
PVM Implementation of the

Symmetric-Galerkin Method �

B. D. Semeraro and L. J. Gray

Computer Science and Mathematics Division

Oak Ridge National Laboratory

Oak Ridge, TN 37831-6367

Abstract

We report on initial progress towards a Parallel Virtual Machine (PVM) im-
plementation of the Symmetric-Galerkin boundary integral method. We take
advantage of software packages speci�cally designed to solve linear algebra
problems on distributed memory parallel computers. In particular we use lin-
ear algebra routines from the ScaLAPACK, PBLAS, and BLACS, libraries.
These routines assume a block cyclic decomposition of the matrix operands.
The decomposition of the operands and its impact on the construction of
the coe�cient matrix are described. Computational results for solving the
two-dimensional Laplace equation are presented. This program is being used
to simulate the performance of a proximity sensor used in robotics and other
applications.

Key words: Boundary Element method, parallel processing, workstation
cluster, proximity sensor, block linear algebra algorithms.

�Invited paper, special issue of Engineering Analysis with Boundary Elements. This

research was supported by the CRADA agreement Y1294-0306, and by the Applied Math-

ematical Sciences Research Program of the O�ce of Mathematical, Information, and Com-

putational Sciences, U.S. Department of Energy under contract DE-AC05-96OR22464with

Lockheed Martin Energy Research Corp.

1

1 Introduction

The Symmetric-Galerkin (SG) method [19, 23, 24] has emerged as a robust
and highly e�cient boundary integral algorithm. The importance of this rel-
atively new approximation primarily derives from two features. First, in this
approach, hypersingular integrals can be evaluated without a C1 boundary
interpolation [16, 25], a consequence of the additional boundary integration
in the Galerkin formulation. Thus, standard and relatively simple to imple-
ment C0 conforming element technology can be employed. As is well known,
however, the extra Galerkin integration is computationally quite expensive.
The second aspect of this method, obtaining a symmetric coe�cient matrix,
is therefore equally important, in that it reduces computation times (on serial
computers) to a level rivaling standard collocation [2, 3].

Hypersingular equations are essential for the boundary integral analysis
of crack geometries [4, 7, 18, 21], and thus one of the main applications of
Symmetric-Galerkin is the important area of fracture analysis [17]. However,
even with the computational advantages of SG , realistic three-dimensional
fracture analysis, multiple cracks in a composite material for example, will
be beyond the computing power of a single workstation. Moreover, as will be
discussed below, there are applications, even in two dimensions, which require
large scale computing. Thus, the development of a parallel implementation
of SG is highly desirable.

For engineering �rms, parallel supercomputers are generally unavailable.
The most readily accessible form of parallel computing for most companies is
networked workstations, and consequently we investigate the performance of
the SG algorithm using the Parallel Virtual Machine (PVM) software. PVM
is a portable message passing library. PVM can be used to support message
passing on many parallel platforms from massively parallel supercomputers
to network connected collections of workstations. In this work PVM is the
message passing layer on which the parallel linear algebra packages, ScaLA-
PACK, PBLAS, and BLACS, are built. The interface to the message passing
is hidden from the user in these packages in that no explicit bu�er packing
and sending is done. The required data transfer is handled by the linear al-
gebra packages themselves when an operation is performed on a global data
item.

Previous investigations of parallel boundary integral methods (see [8, 9]
and references therein) have primarily dealt with collocation methods. Nev-

2

ertheless, the structure of a Galerkin code is not very di�erent from a collo-
cation algorithm, and thus is is possible to take advantage of previous work.
Following [13], we have chosen to employ a block decomposition of the co-
e�cient matrix, i.e., each processor is responsible for constructing speci�c
sub-blocks of the matrix. We have exploited the availability of a parallel
linear algebra routine based upon a block decomposition.

