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Abstract

The Green’s function for three-dimensional transient heat conduction (diffusion equation) for functionally graded materials (FGMs) is
derived. The thermal conductivity and heat capacitance both vary exponentially in one coordinate. In the process of solving this diffusion
problem numerically, a Laplace transform (LT) approach is used to eliminate the dependence on time. The fundamental solution in Laplace
space is derived and the boundary integral equation formulation for the Laplace Transform boundary element method (LTBEM) is obtained.
The numerical implementation is performed using a Galerkin approximation, and the time-dependence is restored by numerical inversion of
the LT. Two numerical inversion techniques have been investigated: a Fourier series method and Stehfest’s algorithm, the latter being
preferred. A number of test problems have been examined, and the results are in excellent agreement with available analytical solutions.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Transient heat conduction problems can be efficiently
solved with the boundary element method (BEM). The
various procedures reported in the literature can essentially
be classified into two broad categories: (1) the time domain
approach and (2) the transform space approach.

In the time domain approach, a time marching scheme
associated with the BEM solution at each time step is used,
and solutions are found directly in the time domain. The
time dependent fundamental solution is used to transform
the differential system into a boundary integral equation.
The numerical solution of the boundary integral requires
both space and time discretization. Early works using the
time-domain approach include those by Chang et al. [1],
Shaw [2], Curran et al. [3], Wrobel and Brebbia [4], and
many others. Recent works involve that of Lesnic et al. [5],
Coda and Venturini [6,7], Pasquetti and Caruso [8], Wrobel
et al. [9], Divo and Kassab [10], etc.

By employing a time-dependent fundamental solution
together with recent developments in techniques for
converting volume integrals into a (series of) boundary
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integrals, the diffusion problem can be solved by means of
finite-differencing in time and BEM discretization for the
spatial variables. The volume integral can be converted
through either a set of local interpolation functions —
known as the dual reciprocity method, as presented by
Brebbia and Wrobel [11] — or a hierarchy of higher
order fundamental solutions — known as the multiple
reciprocity method, as presented by Nowak [12].

A drawback of time-marching schemes is that they can be
numerically inefficient. An alternative is to employ a trans-
form space approach, wherein the time dependent derivative
is eliminated in favor of a (algebraic) transform variable.
However, once the differential system is solved in transform
space, reconstituting the solution in the time domain
requires an inverse transform. Although this approach is
simple and attractive, the accuracy depends upon an
efficient and accurate numerical inverse transform. For
diffusion problems, LT seems to be the best choice. The
first such formulation utilizing the LT approach was
proposed by Rizzo and Shippy [13] for solution of heat
conduction problems in solids. Later, Liggett and Liu [14]
extended the method to unsteady flows in confined aquifers.
Early Laplace inversion methods were not efficient, as they
employed a type of curve fitting process for which the
behavior of the solution had to be known a priori. However,
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with the advancement of techniques for inverse LT, this
approach has received renewed attention. Moridis and
Reddell [15] successfully used their Laplace transform
boundary element method (LTBEM) for diffusion type
problems. Cheng et al. [16] also used the BEM to solve
axi-symmetric diffusion problems in the LT space. Zhu et
al. [17], Zhu and Satravaha [18], and Zhu [19] extended the
work to the Laplace transform dual reciprocity method
(LTDRM), for solving non-linear diffusion equations with
a source term and temperature-dependent diffusivity. Gold-
berg and Chen [20] used the Method of fundamental solu-
tions (MFS) in Laplace space for both diffusion and
Helmbholtz equations. Maillet et al. [24] recently used this
approach to solve heat transfer problems by the quadrupole
method. Some details of both approaches (i.e. time domain
and transformed space) in transient problems can be found
in Ref. [19]. Similar problems for different applications
have been presented by Cheng [21] for ground water flow
in heterogeneous media, and by Wu and Lee [22] and
Lacerda et al. [23] for acoustic propagation with a mean
flow.

As is usual in boundary element applications, all the
above work assumes a homogeneous medium. The present
work is concerned with transient heat transfer in function-
ally graded materials (FGMs); the steady state FGM
problem has been examined in Ref. [25]. The composition
and the volume fraction of FGM constituents vary gradu-
ally, giving a non-uniform microstructure with continuously
graded macroproperties (e.g. specific heat, conductivity,
density). For instance, one face of a structural component
(plate or cylinder) may be an engineering ceramic that can
resist severe thermal loading, and the other face may be
a metal to maintain structural rigidity and toughness.
Example applications include pressure vessels and pipes
in nuclear reactors or chemical plants, and other examples
can be found in the review papers by Tanigawa [26] and
Noda [27]. A comprehensive treatment of the science and
technology of FGMs can be found in the book by Suresh
and Mortensen [28] or the book by Miyamoto et al. [29].

