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Abstract

Algorithms are presented for evaluating singular and hypersingular boundary integrals

arising from a Galerkin approximation in two dimensions. The integrals involving deriva-

tives of the Green's function are de�ned as limits from the interior, allowing a simple

and direct treatment of these terms. An e�cient scheme is obtained by using a combined

analytical and numerical approach, the analytic formulas easily derived with a symbolic

computation program. The analytic integration also permits exact cancellation of po-

tentially divergent terms, and thus the method is accurate as well. These algorithms

are �rst presented in the simplest context, a linear element. The integrals resulting

from higher order curved interpolation are shown to be reducible to the linear case, and

can therefore be treated with the same techniques. Example calculations employing the

Symmetric-Galerkin approximation are presented for the Laplace equation and for or-

thotropic elasticity. The post-processing evaluation of surface tangential derivatives is

also discussed. These methods are applied to the modeling of void movement in the

aluminum thin �lm interconnects employed in micro-electronics.

1 Introduction

Despite the fact that the Galerkin boundary integral method is a mathematically
well studied technique, Schatz et al. [1], a perusal of engineering oriented texts,
e.g., Banerjee [2], Becker [3], Brebbia et al. [4], Kane [5], or, for that matter the
present volume, clearly indicates that collocation is the dominant approximation
in applications. The Galerkin procedure employs an additional boundary integra-
tion, and has therefore been a more complicated and a signi�cantly slower method
than collocation. However, two important and related advancements have radi-
cally altered this situation. The �rst is the emergence of hypersingular equations



as an essential tool in boundary integral analysis [6], in particular for the many
important applications involving a crack geometry [7, 8, 9]. The Galerkin double
integration e�ectively molli�es the hypersingular integral, and thereby simpli�es
the computation, whereas a collocation approximation must deal with a di�cult
numerical constraint, smooth interpolation of the coe�cient function { referred
to here as the C1 condition. The second critical innovation is the development of
the Symmetric-Galerkin method [10, 11, 12]. The symmetry can be exploited to
produce a fast Galerkin algorithm, and this eliminates the dramatic advantage
in computation time previously enjoyed by collocation [13].

The �rst numerical work employing hypersingular equations was likely in con-
nection with linear elastic fracture analysis [14, 15], and hypersingular methods {
dual equations [16, 17, 18, 19] or displacement discontinity [14, 20, 21, 22] { now
dominate this subject [23]. Although special purpose, non-hypersingular, fracture
algorithms have been devised for elasticity [24, 25], it appears that an e�ective
general technique for a crack geometry must involve hypersingular equations.
This application alone makes the ability to work with hypersingular equations
absolutely essential.

Hypersingular integrals can be converted to a numerically tractable form by a
variety of methods [26-32], and several reviews of this area are available [6, 33, 34].
Nevertheless, evaluation with collocation remains a di�cult proposition. A phys-
ically sensible de�nition of the integral requires di�erentiability of the coe�cient
function, e.g., potential for the Laplace equation, displacement in elasticity, at
the collocation point [35, 36, 37] { more precisely, the function must have a H�older
continuous �rst derivative, C1;�. There has been considerable discussion of this
point in the recent literature [42-45] (a good indication that collocating hypersin-
gular integrals is not an easy matter!), and Section 3 will also consider this issue.
For collocation, either a smooth interpolation, such as Overhauser [42, 43, 44, 45]
or Hermite [46, 47, 48] elements, or a non-conforming (discontinuous) approxi-
mation [49, 50] must be employed. These techniques work reasonably well in two
dimensions, but are much less attractive for three dimensional problems. The
implementation for Overhauser cubic splines is complicated and oscillations can
occur in the interpolation over non-uniform grids. The Hermite approach is ex-
pensive, involving simultaneous solution of the nodal tangential derivatives, and
the application to fracture problems is not straightforward [46, 51]. The draw-
back associated with a non-conforming approximation, aside from the physically
unappealing discontinuous nature of the approximation, is a signi�cant increase
in computational expense. The number of unknowns is much larger than with a
corresponding conforming element, especially for three dimensional vector prob-
lems.

In the Galerkin approach, however, there is no smoothness constraint asso-
ciated with hypersingular evaluation. The intuitive argument is that the second
boundary integration e�ectively negates the di�erentiation creating the hyper-
singular kernel, and thus the resulting integral is e�ectively no worse than the
`Cauchy Principal Value' (CPV) integral in collocation. A more convincing ar-
gument is to evaluate the integral directly and show that it has a �nite value, as
will be carried out in Section 4. Hypersingular integrals can therefore be evalu-
ated using standard continuous elements, and in this respect, Galerkin becomes



a simpler method than collocation. It will be argued herein that the evalua-
tion of the singular integrals, probably perceived as a major complication of the
Galerkin approach, is not especially di�cult. This evaluation can be easily car-
ried out by taking advantage of the analytic integration capabilities of a symbolic
computation program such as Maple [52]. This permits a direct hybrid analyt-
ical/numerical singular integration approach which is completely general and,
moreover, produces highly e�cient algorithms [13].

