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Abstract

An algorithm for computing the anisotropic elastic Green's function and its

derivatives is presented. The method is based upon the calculus of residues,

the main requirement being the computation of the roots of a sixth degree

polynomial. It is demonstrated herein that this procedure is faster and more

accurate than the standard Wilson-Cruse interpolation scheme, and moreover

the need for extensive precalculated tables is eliminated.

1 Introduction

Boundary integral equation analysis depends upon the ability to evaluate a Green's func-
tion G(P;Q) (fundamental solution) and its derivatives. These functions take on a
relatively simple analytical form for isotropic elasticity [2, 4], but the situation is far more
complicated for a general anisotropic material. The anisotropic three-dimensional Green's
function can be expressed as a line integral [1, 12]

U(x;y) =
1

8�2 r

I
S1
K�1(�) ds(�) �

1

8�2 r
~U ; (1)
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where the Christo�el matrix K(�), � 2 R3, is de�ned in terms of the elastic constants
Ciljm of the material,

Kij =
X
l;m

Ciljm�l�m ; (2)

and r = kx�yk. The integration path is the unit circle in the plane having normal x�y,

S1 = S1(x;y) =
n
� 2 R3 j k�k = 1; � � (x� y) = 0

o
: (3)

A boundary integral calculation requires numerous Green's function evaluations, and thus
direct numerical quadrature to obtain ~U (and its derivatives) is simply too time consuming
to be practical [17, 20].

The best available algorithm has been the method proposed by Wilson and Cruse in
1978 [20] (the recent monograph by Schclar [15] provides a good overview of anisotropic
boundary element methods). In their approach, computation time is brought back to a
reasonable level (roughly twice that of an isotropic analysis) by employing cubic interpola-
tion from tabulated precalculated values. While successful, the storage required for these
tables can be signi�cant. There are two independent variables, the spherical angles (�;  )
de�ning the orientation of R = Q�P, and the Green's tensor has six independent com-
ponents. Calculating �rst derivatives of G therefore involves twelve more two-dimensional
tables, while second derivatives add another eighteen. Second derivatives arise when the
`derivative' (hypersingular) boundary integral equation is employed in the analysis. These
equations are essential for fracture mechanics [4, 9] and many other applications [10, 13].

As noted in [15], another possible di�culty with the Wilson/Cruse approach is accuracy.
The variation in the function values for a highly anisotropic material is likely to be sig-
ni�cantly larger than for a mildly anisotropic solid, and thus the number of precalculated
points (�;  ) needed to maintain accuracy is a function of the anisotropy of the mate-
rial. Identifying appropriate values for the parameters�� and � de�ning the tables may
require e�ort. A judicious choice of grid points will likewise be needed with a recently pro-
posed variation of the Wilson/Cruse algorithm [5]. This method interpolates the Green's
function from pre-constructed bivariate cubic spline approximations.

Two alternatives to the Wilson-Cruse algorithm, both based upon the relative `simplicity'
of the isotropic case, have recently been proposed. The approach in [8] is based upon
a perturbation series in which the zeroth order term is an appropriately chosen isotropic
Green's function. Although this series yields fast algorithm, without stored tables, it is only
practical for materials in which the anisotropy is `not too strong'. The second technique
[15] is speci�c to the boundary integral method, in that the Green's function is not directly
evaluated. The fundamental solution is split into isotropic and anisotropic parts, and the
anisotropic remainder is handled via the Dual Reciprocity Method [14]. The choice of
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the appropriate number and location of internal points required by the Dual Reciprocity
approximation is problem dependent and not an easy task, and an adaptive strategy has
been proposed [15]. Thus, although no computation times are given, this method is not
likely to be competitive with Wilson/Cruse. Moreover, this approach has not yet been
employed in conjunction with the derivative boundary integral equation.

This paper presents an algorithm based upon a simple expression for ~U obtained by
Dederichs and Leibfried [6] using residue calculus. It has generally been assumed that
the calculation of the Green's function from this formula is not a viable algorithm [6].
However, it is shown that this is not the case, and that the extension to evaluating the
�rst and second derivatives of ~U is equally successful. This approach appears to run faster
than the Wilson/Cruse interpolation algorithm, and it eliminates the need for large stored
tables. Moreover, this direct evaluation method is essentially exact and is not sensitive to
the anisotropy of the material.