In this work, the Green’s function for the three-dimensional
(3D) FGM transient diffusion equation is derived using an
exponential variation transform; the boundary integral equa-
tion based upon this Green’s function is then solved
numerically using a Galerkin (as opposed to collocation)
approximation [30]. The exponential transform technique
has been used earlier by Carslaw and Jaeger [31] to obtain
analytical solutions for various problems. Moreover, Li and
Evans [32], Onishi and Ikeuchi [33], Ramachandran [34] and,
more recently, Singh and Tanaka [35] have used this transform
to solve advection—diffusion problems.

The remainder of this paper is organized as follows. The
basic equations of the diffusion problem are described in
Section 2. The Green’s function for the FGM diffusion
equation is derived in Section 3. In Section 4, the LTBEM
formulation is presented. Section 5 discusses several aspects
of the numerical implementation of the boundary integral

analysis and Section 6 does the same for the numerical
inversion of the LT. Some numerical examples are
presented in Section 7. Finally, concluding remarks and
directions for future research are discussed in Section 8.
In Appendix A, the analytical solution for one of the FGM
problems (from Section 7) is given.

2. Basic equations

The transient diffusion equation is given by

_ 2
V-kVe) ==, M

where ¢ = ¢(x,y,z;1) is the temperature function, c is the
specific heat and k is the thermal conductivity. We assume
that the thermal conductivity varies exponentially in one
Cartesian coordinate, i.e.

k(x,y,2) = ke, )

in which 3 is the non-homogeneity parameter. The specific
heat is also graded with the same functional variation as the
conductivity

c(x,y,2) = coe’™. A3)

Substituting these material expressions in Eq. (1), one
obtains
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where a = ky/cy and ¢, denotes the derivative of ¢ with
respect to z (i.e. ¢, = dP/az).

Two types of boundary conditions are prescribed. The
Dirichlet condition for the unknown potential ¢ is

by, 50 = d(x, 3,21, )
on boundary ¥, and the Neumann condition for its flux is

Ap(x,y,z;1)

q(x,y,z;t) = —k(-) n =q(x,y,z;1), (6)

on boundary 3, where n is the unit outward normal to 3.
Here, a bar over the quantity of interest means that it
assumes a prescribed value. For a well-posed problem,
3, U3, =23 with 3 being the entire boundary. As the
problem is time dependent, in addition to these boundary
conditions, an initial condition at a specific time 7y must also
be prescribed. A zero initial temperature distribution has
been considered in all the examples in this paper, i.e.

P(x,y,z:10) = do(x,y,2) = 0. @)

A non-zero initial temperature distribution may be solved
with the dual reciprocity method [36].

3. Green’s function

The Green’s function for Eq. (4) can be derived by
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employing the substitution
b=e By (8)

Thus, the derivatives in Eq. (4) can be expressed in terms
of u, as follows
9P _ _Befﬁzfﬁzatu + efﬁzfﬁzata_u ©)
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Substituting Egs. (9)—(11), in Eq. (4), one obtains
1 du
Viu=——, 12
" a ot (12)

which is the standard diffusion equation for a homogeneous
material problem. The time dependent fundamental solution
for this equation is known [37], and is given by

* 1 e—(r2/4a7) (13)

= (4mrar)’? ’

where 7= tp — t. Note that the function u” represents the
temperature field at time f# produced by an instantaneous
source of heat at point P(x,, yp,zp) and time ¢. The 3D
fundamental solution to the FGM diffusion equation can
be written by back substitution (using Eq. (8)) as

¢ = 4 : )32 e Ay Far—(Han (14)
TaT

4. Laplace transform BEM formulation
Let the LT of ¢ be denoted by
3@ = | o0.0e ar (1)
Thus, in LT space, the differential Eq. (4) becomes
V' +2p. ~ ~d =0, (16)

where ¢y = 0 (at ¢t = 0) is considered (see Eq. (7)).
Following the usual practice, the corresponding boundary
integral statement can be obtained by ‘orthogonalizing’ this
equation against an arbitrary (for now) function f(x,y, z) =
f(Q), i.e. integrating over a bounded volume V
~ ~ S ~
| s@(v2¢ + 286, - 2 3)ave =0 a7
According to Green’s second identity, if the two functions
¢ and A have continuous first and second derivatives in V,

then

JV(W%\ — AV2)dv = L (¢>% - A ad))dS. (18)

on
Using this relation and denoting the boundary of V by 3,
the first term of Eq. (17) becomes

jvf@vzd? av, = jv $QV(Q)V,
5 5 (19)
" JE (f(Q)g 30 - $0 £f<Q))dSQ.