Of primary interest here, in our opinion, is the need for parallel comput-
ing to carry out actual engineering calculations. The modeling application
involves solution of the two dimensional Laplace equation, and is aimed at
improving the performance of a capacitance type proximity sensor. The
simulations can provide a quantitative understanding of the sensor measure-
ment (changes in current), and can be used to optimize the sensor design for
speci�c applications. As will be discussed further below, these simulations
require extensive computing resources, even in two dimensions.

2 Symmetric-Galerkin

For simplicity, and as it relevant to the calculations presented below, the
SG method will be presented in the context of the two dimensional Laplace
equation. If r2� = 0 holds in the domain
 with boundary curve
, the
corresponding boundary integral formulation is given by [5, 20]

�(P) +
Z

�(Q)

@G

@n
(P;Q) dQ =

Z

G(P;Q)

@�

@n
dQ ; (1)

where n = n(Q) is the unit outward normal at the point Q 2
 and @=@n
denotes the normal derivative. Although the fundamental solution G(P;Q)
is usually taken to be the point source potential

G(P;Q) = �
1

2�
log kQ� Pk ; (2)

specialized Green's functions, which partially satisfy the prescribed boundary
conditions, are sometimes advantageous. As discussed in Section 3, the sensor
simulations will in fact use a modi�ed version of Eq. (2).

As written, Eq. (1) holds for a point P 2
 interior to the domain,
and de�ning the singular integrals in terms of a limit to the boundary [15],
also for P 2
 [22]. Di�erentiating this equation with respect to P in the

3

direction N = n(P) results in the corresponding (hypersingular) equation
for surface
ux,

@�

@N
(P) +

Z

�(Q)

@2G

@N@n
(P;Q) dQ =

Z

@G

@N
(P;Q)

@�

@n
(Q) dQ : (3)

It can be shown that, assuming �(Q) is di�erentiable at P , the limit as the
interior point P approaches the boundary exists, and thus Eq. (3) remains
valid for P 2
 [15].

In a standard collocation approximation, the unknown boundary values
of potential or
ux are determined by insisting that either Eq. (1) or Eq.
(3) holds at the boundary nodes. This inevitably leads to a non-symmetric
system of linear equations, as the source point P only enters through its
coordinates, while the the complete neighborhood geometry of Q is taken into
account. However, P and Q do enter in a symmetric fashion in a Galerkin
formulation. A Galerkin approximation is a weighted residual formulation in
which the shape functionsMk(Q) that are used to approximate the boundary
functions,

�(Q) =
X
k

�(Pk)Mk(Q)

@�

@n
(Q) =

X
k

@�

@n
(Pk)Mk(Q) (4)

also serve as the weight functions in the residual statement. Thus, Eq. (1)
is approximated as

Z

Mk(P)

"
�(P) +

Z

�(Q)

@G

@n
(P;Q) dQ

#
dP =

Z

Mk(P)

"Z

G(P;Q)

@�

@n
dQ

#
dP ; (5)

In matrix form, this equation can be written

Ha� = Ga�
n (6)

where �, �n denote the column vectors of boundary values of potential
f�(Pk)g and
ux f@�=@n(Pk)g. Similarly, the hypersingular equation Eq.
(3) reduces to

Hb� = Gb�
n : (7)

4

The double integration over the boundary, together with the symmetry prop-
erties of the fundamental solution (note that G(P;Q) = G(Q;P)) ensure that
the matrices Ga and Hb are symmetric. Thus, for a Dirichlet problem, Eq.
(5) produces a symmetric coe�cient matrix, and similarly the hypersingu-
lar equation yields a symmetric matrix for a Neumann problem. In 1985,
Hartman [19] showed that symmetry is achieved for a mixed boundary value
problem if Eq. (5) is written on the Dirichlet surface and the hypersingular
equation on the Neumann surface (see also [23, 24]). The main advantage
provided by the symmetry is that a direct solution is twice as fast as for a
nonsymmetric matrix.