Recently, the residue approach has also been exploited by Wang [18, 19] to obtain forms
for the Green's function and derivatives. However, these papers have been primarily
theoretical, and have not focused on the computations.

2 Residue Evaluation

The contour integral in Eq. (1) can be written as

~U(�;  ) =
Z 2�

0
K�1(�(t)) dt; (4)

where � is written parametrically as

�(t) =

2
64 �1(t)
�2(t)
�3(t)

3
75 =

2
64 sin(�) cos(t) + cos(�) cos( ) sin(t)
� cos(�) cos(t) + sin(�) cos( ) sin(t)

� sin( ) sin(t)

3
75 : (5)

The integral in Eq. (4) can be evaluated using residue calculus by transforming the
integrand into a rational function and expanding the range of the integral to include all
real numbers. As Dederichs and Leibfried demonstrated [6], one way to achieve this
transformation is with the substitution

Z = tan(t) : (6)

From Eq. (5) and Eq. (6), � can be written as

� = cos(t)s(Z) ; (7)
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where

s(Z) =

2
64 sin(�) + Z cos(�) cos( )
� cos(�) + Z sin(�) cos( )

�Z sin( )

3
75 : (8)

Since the elements of � are linear functions of Z, and K is a quadratic function of � (Eq.
(2)), the elements of K are second order polynomials in Z. Thus, by Cramer's rule, the
elements of K�1 are rational functions of Z,

K�1jk =
1

cos2(t)

Pjk(Z)

Q(Z)
; (9)

where the cofactor Pjk(Z) and the determinant Q(Z) are polynomials of Z,

Pjk(Z) =
4X
l=0

ajklZ
l; (10)

Q(Z) =
6X
l=0

blZ
l : (11)

From Eq. (9) and Eq. (6), and the observation that 1= cos2(t) = dZ=dt, the integral in
Eq. (4) can be written in the form

~Ujk = 2
Z
1

�1

Pjk(Z)

Q(Z)
dZ (12)

= 4�i
3X

n=1

ResidueZ=�n
Pjk(Z)

Q(Z)
(13)

= 4�i
3X

n=1

Pjk(Z) (Z � �n)

Q(Z)
jZ=�n (14)

= 4�i
3X

n=1

Pjk(�n)

Qn(�n)
(15)

where �1; �2; and �3 represent the three roots of Q(Z) in the upper half of the complex
plane (=(Z) > 0). The factor of 2 in Eq. (12) appears because the change of variables
Z = tan(t) covers the range (�1;1) twice in the interval [0; 2�]. Note that Qn(Z) is
equal to Q(Z) with a factor of (Z��n) cancelled out, and thus Eq. (13) clearly assumes
that the three pairs of roots are distinct. The question of multiple roots will be taken up
in Section 4.2.

The derivatives of U(x;y) with respect to the coordinates of x or y can be expressed in
terms of derivatives of ~U with respect to � and  , and a similar method can be applied
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for their evaluation. Let � represent either angle, and denote partial di�erentiation by
a subscript following a comma. Di�erentiating through the integral sign in Eq. (4) and
once again employing residues yields

~Ujk;� = 2
Z
1

�1

K�1jk;�(Z) dZ (16)

= 2
Z
1

�1

Pjk;�(Z)Q(Z)� Pjk(Z)Q;�(Z)

[Q(Z)]2
dZ (17)

= 4�i
3X

n=1

d

dZ

(
fPjk;�(Z)Q(Z)� Pjk(Z)Q;�(Z)g

[Qn(Z)]2

) �����
Z=�n

: (18)

Note that the required roots �n are the same as in Eq. (15), and that ~U and ~U� are
fairly simple functions of these roots. Thus, fast calculation of both ~U and ~U� can be
accomplished once the roots are determined.

