its 
frequency in the original document.  The final document 
vector is obtained by normalizing this vector.  Once this 
vector is calculated, the new document can begin the 
evaluation process. 

The document evaluation process calculates where a 
new document will best fit into the clusters of documents 
already in the system.  This process begins when the 
document multiplexer agent receives a new document and 
its representative document vector.  As soon as this 
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happens, the document vector is sent to all of the master 
cluster agents for evaluation.  The master cluster agent 
then passes the vector to each of the cluster agent that it 
oversees.  As mentioned above, each of these cluster 
agents is responsible for a set of sub-cluster agents, which 
are responsible for a set of documents.  The sub-cluster 
agent maintains a single composite vector that represents 
all of the documents it oversees.  Likewise, each cluster 
agent maintains a single composite vector that represents 
all of the sub-cluster agents under it.  These composite 
vectors are calculated by summing the vectors to be 
represented and the normalizing the result.  Each of the 
cluster agents then evaluates the new document, by 
comparing the document’s vector to its own composite 
vector using cosine measure, Euclidean distance, or one 
of the other common methods.  The comparison result is 
sent back to the master cluster agent.  The master cluster 
agents collect all of the comparisons and send the closest 
one back to the multiplexer agent.  Similarly, the 
multiplexer agent will collect all of the values from the 
master clusters agents and find the best match value.  This 
value will indicate either that a cluster of documents 
similar to the new document already exists in the system 
or that no similar documents are in the system.  If a 
cluster of similar documents exists, the new document 
needs to be incorporated into that cluster; otherwise, a 
new cluster needs to be created. 

Once the document evaluation process is complete, if 
the document multiplexer agent has decided that a similar 
set of document exists in the system, the new document 
needs to be incorporated into that document set.  The 
multiplexer agent will send the document and its vector to 
the master cluster agent that it determined represented a 
similar cluster set.  The master cluster agent will then 
forward the document and vector to the cluster agent, 
which responded with the closest similarity value.  
During the evaluation process, the document vector was 
compared to the cluster agent’s composite vector rather 
than to each sub-cluster’s composite vector, so to find out 
which sub-cluster agent contains the most similar 
documents, this must occur now.  Each sub-cluster agent 
compares the document vector to its composite vector and 
sends the similarity value up to the cluster agent above it.  
The cluster agent examines all of the similarity values and 
determines whether the document is close enough to a 
sub-clusters document set to be added to it or whether a 
new sub-cluster agent needs to be created for the 
document. 

If the new document evaluation process determined 
that there were no other documents similar to the new 
document, then a new cluster agent must be created for it.  
First, the multiplexer agent will query master cluster 
agents to see what their current load is like.  The 
multiplexer agent will determine which master cluster 
agent has the least load and it will send the document and 

vector there.  The master cluster agent will create a new 
cluster agent, which will create a new sub-cluster agent 
for the new document. 

Because of the process used to add documents to the 
system, the set of documents represented by a sub-cluster 
agent are very similar and likewise, the set of sub-cluster 
agents represented by a cluster agent contain documents 
less similar, but still related to one another.  These 
relationships can be used to generate any type of desired 
clustering visualization.  At the cluster agent level and at 
the sub-cluster agent level, the composite vectors can be 
compared to one another to determine relationships 
between sets of documents. 
 
4. Comparison 
 

As a data source for comparing HAC and the multi-
agent approach described here, the Text Retrieval 
Conference (TREC) 1996 corpus was used.  This corpus 
contains 130,000 documents of worldwide news events 
[9].  To compare the two clustering methods, several sets 
of randomly selected documents were chosen from the 
TREC corpus. 

Six sets of documents were created that varied in size.  
For the purposes of this paper, the primary focus of the 
comparison is on the time required and the memory usage 
needed for clustering.  Both approaches were performed 
on a single machine and were implemented using Java.  
For larger or distributed data sets, the multi-agent 
approach could be used on multiple machines. 

Table 1 and Figure 2 show the time results of both 
approaches.  Notice that for smaller data sets, the multi-
agent approach performed poorly, requiring nearly twice 
the amount of time.  This is due to the communication 
overhead of the agent architecture.  However, this 
communication overhead becomes insignificant once the 
document set reaches 500 in size.  The speed-up then 
becomes increasingly significant as the number of 
documents increases.  In fact, the multi-agent system 
could handle 2000 documents in less time than the 
TFIDF/HAC approach could handle 1000 documents. 

 

Table 1.  Time Comparison 

Number of 
Documents 

Multi-agent  
Time (seconds) 

TFIDF/HAC 
Time (seconds) 

50 2.9 1.8 
100 6.3 3.3 
250 24.1 15.6 
500 71.1 119.8 

1000 195.3 868.1 
2000 576.0 N/A 
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Figure 2.  Comparison of time between the multi-

agent and HAC approaches 

 
Table 2 and Figure 3 show the memory usage 

comparison between the two approaches.  Notice that the 
usage is not significantly different.  Notice also that as the 
data set doubled in size, nearly doubled as well.  While 
the agent architecture does not store or use global term 
frequency counts, the memory usage for the multi-agent 
system remains approximately the same due to the 
memory requirements of the agent infrastructure and 
communication. 

 

Table 2.  Multi-agent clustering memory usage 

Number of 
Documents 

Multi-agent 
Memory Usage 

(MB) 

TFIDF/HAC 
Memory Usage 

(MB) 
50 9.4 13.5 

100 12.9 17.6 
250 22.5 29.3 
500 49.8 52.2 

1000 101.2 109.1 
2000 212.6 N/A 
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Figure 3.  Comparison of memory usage between the 

multi-agent and HAC approaches 

 
There are a number of complex issues in comparing 
clustering results.  In a preliminary experiment, we had 
several human subjects manually cluster a set of 
documents so that the results could then be compared to 
both the HAC and multi-agent clustering methods.  The 
multi-agent approach yielded results closer to the 
manually generated clusters than the HAC method.  
Clearly more analysis is required; however, using our test 
dataset, we can not reject the hypothesis that the multi-
agent clustering method achieves results very similar to 
manually derived sets. 
 
5. Conclusion 
 

The distributed agent-based clustering worked 
surprisingly fast for large document sets.  In addition, it 
allows for distributed processing of documents, and a 
hybrid k-mean and hierarchical clustering result.  With 
this approach, it will be possible to cluster massive 
amounts of textual information in relatively short 
amounts of time, due to the scalability of the agent 
architecture.  We plan to explore further the scalability of 
the agent architecture presented in this paper. 
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