3 Sensor Modeling

The purpose of this section is to describe an industrial problem, the model-
ing of a capacitance type sensor, which requires parallel computing resources,
even for two dimensional simulations. These proximity sensors have many
applications, and the computations are essential for understanding the per-
formance of the sensor and for optimizing sensor design for speci�c uses.
This work has been carried out in collaboration with Computer Application

Systems, Inc., a company that designs and builds these devices.
A typical con�guration for a capaci
ector sensor [26], consisting of ground,

shield, and sensor plates, is shown schematically in �gure 1. The ground plate
is held at zero potential, while the shield and sensor plates are at constant,
possibly di�erent, potentials. For low frequency applied voltages, the prob-
lem can be modeled as electrostatic, with the potential �(x; y) satisfying the
Laplace equation in the in�nite domain exterior to the plates. Objects in the
vicinity of the sensor will be detected from changes in the measured current:
the object alters the electric �eld around the plates, which in turn changes
the capacitance, and hence the current, of the circuit.

While the geometry appears to be quite innocuous, these calculations are
actually very di�cult: the horizontal and vertical axes in Fig. 1 are not

on the same scale. The width (vertical dimension) of the plates is typically
three orders of magnitude smaller than the length. Moreover, the vertical
gap between plates is the same order of magnitude as plate width, and thus
the plates cannot be idealized as in�nitely thin. Consequently, both sides of
all plates must be included, and furthermore the element size must be on the

5

Ground

Shield

Sensor

Figure 1: A capaci
ector sensor consists of a base ground plate, a shield
plate, and the sensor plate.

order of the plate width. This last condition is required for accurate evalu-
ation of the near-singular integrals which arise. The computation is further
complicated by the re-entrant (for the exterior domain) rectangle corners.
The constant potential boundary condition guarantees that the surface
ux
approaching a corner is singular, of the form r�1=3, where r is the distance to
the corner [10]. This singularity clearly presents a challenge for any numeri-
cal method, and will also necessarily require a re�ned discretization near the
corners.

Modeling of this sensor is therefore inherently di�cult, due to the dispar-
ity of the length scales that are present. While specialized techniques could
be invoked to partially reduce the computational work, any approach will
involve large scale computing. In addition, as indicated above, the goal of
this work is to employ simulations to optimize the design of the sensor con�g-
uration. This will require an iterative process involving many computations,
and thus parallel computing is essential.

Note that the Laplace equation is posed in the in�nite exterior domain,
and this too presents somewhat of a problem. Although the physical bound-
ary condition at in�nity is that the potential decay to zero, the Green's
function, Eq. (2), diverges as kQ � Pk ! 1. The boundary element pro-
cedure, using just the �nite boundary, will pick out the solution for which
the integrals over a far-�eld boundary in either Eq. (1) or Eq. (3) cancel

6

out of the equation [5]. This, however, does not necessarily correspond to
the physical solution. In particular, sensor simulations carried out without
any regard for the far-�eld boundary condition produced unphysical answers.
This problem has been dealt with by placing the entire calculation in a strip,
�R � y � R, R large, and requiring that the
ux vanish on the strip bound-
aries y = �R. Rather than contend with these boundaries directly, which
would signi�cantly increase the size of the matrix and the solution time, an
approximate Green's function technique was employed. This method, which
will be described elsewhere publication [14], is based upon the well-known
re
ection technique [5] for incorporating symmetry. It provides a physical so-
lution without having to directly introduce a far-�eld boundary, which would
have the undesirable consequence of increasing the problem size.

4 PVM Implementation

In this section we discuss the parallel implementation of the SG method
outlined above. This initial work has centered on the simplest, but neverthe-
less useful, situation, the solution of the two dimensional Laplace equation
with Dirichlet data. The main consequence of this is that only the bound-
ary integral equation, Eq. (1), is employed. Nevertheless, the algorithm for
constructing the hypersingular
ux equation is structured the same as the
potential equation, and thus the performance results for this Dirichlet code
are expected to carry over to a general SG program.