After some manipulation, Eq. (18) can be written as

~Ujk;� = 4�i
3X

n=1

fM1n Pjk(�n) +M2n Pjk;Z(�n) +M3n Pjk;�(�n)g ; (19)

where

M1n =
Qn;Z(�n)Q;�(�n)� 2Qn(�n)Q;Z�(�n)

[Qn(�n)]3
; (20)

M2n =
�Q;�(�n)

[Qn(�n)]2
; (21)

M3n =
Q;Z(�n)

[Qn(�n)]2
: (22)

This form has several computational advantages. Note that Q(Z) is the same for each
tensor element, and thus all expressions involving Q, Qn, and derivatives are likewise
independent of fjkg. Thus, Min can be computed once for the entire tensor, and can
be treated as constants. Second, the expression for ~Ujk;� is now a simple function of
Pjk; Pjk;�; and Pjk;Z , which are all polynomials of Z. The advantages of this are covered
in Section 3.

As discussed in the introduction, the second derivatives of ~U with respect to � or  are
also needed for boundary integral analyses. The second derivatives can be obtained by
di�erentiating twice through the integral sign in Eq. (4), and then reducing the expression
to a form similar to Eq. (19). However, the manipulations become rather tedious, so it is
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easiest to let a symbolic manipulation program such as Maple handle the di�erentiation
and manipulation. The second derivatives can eventually be put into the form

~Ujk;�� = 4�i
3X

n=1

[L1n Pjk + L2n Pjk;� + L3n Pjk;� + L4n Pjk;Z+

L5n Pjk;�� + L6n Pjk;Z� + L7n Pjk;Z� + L8n Pjk;ZZ ] (23)

where �, also denotes either � or  . As with Min, the coe�cients Lin are independent
of the tensor indices fjkg. They depend on Q and Qn and their derivatives evaluated at
Z = �n.

The expressions for Eq. (19) and Eq. (23) can be made computationally more amenable
by observing that Q;Z(�n) = Qn(�n). This can be expressed more generally as

Q(m)(�n) = mQ(m�1)
n (�n); (24)

where the superscripts in parenthesis represent the number of derivatives with respect
to Z. Aside from reducing the number of quantities to be calculated, this substitution
increases the accuracy of Q(m)(Z) near multiple roots. This can be clearly seen in the
case when m = 1, as

Q;Z(Z) = Qn(Z) +Qn;Z(Z) (Z � �n): (25)

Since Newton's method only determines Z within a �xed accuracy of the root �n, there
is an error term which remains relatively constant near a double root. However, the
expression Qn(Z) is approaching zero near a double root, and hence calculation of Q;Z is
becoming increasingly inaccurate near a double root unless this error term is eliminated.

3 Numerical Implementation

The three roots �n can be calculated using a number of methods [3]. Although the fastest
available general algorithm appears to be one based upon the QR eigenvalue method [7],
we have found that Newton's method works better for this speci�c problem (a comparison
of timing results can be found in Section 4.1). This algorithm can be used in conjunction
with Horner's method [3] for e�cient polynomial evaluation.

The polynomial coe�cients are real, and it is known that none of the roots can be real
(by the physical constraint that K must be invertible). Thus, the roots occur in complex
conjugate pairs. After locating the �rst pair, these roots can be factored out of the
polynomial to simplify the subsequent Newton iterations. Although the algorithm for
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analytically solving a quartic equation could now be used, it is not likely to be faster
than a second use of Newton's method. After factoring out the second pair of roots, the
quadratic formula can be used to quickly identify the remaining solution.

We have found that 1 + i and �1 + i are reasonably good starting points for each of
the two uses of Newton's method. These implementations of Newton's method typically
converge, error less than of 10�7, in less than 10 iterations. However, in boundary integral
calculations multiple Green's function evaluations are being carried out, usually with small
changes in � and  from one evaluation to the next. In this case, the locations of the
previously found roots are clearly better initial values for Newton's method and can be
used to achieve some additional e�ciency. The use of these initial values roughly halves
the computational time of �nding the roots �n. Since the calculation of the roots typically
takes around one third of the total time of calculating ~U and its derivatives, there is a
noticeable increase in speed when this method is used. However, for consistency, all results
given in this paper employ 1 + i and �1 + i for the initial values.