Integrating by parts the second term of Eq. (17), we
obtain

JV 2Bf(Q)b, AV, = L 2Bf(0Q)n, b (0)dS,

of -
- [, 6L d0uv,. 20)
v 0z
and using Egs. (19) and (20) in Eq. (17), we get after

simplification

J - . d
0= L (f(Q)E $(Q) ~ Q) -f(©Q)
+ 2an(Q)<Z>(Q>f<Q>)dSQ

+ JVJ)(Q)(sz(Q) — 2Bf.(Q) — %f(Q))dVQ, (21)

where f; = 9f/dz, and n(Q) = (n,, ny, n.) is the unit outward
normal on 3.

If we select f(Q) = G(P, Q) as a Green’s function, then
the Green’s function equation is (cf. Eq. (4))

V2G(P, Q) — 2BG.(Q) — %G(P, Q) =-80-P), (22

where & is the Dirac Delta function. Thus the source point

volume integral in Eq. (21) becomes — ¢ (P). By means of
Eq. (22), Eq. (21) can be rewritten as

$P) + L (%G(P, 0) - 2Bn.G(P, Q))&(Q)dsg

0 ~
- [ 6015 s, (23)
s on

In order to obtain the Green’s function in Laplace space,
Eq. (22) is modified by using the substitution

G = eP. (24)

In this case, the differential equation for the LT space is

V2 — (32 + i)v —0. (25)
03

This equation is the modified Helmholtz equation, whose
Green’s function is known. Thus the Green’s function in 3D
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LT space is
1 /
p= e B*+(s/a) r (26)
4arr

By back substitution (see Eq. (24)), we obtain

L g JErom
G(P.Q.5) = e VT, 27)

The boundary conditions, Egs. (5) and (6), must also be
transformed into Laplace space, i.e.

$(0.5) = L $0, 0 dr,
' (28)

7(0.5) = L 0. e d,

respectively. For constant boundary conditions, the above
equations reduce to (see Brebbia et al. [37], p. 143)

6.5 =20 9= 2D (29)

N N

respectively.
The modified kernel functions, in terms of the Laplace
variable s, are

1 o
GP,Q,s) = meB(ZQ )=/ B (sl r (30)

and
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where n is the unit outward normal at a field point Q, n, is
the z component of n, R=Q — P, R, =75 — zp, and r is
the norm of R, i.e. r = |R]| = |Q — P||.

5. Numerical implementation of the 3D Galerkin BEM

The numerical methods employed in this work use
standard Galerkin implementation techniques [30] in
conjunction with the LT method. A few aspects of the
numerical methods are briefly reviewed in this section.

X

Fig. 1. Isoparametric quadratic triangular element of 6 nodes. The intrinsic
coordinate space is the right triangle in (&, ) space with ¢ = 0, n = 0 and
E+n=1.

5.1. Division of the boundary into elements

The surface of the solution domain is divided into a
number of connected elements. Over each element, the
variation of the geometry and the variables (potential and
flux) is approximated by simple functions. In this study,
6-noded isoparametric quadratic triangular elements are
used (see Fig. 1).

The geometry of an element can be defined by the
coordinates of its six nodes using appropriate quadratic
shape functions as follows

6
x(&m =D N(&m(x);. 33)
Jj=1

In an isoparametric approximation, the same shape func-
tions are used for the solution variables, as follows

6
bi(&m) = D Ni(E )y,
=1
: (34)

. 6 .
Wi e = SN ( 99; ).
=1

on on J;

The shape functions can be explicitly written in terms of
intrinsic coordinates & and n as follows (see Fig. 1)

Ni&m =0 —-&—m — 26— 27),
No(&m) = &826— 1),  N3(&Em)=n2n— 1),

(35)
Ny(&m)=4&d —&E—m).  Ns(&m) = 4ém,

Ne(&,m) =4n(1 — £— 7).
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The intrinsic coordinate space is the right triangle with
E=0,m=0and é+n=1.

5.2. Galerkin boundary integral equation

Define

0
B(P) = $(P) + L (5G<P, 0) — 2Bn,G(P, Q))qb(Q)dSQ

0
—J 6P.0) 22 0y, (36)
s on

and thus for an exact solution Z(P) = 0.

In a Galerkin approximation, the error in the approximate
solution is orthogonalized against the shape functions, i.e.
the shape functions are the weighting functions and #(P) =
0 is enforced in the ‘weak sense’

L N(P)B(P)dP = 0. (37)

After replacing the boundary and the boundary functions
by their interpolated approximations, a set of linear
algebraic equations emerges

[HI{$} = [G]{%}- (38)

In computing the matrix elements, the singular integrals
must of course be evaluated differently. For Galerkin, there
are three distinct situations where singularity must be
considered: (a) Coincident integration case when P and Q
lie in the same element; (b) Vertex adjacent integration
case, when the vertex is the only common node between
two elements; and (c) Edge adjacent integration case, when
two elements share a common edge. For these situations, a
combination of numerical and analytic integration is
employed, with the analytic integration based upon a polar
coordinate  transformation. ~These techniques are
analogous to the two-dimensional methods presented in
Ref. [38].