The Laplace algorithm employed in this work di�ers from a `conventional'
boundary integral approach in two respects. First, in many implementations,
both Ha and Ga matrices are built and stored. While this is a convenient
approach for relatively small problems, the storage of both matrices can limit
the size of problem that can be attacked. Thus, the parallel code only stores
Ga, constructing the right hand side vector, which consists of Ha times the
vector of known potentials, `on the
y'. This e�ectively cuts the memory
requirement in half, and allows consideration of larger problems. Moreover,
this approach is not an impediment for the design iteration, as changes in the
geometry would necessarily force recomputation of both matrices. The other
modi�cation, incorporated speci�cally for the sensor problem, addressed the
requirement that the potential vanish at in�nity. As discussed above, this
boundary condition was included in the Green's function. The tradeo� here

7

is between the additional computation required for this fundamental solution,
versus the increased size of Ga (and the additional computation) that results
from adding more boundary surface. Again viewing the problem size as the
main limiting factor, the Green's function approach was deemed preferable.

Networked parallel processing, such as PVM, o�ers a reasonable solution
to the problem of solving large scale boundary element problems. This is
especially true for small or medium sized engineering companies, as access
to mainframe machines will be nonexistent or too expensive. A collection
of network connected workstations was employed as the parallel platform
for this work. The workstation cluster consisted of four IBM RS6000 590
workstations connected via Ethernet, with each workstation having at least
128 megabytes of memory. The message passing capabilities were provided
by the PVM system.

Linear Algebra

A boundary integral algorithm consists of two main parts, the construction
and solution of a large dense system of linear equations. The matrix con-
struction, consisting of completely independent integrations, is inherently
perfectly parallel. Thus, a main determining factor in the deciding on the
division of work among processors is the availability of e�ective parallel ma-
trix solution methods. The data decomposition strategy was dictated by
the desire to use the ScaLAPACK [11] library. ScaLAPACK is a library
of routines for solving linear algebra problems on distributed memory com-
puters. It was designed to be a parallel version of the LAPACK [1] library,
and like LAPACK it uses block factorization algorithms and parallel versions
of the level 2 and level 3 Basic Linear Algebra Subprograms (BLAS). The
decomposition is actually imposed by the parallel BLAS, PBLAS [6]. The
PBLAS assumes a block-cyclic decomposition of the matrix operands. That
is the global matrix is partitioned into blocks and the blocks are distributed
cyclically among the processors.

Both ScaLAPACK and the PBLAS routine are designed to be portable
and to have calling syntax similar to their scalar counterparts. The PBLAS
in particular are meant to be building blocks for implementing parallel lin-
ear algebra algorithms. In order to achieve this, in a distributed memory
environment, a set of Basic Linear Algebra Communications Subprograms
(BLACS) [12] was designed. The BLACS is a communications library that

8

0
BBBBBBBB@

A1;1 A1;2 A1;3 A1;4 A1;5 A1;6

A2;1 A2;2 A2;3 A2;4 A2;5 A2;6

A3;1 A3;2 A3;3 A3;4 A3;5 A3;6

A4;1 A4;2 A4;3 A4;4 A4;5 A4;6

A5;1 A5;2 A5;3 A5;4 A5;5 A5;6

A6;1 A6;2 A6;3 A6;4 A6;5 A6;6

1
CCCCCCCCA

Figure 2: Block partition of 12 � 12 array

allows the programmer to perform message passing on matrix subsections
rather than lower level data. Portability and performance are achieved by
using local message passing libraries and e�cient BLAS implementations in
support of the PBLAS and BLACS.

The current ScaLAPACK library unfortunately does not contain a so-
lution algorithm for symmetric inde�nite systems. Symmetry is of course
a basic motivation for using the SG approach, and this is therefore a ma-
jor drawback. Nevertheless, as will be discussed below, the ScaLAPACK
nonsymmetric solver produced excellent e�ciencies.