Once the roots have been found, Eq. (15) and Eq. (19) can be used to calculate the
tensor elements of ~U and ~U�. If the second derivatives are required, Eq. (23) can be used.
In order to evaluate Eq. (19), expressions must be available for Pjk(Z); Pjk;�(Z); Q;�(Z)
and their derivatives with respect to Z. (The derivatives of Q(Z) with respect to Z are
directly determined from the roots �n using Eq. (24).) All of these expressions (plus
those needed for Eq. (23)) are low order polynomials of Z, and thus these functions
can be conveniently stored in terms of the coe�cients. This method has two principal
advantages. First, the calculation of the coe�cients can be accomplished using only real
numbers, maximizing the amount of work done before introducing the complex number
Z = �n. Second, with the coe�cients available, Horner's method can be used to evaluate
the derivatives without much additional work.

The generation of expressions for the coe�cients of Pjk, Pjk;�, Q;�, and optionally for
Pjk;�� and Q;��, as well as expressions for the coe�cients of Q(Z) (needed to calculate
the roots �n) can be found using a symbolic manipulation program such as Maple. For
optimal e�ciency, these expressions can be generated for each material.

4 Calculations

In this section, the results of test calculations employing the materials silicon and tin are
presented. Silicon is a cubic crystal, and is therefore speci�ed by three elastic constants,
whereas tin has tetragonal symmetry and six constants are required. The values of these
constants are listed in Table 1. The values for silicon were taken from [11] and those for
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tin from [16, p. 280].

c11 c12 c44 c33 c13 c66
silicon 1:667 0:639 0:796 - - -
tin 0:735 0:234 0:22 0:87 0:28 0:2265

Table 1: Elastic constants for silicon and tin, in units of 1012dynes=cm2.

To examine the accuracy of the residue method, the results were compared with essentially
exact results obtained from a direct numerical quadrature. For ~U the appropriate line
integral is given by Eq. (4), while for �rst and second derivatives these expressions are
[20]

~U� = �
I
S1
K�1(�)K�(�)K

�1(�) ds(�)

~U�� =
I
S1

h
K�1K�K

�1K�K
�1+

K�1K�K
�1K�K

�1 �K�1K��K
�1
i
ds(�) (26)

The integrations were carried out using Simpson's rule, dividing the interval [0; 2�] into
150 subintervals.

Figures 1-3 display the error for ~U11(�; �=4), ~U11;�(�; �=4), and ~U11;��(�; �=4) for silicon.
The accuracy of these calculations are clearly more than su�cient, as the values Cjlkm
are typically only known to 3 signi�cant digits. The small errors are to be expected, as
Newton's method yielded the roots �n with a relative error less than 10�7.

Figures 4-6 display corresponding results for tin, this time however as a function of  
for a �xed value of �. As tin is more anisotropic than silicon, it is encouraging that the
approximations for ~U and its derivatives remain highly accurate.

4.1 Computation Time

To be a practical algorithm, the residue approach must be at least competitive with
Wilson/Cruse in regards to computational speed. The test calculations indicate that the
new algorithm is in fact signi�cantly faster than cubic interpolation from tables. This
(possibly surprising) result is due to the fact that once the roots have been determined
all function evaluations reduce to simple polynomial evaluation and proceed very quickly.
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Figure 1: Error of ~U11(�; �=4) for silicon.
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Figure 2: Error of ~U11;�(�; �=4) for silicon.
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Figure 3: Error of ~U11;��(�; �=4) for silicon.
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Figure 4: Error of ~U23(�=4;  ) for tin.
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Figure 5: Error of ~U23; (�=4;  ) for tin.
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Figure 6: Error of ~U23;  (�=4;  ) for tin.
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The timing results are shown in Table 2. The �rst set of numbers indicates the time
needed to evaluate all 6 components of ~U plus the 12 values comprising of ~U�. The
second set is the time required if the 18 values of the second derivative ~U�� are also
computed.

All calculations were performed on an IBM RS/6000-520 workstation, and the reported
timings were obtained by reading the computer clock at the start and end of the cal-
culation. As thus other activities by the operating system could interfere, the reported
numbers are the minimum value obtained by running the calculation ten times. For the
most part, the timing numbers uctuated only slightly over the ten trials, on the order
of 1%, indicating that the vagaries of the timing mechanism are not signi�cant factors.
However, with the residue calculation of tin the uctuations were somewhat larger, prob-
ably due to variations in the rate of convergence of Newton's method. The two times for
tin in Table 2 frequently increased to around 1 � 10�3 seconds and 1:9 � 10�3 seconds.
The slightly longer time needed for tin, as compared to silicon, likely is a consequence
of having fewer zeros in the Cjlkm tensor of elastic constants. Other materials may vary
from these results, but probably not by a signi�cant degree.