As noted above, the critical issue of computational e�ciency is addressed
by the Symmetric-Galerkin approximation. This method relies on hypersingular
equations to produce a symmetric coe�cient matrix. The symmetry can be ex-
ploited, in both matrix construction and solution, to provide the e�ciency needed
to counterbalance the high computational cost of the extra boundary integration
[13, 53]. Roughly speaking, Symmetric-Galerkin is competitive with collocation,
and will be faster for su�ciently large scale problems. For two dimensional prob-
lems, the crossover point where Symmetric-Galerkin becomes more e�cient is
known to occur at reasonable sized problems, around 200�300 elements [13, 53].
The main objection to use of Galerkin in applications is therefore removed, and
it is now an attractive alternative to collocation. Moreover, it can be argued that
for some applications, most notably fracture analysis [22], it is the method of
choice.

Two additional bene�ts provided by the Galerkin approach, namely tangen-
tial derivative evaluation and improved corner treatment, will be highlighted in
this chapter. Applications will sometimes require a `post-processing' evaluation
of boundary derivatives, e.g., the tangential component of the electric �eld or
the complete stress tensor on the boundary. Direct evaluation with collocation
once again is faced with the C1 condition and indirect methods [54] are ine�-
cient. A Galerkin formulation has been shown to be quite successful [55]. Second,
as might be expected, collocating hypersingular integrals at a corner is not an
easy matter. The corner interpolation constraints analogous to the smooth sur-
face C1 condition [56, 57] are complicated, and even more di�cult to implement
than di�erentiability. As a consequence, treating corners involving only Dirichlet
boundary conditions is a major problem [58], as is the evaluation of (the multi-
ple) tangential derivatives at a corner. Moreover, depending upon the supplied
boundary data, collocation approximations are known to produce inaccurate so-
lutions in the vicinity of a corner [59]. Galerkin bypasses these di�culties, the
treatment of corners is relatively straightforward and simple, and our experience
has been that accurate corner solutions are obtained. Some of the numerical
results presented below will address these two important aspects of boundary
integral analysis.

Not surprisingly, the prevalence of the collocation approach in applications
has meant that most of the singular integration literature has focused on this
technique [34]. However, over the past several years, the evaluation of Galerkin
singular integrals has received some attention, and a variety of approaches have
been employed. A principal technique has been regularization, also commonly
used for collocation integrals [60]. By reformulating the integral either by inte-
grating by parts [61, 62, 63] or by using simple solutions [64], the kernels are at
worst weakly singular and can be dealt with numerically. More direct methods



include entirely numerical [65], analytical for linear elements [66], and combined
analytic/numeric for linear [67] or curved elements [13].

This chapter presents a direct scheme for evaluating Galerkin singular inte-
grals that relies primarily on analytic integration. This is a somewhat di�erent
method, and hopefully a simpler presentation, than that in [13]. Although all
of the singular integration techniques cited above are valid, and the choice of a
method is to some degree a matter of taste, the direct approach has some ben-
e�cial features. The direct method is quite general, immediately applicable to
any Green's function, and to either linear or curved interpolations. Second, the
analytic integration allows exact cancellation of the potentially divergent terms
which arise, and thus the method is reliable. This also helps with e�ciency: the
integrals that are computed numerically are completely non-singular, and thus
low order Gauss quadrature can be safely invoked. Moreover, symbolic computa-
tion allows a very simple derivation of the analytic integration formulas, even for
complicated kernels [68]. Finally, and perhaps the most important aspect, is that
these techniques extend, more or less directly, to three-dimensions. The present
contribution will consider only two dimensional problems, the three dimensional
analysis will be presented elsewhere [69].

An attempt is made to keep this article as self-contained as possible. The
next section de�nes the Symmetric-Galerkin approximation, and Section 3 estab-
lishes the necessity of the C1 condition for collocation. The core of this chapter
is Section 4, which describes, in the context of the Laplace equation, the singular
integration procedures for a linear element. The subsequent section treats the
more complicated Green's function for orthotropic elasticity, and results for sev-
eral fracture calculations are presented. The extension of the integration methods
to higher order curved elements is provided in Section 6, while Section 7 discusses
the evaluation of tangential derivatives. In Section 8, these methods are applied
to study an important problem in micro-electronics, void evolution in aluminum
thin �lm interconnects. Finally, it will come as no surprise that some concluding
remarks are to be found in the Conclusions.