Block decomposition

The routines that perform the task of constructing Ga and the right hand
side vector contain two nested loops. The inner (Q integration) and outer (P
integration) loop indices correspond to row and column indices respectively in
the matrices. In order to understand the block cyclic matrix decomposition,
consider the n � n matrix A which is partitioned into blocks of dimension
nb � nb. For example, �gure 2 shows the block partitioned form of a 12� 12
matrix. In this �gure each Ai;j is a 2�2 matrix. Assume now that we have 6
processors arranged on a grid with 2 rows and 3 columns as shown in �gure
3. The mapping of blocks to processors results in the arrangement of blocks
shown in �gure 4. The blocks of the matrix are stored locally in column
major order in a two dimensional array. The local columns of elements must
be contiguous. For the processor grid mapping shown in �gure 3, processor
0 has a local 2 dimensional array with the elements of A arranged as shown
in �gure 5. Locally this matrix is stored in an array which is dimensioned

9

A(m;n), in which m � 6 and n � 4. The leading dimension of A is the
distance between consecutive elements in a row.

In order to build this matrix, each processor must know which elements
of the matrix are its responsibility. The serial version of the code employed
di�erent subroutines for handling the singular and nonsingular integrations,
but each subroutine consisted of an outer and inner integration loop. The
initial strategy used to parallelize this code was to test in each loop if the
corresponding row and column was on processor. If not, the indices of the
loops were advanced and the test repeated. If the indices indicated an element
was on processor, the instructions to construct that element were performed.
This is a relatively ine�cient way to construct the matrix, due to the large
amount of added logic and subroutine overhead. A better strategy would be
add an outer loop over the local number of blocks, and to derive loop indices
for the inner loops based on the local block number and the processor position
in the grid. This would greatly reduce the number of loop cycles and obviate
the need for the element index logic. We are currently implementing this
strategy.

5 Performance

The numerical experiments consisted of solving a Dirichlet problem on a
circle, and of solving the sensor problem described above. The problem
size for the circle was 3000 elements. This is easily solvable on a single
workstation, and yet large enough to be a sensible test of the distributed
computation. The sensor problem used 6600 nodes to describe the geometry.
This problem was too large to solve on all but one of the workstations, as
the memory requirement of the serial version of this code was close to 700

COLUMN
ROW 0 1 2
0 proc 0 proc 1 proc 2

1 proc 3 proc 4 proc 5

Figure 3: Row major processor mapping onto a 2 � 3 processor grid.

10

COLUMN
ROW 0 1 2

0
A1;1 A1;4

A3;1 A3;4

A5;1 A5;4

A1;2 A1;5

A3;2 A3;5

A5;2 A5;5

A1;3 A1;6

A3;3 A3;6

A5;3 A5;6

1
A2;1 A2;4

A4;1 A4;4

A6;1 A6;4

A2;2 A2;5

A4;2 A4;5

A6;2 A6;5

A2;3 A2;6

A4;3 A4;6

A6;3 A6;6

Figure 4: Decomposition of A onto a processor grid with 2 rows and 3
columns.

0
BBBBBBBB@

a1;1 a1;2 a1;7 a1;8
a2;1 a2;2 a2;7 a2;8
a5;1 a5;2 a5;7 a5;8
a6;1 a6;2 a6;7 a6;8
a9;1 a9;2 a9;7 a9;8
a10;1 a10;2 a10;7 a10;8

1
CCCCCCCCA

Figure 5: Elements of A on processor 0.

megabytes. The largest workstation had 512 megabytes of main memory and
another 512 megabytes of swap space on disk. The solution of this problem
bene�ted greatly from the use of parallel processing.