6. Numerical inversion of the Laplace transform

In the LTBEM approach, the numerical inversion of the
LT is a key issue. The LT technique has been efficiently
applied in conjunction with different numerical methods
such as finite difference and finite element methods for the
solution of ground water flow and solute transport problems
(Sudicky [39], Moridis and Reddell [40]), and heat conduc-
tion problems (Chen and Chen [41], Chen and Lin [42]). In
these papers, different Laplace inversion algorithms such as
those of Talbot [43], Dubner and Abate [44], Durbin [45],
Crump [46], and Stehfest [47,48] were used. The advantages
and deficiencies of some algorithm were pointed out by
Maillet et al. [24]. Davies and Martin [49] made a critical
study of the various algorithms. Later, Duffy [50] examined
three popular methods for numerical inversion of the

Laplace transform, i.e. direct integration [50], Week’s
method [51] and Talbot’s method [43].

As LT inversion is an ill-posed problem, small truncation
errors can be greatly magnified in the inversion process,
leading to poor numerical results. In recent times, Moridis
and Reddell [15] showed that Stehfest’s algorithm poses no
such problems and high accuracy may be achieved. Subse-
quently, Zhu et al. [17] and Satravaha and Zhu [18] had
similar success using numerical inversion of LT in BEM
problems. Recently, Maillet et al. [24] critically reviewed
the Stehfest’s algorithm and pointed out its advantages and
disadvantages. For the present study, a computer code has
been written following Stehfest’s algorithm [47,48].

The Stehfest’s algorithm originates from Gaver [52]. If
P(s) is the Laplace Transform of F(r), an approximate value
F, of the inverse F(¢) for a specific time ¢ = T is given by

In 2 In2
e VP( ) (39)
T i=1 T
where
V. = (_1)N/2+1 minng) kN/z(Zk)!
l k=(i + 1)/2 (N2 — )k!k — DIG— 'k — i)
(40)

Egs. (39) and (40) correspond to the final form used in our
numerical implementation.

When inverting a function from its Laplace transform,
one should compare the results for different N, to verify
whether the function is smooth enough, to observe the
accuracy, and to determine an optimum value of N. Origin-
ally, Stehfest suggested to use N = 10 for single precision
arithmetic; however, Moridis and Reddell [15], and Zhu et
al. [17], found no significant change in their results for 6 =
N = 10. In the present calculations, N = 10 was adopted.

Most of the methods for the numerical inversion of the LT
require the use of complex values of the LT parameter, and
as a result, the use of complex arithmetic leads to additional
storage and an increase in computation time. The disadvan-
tage of using complex arithmetic has been overcome in
Stehfest’s method. It uses only real arithmetic and thus
produces significant reduction in storage together with an
increased efficiency in computation time.

The second LT technique that has been explored is the
method recently developed by Murli et al. [53]. This is a
Fourier series method, based on the discretization of the
Riemann inversion formula using trapezoidal rule with
step size h = w/T

N
FN(t)—TR (F(a) Z( lkw) lkm/r)_ @

Compared to Stehfest’s algorithm, this method was found
to require more iterations to achieve convergence, and
moreover requires complex arithmetic. Thus, the results
reported below employ the Stehfest’s algorithm.
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7. Numerical examples

As noted above, the integral equation is numerically
approximated via the non-symmetric Galerkin BEM
Method. Standard 6-node isoparametric quadratic triangular
elements are used to interpolate the boundary geometry and
boundary functions for the physical variables. For all the
examples, N =10 is used for the Laplace inversion
algorithm using the Stehfest’s Method (see Section 6).

Five examples are considered:

. Transient 2D heat conduction in a homogeneous cube.
. Cylinder with constant surface temperature.

. Constant temperature on two planes of an FGM cube.
. Linear heat flux on a face of an FGM cube.

. Time-dependent boundary condition.

DN AW =

The first two problems deal with homogeneous materials.
These problems validate the Galerkin BEM code and ensure
that the FGM implementation recovers the homogeneous
case when the non-homogeneity parameter [ vanishes,
i.e. B = 0. The last three problems deal with transient heat
conduction in FGMs, i.e. B8 # 0. Notice that the prescribed
boundary data for the first four problems is time-
independent, while for the last problem, it is time-
dependent.