~U�(�;  ) ~U��(�;  )

Residue (Silicon) 0:801 � 10�3 1:746 � 10�3

Residue (Tin) 0:857 � 10�3 1:800 � 10�3

Interpolation 3:156 � 10�3 6:312 � 10�3

Table 2: Time (in seconds) for evaluating all components of ~U(�;  ) and ~U�(�;  ).
The last column is the time if all components of the second derivatives are also
computed.

These timing results are for evaluating the functions at a single (�;  ) point. As discussed
earlier, the time required by the residue algorithm, as part of a boundary element code,
should be a little smaller than these values. This is due to having better initial approxi-
mations to the roots (from the previous evaluation), and thus fewer Newton iterations.

In general, the root �nding algorithm of Goedecker [7] will be faster and more reliable
than Newton's method. However, computational tests indicate that for the 6th degree
polynomials which arise in this particular application, the QR scheme is roughly an order
of magnitude slower than Newton's method. Table 3 lists some typical computation
times required by the two approaches. The speed using Newton is due in part to the
fact that only 5 to 8 iterations were generally required to reach convergence. In addition,
convergence of the QR scheme may be slowed a little because all roots are complex.
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Newton QR

.0003067255 .0036886930

.0003061295 .0027679205

.0003062487 .0025386810

.0003072023 .0025392771

.0003248453 .0025418997

.0003420115 .0025440454

.0006994009 .0029073954

.0003420115 .0025415421

.0003415346 .0025422573

.0003414154 .0025383234

.0005424023 .0025502443

Table 3: Typical computation times (in seconds) for evaluating the roots of Q(Z)
with Newton's method and with Goedecker's QR algorithm.

4.2 Multiple Roots

The only potential concern of this method is the existence of multiple roots in the polyno-
mial Q(Z). The formulas used to calculate ~U and its derivatives are only valid under the
assumption that the roots are simple. Moreover, Newton's method converges much slower
at multiple roots, and thus the timing results presented above may not be applicable. In
the materials examined, and probably in other materials as well, multiple roots only occur
at a few isolated points (�;  ). As discussed below, this occurrence does not appear to be
a signi�cant problem, as the algorithm functions very well at a very small distance away
from the multiple root. Nevertheless, methods for identifying and handling multiple roots
warrants some further study.

The test calculations indicate that the residue algorithm produces su�ciently accurate
results very close to a multiple root. For instance, there is a multiple root in Q(Z) for
tin at approximately � = �=4;  = 1:9296, but there is no signi�cant error in the graphs
(Figures 4-6) near this point. Further calculations show that the error does not become
signi�cant until the function is evaluated within less than 10�5 radians of the multiple root.
Therefore, the values of the function within these small domains surrounding multiple roots
can be accurately approximated by the value a small distance away. This will still produce
Green's function values with more than acceptable accuracy. Though Newton's method
will converge slower close to multiple roots, resulting in an increase in computation time,
the results are accurate as long as the function is not evaluated too close to a multiple
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root. One possible way for an algorithm to ensure this is to monitor the quantity

j�1 � �2jj�1 � �3jj�2 � �3j: (27)

Whenever this quantity becomes less than around 0:0003, a nearby point (�+ �1;  + �2)
can be used to evaluate the Green's function, or if more accuracy is needed, two points
on opposite sides of the root can be evaluated, and the average can be used.

5 Conclusions

An algorithm based upon residue calculations has been shown to be a fast and accu-
rate technique for evaluating the anisotropic Green's function and its derivatives. The
computational tests indicate that this algorithm runs three to four times as fast as the
standard Wilson/Cruse cubic interpolation method. Moreover, this approach avoids the
need for massive tables, and the accuracy and speed of the algorithm is not dependent
on the anisotropy of the material. The only potential di�culty arises from the question
of multiple roots, wherein the residue is not a simple pole. Although the test calculations
indicate that multiple roots do not pose a signi�cant numerical problem, it is likely that
our scheme for this situation can be improved.
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