As a measure of the e�ectiveness of the implementation, the performance
of the parallel code was compared to the serial code. The serial code took
advantage of the symmetric nature of the coe�cient matrix and used the ap-
propriate solution technique for symmetric inde�nite matrices, the LAPACK
routines dsytrf and dsytrs. As mentioned above, ScaLAPACK presently has
no routine for solving symmetric inde�nite systems and so a general LU
factorization algorithm, pdgesv, was used. For the 3000 element test case,
Table 1 shows the execution time (in seconds) required to build and solve the
linear system for one through four processors. The time required to build
the matrix re
ects the added complexity and overhead of the parallel method

11

as implemented. These calculations are perfectly parallel and should show
a linear increase in speed as the number of processors increases. However,
the di�erence between the single processor time and the 2 processor time
required represents a savings of only 15% rather than the expected 50%. On
the other hand the time required for 4 processors to build the matrix is about
half that required by 2. This represents a more direct code comparison.

In comparing the time required to solve the system on one and more than
one processor we are comparing a symmetric inde�nite solver with a general
dense LU solver. The two processor general LU solver required less than half
the time of the symmetric inde�nite solver on one processor. This result is
rather surprising. The scaling from 2 through 4 processors is more in line
with what one would expect. In particular, the jump from 2 to 4 processors
represents a 40% reduction in time.

Time vs Processors
PROC BUILD SOLVE

1 230 188
2 205 71
3 146 55
4 106 42

Table 1: Execution Times

For the 6600 node sensor geometry, the one workstation having a large
memory capacity and was used to run the serial version of the code. The
execution time in this case was 3 hours 36 minutes. The parallel version,
running on the four workstation cluster, executed in 43 minutes, which rep-
resents a 5 fold increase in speed. The reason for this superlinear speed up is
that the serial code size (700 megabytes) far exceeded the physical memory
of the workstation (512 megabytes), and thus computer must have paged in
and out of physical memory.

12

6 Conclusions

Although the work presented here is preliminary, it nevertheless demonstrates
that boundary integral computations, and in particular the SG approxima-
tion, can be e�ectively carried out on networked workstations. The com-
parisons of parallel and serial versions of the code su�ered from the lack of
a parallel symmetric inde�nite matrix factorization routine. Moreover, the
implementations of both serial and parallel codes are probably far from op-
timal. We intend to continue this work on several fronts. First a parallel
iterative solver will be developed. The plan is to substitute parallel BLAS
calls for the serial BLAS in a GMRES and QMR iterative package. The
logic for building the coe�cient matrix will also be revisited. It is expected
that more e�cient serial and parallel versions of this part of the code can be
developed. Second, a general SG algorithm, one that includes the use of the
hypersingular equation, needs to be investigated. The concern here is that
the hypersingular integrations require more work than their potential equa-
tion counterparts, and thus load balancing of the calculation might become
a problem. Finally, realistic three dimensional sensor simulations will clearly
require more computing resources, and a larger cluster of workstations needs
to be employed.

References

[1] E. Anderson et al., LAPACK Users' Guide, Society for Industrial
and Applied Mathematics, New York, 1995.

[2] C. Balakrishna, L. J. Gray, and J. H. Kane, E�cient analytical

integration of symmetric Galerkin boundary integrals over curved ele-

ments; thermal conduction formulation, Comput. Methods Appl. Mech.
Engrg., 111 (1994), pp. 335{355.

[3] , E�cient analytical integration of symmetric Galerkin boundary

integrals over curved elements; elasticity formulation, Comput. Methods
Appl. Mech. Engrg., 117 (1994), pp. 157{179.

[4] M. Bonnet, Regularized direct and indirect symmertic variational BIE

formulations for three-dimensional elasticity. submitted.

13

[5] C. A. Brebbia, J. C. F. Telles, and L. C. Wrobel, Boundary
element techniques, Springer-Verlag, Berlin and New York, 1984.