7.1. Transient two-dimensional heat conduction in a
homogeneous cube

The original version of this problem has been proposed by
Bruch and Zyvoloski [54], consisting of a homogeneous two
dimensional heat conduction in a square domain, subjected
to the following boundary and initial conditions (see
Fig. 2(a))

d(Ly,y, 1) = (x, Ly, 1) = 1.0 (42)

ap0,y, 1) _ d(x,0,1)
ox N ay N

0.0 (43)

¢(x,y,0) = 0.0 (44)

where L, and L, are the lengths of the solution domain in the
x and y directions, respectively. k, and k, are the thermal
conductivities in x and y directions, respectively, with the
specific heat ¢ = 1.0. The analytical solution of the 2D
problem for temperature [54] is

n— 1mx 2j — DHmy
cos

=10+ C,; cos
d(x,y, 1) n; ,:21 j COS oL o,

k(2n — 1)*m k(2 — 1)*m?
X exp{ - ( i + 2 i tt, (45)
x 'y

y
Temp = 1.0 (1,1)
Flux = 0.0 Ly Temp = 1.0
Lx
X
(0,0) Flux =0.0

(a)

Z
Temp = 1.0 (back)  (1,1,1)

/ Flux = 0 (top)

Flux:= 0 (front)
b

Temp = 1.0 (right)

Flux = 0 (left)

,"’ Flux = 0 (bottom)

(0,0,0)
(b)
Fig. 2. Geometry and BCs for the cube problem: (a) original 2D problem,

(b) equivalent 3D problem. The faces with prescribed temperature
(Temp = 1.0) are shaded (example 1).

and the analytical solution for the flux in the y direction is

o0

_ 9% _ - (%~ Dm
q(x,y, t) = _kvﬁ_y = _ky Z Z Tcnj

n=1 j=l1

2n — Dmx . (2j — Dy
sin

X
TR 2L,
k(Q2n— 1727 k(2 — 1)’
X exps — «(2n 2)7r + (% 2)1’r te,  (46)
412 4L

where
co 16.0(—1.0)(— )" 1 (—=1y*!

M mw22n—-1D@2j - 1)

The 2D problem of Fig. 2(a) is solved using an equivalent
3D problem as shown in Fig. 2(b). The 3D BEM discreti-
zation consists of 200 elements on each face of the cube
leading to a total of 1200 elements. The flux in the z
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S 098 g 1
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,z’/ Analytical
0.96 I =--=FEM[54]
e o BEM
0.95 L L 1 Il
0.0 0.2 0.4 0.6 0.8 1.0

X coordinate

Fig. 3. Temperature variation at edge (y = 0,z = 1) (shown with a dark
solid line in Fig. 2(b)) considering time ¢ = 0.75 for the cube problem with
homogeneous material (example 1).

direction is taken as zero to simulate the 2D problem.
The cube is analyzed for 0 = x = 1.0, 0 =y = 1.0 with
k, =k, = 1.0. The geometry and boundary conditions of
the problem are shown in Fig. 2(b). Fig. 3 shows the
variation of temperature at the edge of the top face
(shown with a dark solid line in Fig. 2(b)) at ¢+ = 0.75
considering the present BEM solution, the FEM solution
[54], and the analytical solution (Eq. (45)). Note that
the BEM solution coincides with the analytical solution
within plotting accuracy. Fig. 4 illustrates the variation of
temperature at the edge of the top face (shown with a dark
solid line in Fig. 2(b)) at different time levels. Again, the
BEM solution agrees with the analytical solution within
plotting accuracy. Fig. 5 shows the flux distribution

1.00 T
—— Analytical
o BEM (t=0.01)
075 | = BEM (t = 0.05) ]
» BEM (t=0.1)
(]
]
©
o 0.50 ]
o
S
i)
0.25 | ]
At
0.00 &
0.0 0.5 1.0

x coordinate

Fig. 4. Temperature variation with distance (x coordinate) (shown with a
dark solid line in Fig. 2(b)) at different time levels for the cube problem
with homogeneous material (example 1).

0.00

0.02 |
x
3 004 |
(T

0.06

—— Analytical
o Galerkin BEM
0.08 : ) : ‘
0.0 0.2 0.4 0.6 0.8 1.0

x coordinate

Fig. 5. Flux distribution along x direction at y = 1 face for the cube problem
with homogeneous material (example 1).

along x direction at the y = 1 face. The BEM solution and
the analytical solution agree quite well.

7.2. Cylinder of homogeneous material with constant
surface temperature

The second homogeneous test problem involves a
cylindrical region, and therefore checks that curved surfaces
are being handled correctly. The cylinder has zero initial
temperature, the top and the bottom surfaces are insulated,
and the wall temperature is kept constant. The geometry and
BEM mesh for the cylinder is shown in Fig. 6. The boundary
conditions and the initial conditions are as follows:

¢(r,t) = 100, r =1, r = radial coordinate “mn

N

A
Wk
/\

Y

/
b

Z
Y
X

Fig. 6. Geometry and mesh of the cylinder problem (example 2).

NNV
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100 T T - :
80 E
o
2 60f ]
©
o)
g
0 40 . |
Analytical
o BEM (t=0.005)
= BEM (t=0.01)
20 | . BEM (t=0.03) 1
a BEM (t=0.05)
v BEM (=0.1)
O L L L
0.0 0.2 0.4 0.6 0.8 1.0

radial coordinate (r)

Fig. 7. Variation of temperature along the radial coordinate (r) for the
cylinder problem (example 2).

Ip(x,y,2;1)  dd(x,y,0;1)
0z B dz B

0.0, (48)

$(x,y,2;0) = 0.0 (49)
The analytical solution to this problem [31] is

d) — T(l _ % Z e*kait JO(ran) )’ (50)

n=1 0an1 (aan)

where T is the surface temperature, a, the radius of cylinder,
k = ko/cy and £, n = 1,2,... are the roots of

Jolaa) = 0. (51

The BEM mesh consists of 600 elements, distributed with
100 elements each for the top and bottom faces, and 400

A
Flux = 0 (back) (1.1,1)
| Temp = 100 (top)
1
} Fhox =0 (front) Flux = 0 (right)
! Y
Flux = 0 (left) |
L o Temp = 0.0 (bottom)
z X
(0,0,0)

Fig. 8. Geometry and boundary conditions of the FGM cube problem with
constant temperature on two planes. The faces with prescribed temperature
are shaded (example 3).
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Fig. 9. Temperature profile in z direction at different time levels for the
FGM cube problem with constant temperature on two planes (example 3).

elements for the cylindrical wall. The variation of the
temperature along the radius is plotted on Fig. 7 for various
times (¢ = 0.005, 0.01, 0.03, 0.05 and 0.1). Notice that the
Galerkin BEM and the analytical results agree within plot-
ting accuracy for all time levels.

7.3. Constant temperature on two planes of a FGM cube

The problem of interest is shown in Fig. 8. The cube
initial temperature is zero (see Eq. (7)). Then the top surface
of the cube at [z = 0] is maintained at a temperature of T =
100, while the bottom face at [z = 1] is zero. The remaining
four faces are insulated (zero normal flux). The boundary
conditions and the initial conditions are
é(x,y,0;1) =0,

¢x,y, 1;1) =100,  ¢(x,y,2;0) = 0.

(52)

The thermal conductivity and the specific heat are taken
to be

k(x,y,2) = koe?P* = 5¢¥, (53)

c(x,y,2) = coe?P = 1e*. (54)

The analytical solution for temperature is (see
Appendix A)

1 —e 2
b(x,y,z:1) = dy(x,9,2) + &(x,y,7:8) = T ———=5
26L
1 —e 28
& nmwz _ 2202 2
+ N B, sin——e Pre (rm/LTTE YAl 55)
; wsin— (

where L is the dimension of the cube (in the z-direction) and
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Fig. 10. Change of flux with time for the FGM cube with constant tempera-
ture on two planes (example 3).

the analytical solution for flux is (see Appendix A)

ad
q(x,y,z;1) = —k(x,y, z)a—Z = —k(x,y,2)

2B8Te *F i e (222, @2
X[ B +ZBne ﬁze (n“mIL"+ B )t

1 —e 28 .
(e - g | 56

where

1 +e 2
BL sin nwlﬁ — N COS N
—e

(57)

The Galerkin BEM mesh has 1200 elements with 200
elements on each face. Numerical solutions for the tempera-
ture profile at different times are shown in Fig. 9. Notice that
the temperature variation matches the analytical solution.
Fig. 10 shows the change of flux with time. At the top
face, the flux rapidly approaches the steady state flux,
while on the bottom face where the temperature is zero;
the flux gently approaches to the steady state flux. It is
worth observing that the flux from the Galerkin BEM
matches the analytical solution of Eq. (56), within plotting
accuracy. Finally, a color contour plot of temperatures at
t = 0.5 is shown in Fig. 11. This plot confirms that the
temperature field is one-dimensional and is captured by
the Galerkin BEM solution.

2Pt

B, =— BL% + nim?

7.4. Linear heat flux on a face of a FGM cube

Fig. 12 illustrates a cube that is insulated on the faces
[y =0] and [y = 1], while uniform heat fluxes of 5000
units are added and removed, respectively, at the [x = 1]
and [x = 0] faces. In addition, the [z = 0] face is specified to
have an x-dependent temperature distribution ¢ = 1000x
and at [z = 1], a normal heat flux of ¢ = 15000x is removed.