[6] J. Choi, J. Dongarra, S. Ostrochov, et al., A proposal for a

set of parallel basic linear algebra subprograms, Tech. Report CS-95-292,
University of Tennessee, 1995.

[7] T. A. Cruse, Boundary Element Analysis in Computational Fracture

Mechanics, Kluwer Academic Publishers, Boston, 1988.

[8] A. J. Davies, Parallel algorithms for the boundary element method, in
Boundary Element Technology VIII, H. Pina and C. A. Brebbia, eds.,
1993, pp. 303{312.

[9] , Parallel boundary element implementations: a survey, Tech. Re-
port 269, University of Hertfordshire, 1993.

[10] C. Detournay, A cauchy integral element for power-type singularities,
Appl. Math. Modelling, 16 (1992), pp. 450{463.

[11] J. Dongarra et al., Scalapack users' guide, Tech. Report Draft, Uni-
versity of Tennessee, 1995.

[12] J. Dongarra and R. C. Whaley, A user's guide to the blacs v1.0,
Tech. Report CS-95-281, University of Tennessee, 1995.

[13] R. E. Flanery, J. B. Drake, and L. J. Gray, Boundary elements

on distributed memory architectures, Int. J. Numer. Meth. Engrg. sub-
mitted.

[14] L. J. Gray, An approximate Green's function method for boundary

integral analysis. in preparation.

[15] , Boundary element method for regions with thin internal cavities,
Engrg. Analy. Boundary Elem., 6 (1989), pp. 180{184.

[16] , Evaluation of hypersingular integrals in the boundary element

method, Mathematical and Computer Modelling, 15 (1991), pp. 165{
174.

14

[17] L. J. Gray, C. Balakrishna, and J. H. Kane, Symmetric Galerkin

boundary integral fracture analysis, Engrg. Analy. Boundary Elements,
15 (1995), pp. 103{109.

[18] L. J. Gray, L. F. Martha, and A. R. Ingraffea, Hypersingular
integrals in boundary element fracture analysis, Int. J. Numer. Meth.
Engrg., 29 (1990), pp. 1135{1158.

[19] F. Hartman, C. Katz, and B. Protopsaltis, Boundary elements

and symmetry, Ingenieur-Archiv, 55 (1985), pp. 440{449.

[20] J. H. Kane, Boundary Element Analysis in Engineering Continuum

Mechanics, Prentice Hall, New Jersey, 1994.

[21] G. Krishnasamy, F. J. Rizzo, and T. J. Rudolphi, Hypersingular
boundary integral equations: Their occurrence, interpretation, regular-

ization and computation, in Developments in Boundary Element Meth-
ods - Advanced Dynamic Analysis, P. K. Banerjee and S. Kobayashi,
eds., vol. 7, Elsevier Applied Science Publishers, 1991, ch. 7.

[22] E. D. Lutz and L. J. Gray, Exact evaluation of singular boundary

integrals without CPV, Comm. Num. Meth. Engrg., 9 (1993), pp. 909{
915.

[23] G. Maier, G. Novati, and S. Sirtori, On symmetrization in bound-

ary element elastic and elastoplastic analysis, in Discretization methods
in structural mechanics, G. Kuhn and H. Mang, eds., Springer-Verlag,
Berlin and New York, 1990, pp. 191{200.

[24] G. Maier and C. Polizzotto, A Galerkin approach to boundary

element elastoplastic analysis, Computer Methods in Applied Mechanics
and Engineering, 60 (1987), pp. 175{194.

[25] P. A. Martin and F. J. Rizzo, Hypersingular integrals: how smooth

must the density be?, Int. J. Numer. Meth. Engrg., 39 (1996), pp. 687{
704.

[26] J. M. Vranish, R. I. McConnel, and S. Mahalingam, Capaci-

ector collision avoidance sensors for robots, Int. J. of Computers and
Electrical Engineering, 17 (1991), pp. 173{179.

15