100

Fig. 11. Color contour plot of temperature at time ¢ = 0.5 for the FGM cube with constant temperature on two planes (example 3).
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Fig. 12. Geometry and boundary conditions of the FGM cube problem with
linear heat flux. The face with prescribed temperature (¢ = 1000x) is
shaded (example 4).

The initial temperature is zero (see Eq. (7)). The material
properties are given by Egs. (53) and (54). The boundary
and the initial conditions for this problem are

d(x,y,0; 1) = 1000x,

2 Ap(x,0,7;1) _ (Z)a¢(x,1,z; 1) _

k( ki 0,
dy ay
(0 ; dd(1 .
k(z)M = —5000, k(z)M = 45000,
ox 0x
ad(x,y, 15t
k(z)% = 15000x,  ¢(r,y.2.00=0.  (58)
z

The results of the numerical simulations for the flux
distributions along the edge [y =0,z = 1] for different
times are shown in Fig. 13. The exact steady state solution

50000 T T T T
o——o BEM (t=0.001)
s——=a BEM (t=0.005)
40000 o—— BEM (t=0.01)
&~ BEM (t=0.02)
v——v BEM (t=0.05)
»—— BEM (t=0.1)
30000

—— Steady state

Flux

20000

10000

L !

0.0 0.2 0.4 0.6 0.8 1.0
x coordinate

Fig. 13. Flux distribution along edge [y = 0,z = 1] considering various
times for the FGM cube problem with linear heat flux in one face (example
4).

950
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550 | |
450 |
350 |
250 |
150 |
50 |

50 L 1 1 MR
0.0 0.2 0.4 0.6 0.8 1.0

z coordinate

—— Steady State

Temperature

Fig. 14. Temperature distribution along edge [x = 1,y = 1] considering
various times for the FGM cube with linear heat flux in one face (example
4).

for flux is

ad(x,y,0,
@ ¢(xa§ 1))

ki = 15000x. (59)

As the time increases, the flux converges to the steady
state condition, which is expected.

The temperature distribution along edge [x = 1,y = 1]
with various times is plotted in Fig. 14. Notice that as the
time increases, the numerical solution approaches the steady
state solution, as expected. Finally, a color contour plot for
temperature is shown in Fig. 15, for the steady state condi-
tion. This plot allows one to verify the 3D surface tempera-
ture distribution obtained with the present Galerkin BEM
code.

7.5. Time-dependent boundary condition

This problem has prescribed time-dependent boundary
condition in one face, while all the other faces are insulated.
The top surface of the cube at [z = 1] is prescribed with a
time-dependent boundary condition ¢ = 10¢. The material
properties are given by expressions (53) and (54). The
boundary and initial conditions are

d(x,y, 1;1) = 101,

ap0,y,z;8)  dp(l,y,z;0)  dd(x,0,z;0)
ox ox ady

_0d(x, 1, zt)  a(x,y,051)
- dy B 0z N

0, d(x,y,2,0) =0
(60)

The geometry and boundary conditions are presented in
Fig. 16. For the BEM analysis, the same mesh as in the
previous example has been used. The temperature profile
in the z direction is plotted at t = 1 in Fig. 17. In order to
compare the results, the problem has been modeled using
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Fig. 15. Color contour plot of temperature at steady state for the FGM cube with linear heat flux in one face (example 4).

commercially available FEM software. The corresponding
2D finite element mesh has 100 linear quadrilateral
elements and 121 nodes, the analysis was performed with
a time step A7z = 0.01. From Fig. 17, it is seen that the BEM
and FEM results agree well.

8. Conclusions

Boundary element analysis has, for the most part, been
limited to homogeneous or piecewise homogeneous media.
In this work, it was shown that this method could be
successfully applied to analyze transient heat conduction

z
Flux =0 (back) (L1LD)

E Temp = 10t (top)

i Flux =0 (f]-oﬂ.t Flux =0 (Tlgh[)
i Y

Flux = 0 (left) /
I ~*Flux = 0 (bottom)
) K
0,0,0)

Fig. 16. Geometry and boundary conditions of the FGM cube problem
with time-dependent boundary conditions. The face with prescribed time-
dependent boundary condition is shaded (example 5).

in functionally graded materials, modeled with exponential
gradation. In this case, the Green’s function can be easily
derived using a simple exponential transformation. The
presented numerical results based upon this formulation,
implemented in a Galerkin BEM framework, agree
extremely well with available analytical solutions. The
principal computational difficulty with the LTBEM is the
numerical inversion of the transform, which was handled
accurately and efficiently by Stehfest’s algorithm.

Having the boundary integral representation for transient

10.00 I I I
R

9.90 R
I
° o0 _
©
@
@ 970 ¢ _
B 7

9.50 I I ‘ I

0.0 0.2 0.4 . 0.8 |

z coordinate

Fig. 17. Temperature profile in z direction at + = 1 for the FGM cube
problem with time-dependent boundary condition (example 5).
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analysis opens the possibility of developing -efficient
tools for optimization of FGM parameters (e.g. material
constants and geometry) and sensitivity analysis [55].
These topics are important for design and application of
these new materials.
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Appendix A

A.l. Analytical solution of the FGM cube problem with
prescribed temperature on two planes (example 3)

The problem described in Section 7.3 is one dimensional
in nature. The governing differential equation is, (cf. Eq.

4))
S = (A1)

The thermal conductivity and the specific heat are taken
to be

2Bx

k(x) = koe*?, c(x) = coe™™,

and the boundary conditions and initial condition are

wO,0=0, ult)=T,  ulx0)=0. (A2)

Since the boundary condition of this problem is inhomo-
geneous and the problem is transient, it is better to express
the temperature as the sum of two distributions. One will
represent the steady state distribution (independent of ¢) and
the other will represent the transient response. The transient
response approaches zero as t increases indefinitely:

u(x,t) = uy(x) + v(x, 1) (A3)
The steady state solution is
—2Bx
y(x) = T:Z-L’ (Ad)
and the transient solution is,
1—e 2%
vi(x, 1) = u(x,t) — Tm. (AS)

This solution will hold for homogeneous boundary

conditions. So the modified problem is

0%y av 1 av
g = 0,1) =0, L)=0
ox? 'Bax a Jt V0.9 LD
(A6)
1— e*ZBx
V(X, O) == _Tm (A7)

To solve the problem we use the separation of variables,
ie.

vix, 1) = X)T(0). (A8)

Substituting this assumed form into Eq. (A6) and
separating the variables we get

X X 10T

) -

ax 0x 1 Jat (A9)
X T

Thus setting each side of the above equation equal to — A >
leads to

a°X X

— 2 4282 + 22X =0, A10
ax2 Bﬁx ( )
19T

—— +XNT=0. (A11)
o Ot

Now let X = €™ be the solution to Eq. (A10), for which
the associated characteristic equation is

S +2Bs+ A7 =0 (A12)

with

s=—BxiyA? - p? (A13)
Substituting the value of s we get the general solution
X = e P4, VV TR 4 Ae VTR, (A14)

The term in parenthesis in Eq. (A14) can be rewritten in
terms of trigonometric functions, i.e.

X(x) = e P*(B, cosy/A? — B2x + B, siny/ A2 — BZx). (A15)

From Eq. (A11), we get the general solution
—an’t
T(t) = Ce . (A16)
Substituting Eqs. (A15) and (A16) in Eq. (A8), we obtain
V(x5 1) = e PX(A cosy/A? — Bx + B sing/A2 — Ble
(A17)
To satisfy the boundary condition at x = 0
W0,1) = 0 = Ae” X7, (A18)

and therefore, A must be zero. To satisfy the boundary
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condition at x = L

WL, 1) =0 = e PLB sin(/A? — B2L)e ™" (A19)
and since B # 0, we obtain the following equality
siny/A> — B*L = 0.
This implies
\/)\2 - ,82L = n1,
or
A= "2;272 + B (A20)

where n = 1,2, 3, ..., so these are the eigenvalues and the
associated eigenfunction is

. nmx _ 2 20 @
v, =B, sin——e B ((rm /L4 B (A21)

Now by the superposition principle the function v is

(o]
. hmx _ (2272 2
v(x, 1) = z B, sin——e B~ (/L) B )t

n=1

(A22)

and B,, will be selected such that it satisfies the initial condi-
tion. At t = 0, the above expression becomes

1 - e*ZBx 0

LI

nmx Bx
_ a—2BL :
1 € n=1

B, sin—-¢ (A23)
L
Recognizing this expression as a half-range expansion of
a Fourier sine series, we get

2T L _
B,=————5— J e —e Bx)sin—nﬂxdx
L(1 —e2Phy )o L
2TeP* , 2pL
= —m BLsmnTrm — N Ccos n |.
(A24)
Hence, the analytical solution to this problem is
ux, 1) = us(x) + vi(x, 1) (A25)
1 — e 2Bx had nax 2 2,20 @2
_7T__ - s PR = Bx (T ILY)+ Bt
u(x,t)—Tl_eizﬁL +;an1n 7 e e s
(A26)
and thus the flux is
du 2BTe P
q(x,1) = _k(x)a = —k(x)[ 1_ o 28
+ S Be P o (T IL)+ B
x [ 2T cos MM — ggin T (A27)
L L L

where
TPl . —28L
B, = —m BL sin nwm — nir cos n |.
(A28)
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