2 Symmetric-Galerkin

To de�ne notation, and for completeness, this section will describe the Symmetric-
Galerkin approximation for the two-dimensional Laplace equation, r2� = 0. The
extension to other equations is immediate. The boundary integral equations for
potential � and normal ux @�=@n = r� �n are

P(P ) � �(P ) +

Z
�
�(Q)

@G

@n
(P;Q) dQ�

Z
�
G(P;Q)

@�

@n
dQ = 0 ; (1)

and

F(P ) � @�(P )

@N
+
Z
�
�(Q)

@2G

@N@n
(P;Q) dQ�

Z
�

@G

@N
(P;Q)

@�

@n
(Q) dQ = 0 : (2)

Here n = n(Q), N = N(P ) denote the unit outward normal on the boundary
curve � of the domain D, P and Q points on �. It is customarily stated that these
equations are valid for P 2 D, and that for P on the boundary there is a `boundary



angle' (solid angle in three dimensions) or a `free term' coe�cient multiplying
the leading terms �(P ) and @�=@n(P ), respectively. However, conceptually, and
computationally, it seems easier to adopt the view that these equations are valid
for P 2 D, and that for P 2 �, one examines the limiting value of the integrals
as P approaches the boundary. This is especially sensible for the hypersingular
equation, Eq. (2), as this expression was obtained by interchanging the derivative
and the integral, clearly illegal for P 2 �. Thus, writing this equation for P on the
boundary is a mistake that regularization, or some other procedure, must then
struggle to undo. It seems preferable not to make this error in the �rst place.
Moreover, the limit to the boundary interpretation works equally well for Eq.
(1), and it provides some computational advantages { the `free term' coe�cients,
which are sometimes troublesome to compute [70], are handled automatically
[71]. Finally, the limit process has also proved useful in the analysis of crack tip
expansions [72].

The fundamental solution G(P;Q) is usually taken as the point source po-
tential

G(P;Q) = � 1

2�
log kQ� Pk ; (3)

and for Symmetric-Galerkin it is important to note the symmetry properties

G(P;Q) = G(Q;P )

@G

@n
(P;Q) = � @G

@N
(P;Q) =

@G

@N
(Q;P ) (4)

@2G

@n@N
(P;Q) =

@2G

@n@N
(Q;P )

Collocation reduces Eq. (1) and Eq. (2) to a �nite linear system by enforcing
these equations at the nodal points fPjg which de�ne the discretized geometry,

P(Pk) = 0 ;

F(Pl) = 0 : (5)

In a weighted residual formulation, however, the integral equations are only en-
forced `on average', in the formZ

�
 k(P )P(P ) dP = 0 ; (6)Z

�
 l(P )F(P ) dP = 0 ; (7)

where  j(P ) are selected weight functions. In a Galerkin scheme, these weights
are the shape functions employed in interpolating the boundary functions � and
its normal derivative @�=@n. For a simple linear element, these functions are
illustrated in Fig. 1.

Symmetry of the coe�cient matrix for a general mixed boundary value prob-
lem is achieved by the following simple prescription. The potential equation is
employed on the Dirichlet surface �d, and the negative of the ux equation is
used on the Neumann surface �n, � = �d+�n. In block matrix form this can be
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Figure 1: Illustration of Galerkin weight functions for a linear approximation.

written as 
hdd hdn

�hnd �hnn
! 

�d

�n

!
�
 

gdd gdn

�gnd �gnn
! 

@�
@n

d

@�
@n

n

!
= 0 : (8)

The �rst row represents the Eq. (6) written on �d surface, the second from Eq.
(7) on �n. The columns have similar meaning, the �rst column arising from the
Q integration over �d. As the unknowns are ux on �d and potential on �n, the
coe�cient matrix becomes  

�gdd hdn

gnd �hnn
!
; (9)

and the symmetry of this matrix follows from Eq. (4). As noted above, the
symmetry is crucial, as it can be exploited to o�set the computational burden of
the double boundary integration.

As a �nal comment, note that the Symmetric-Galerkin prescription does not
immediately apply to the important class of problems where the domain consists
of sub-domains having di�erent physical properties, e.g., elastic constants. In this
case, the interfaces between the homogeneous sub-domains have no prescribed
data, and both physical variables must be computed. Fortunately, the Symmetric-
Galerkin method does extend in a natural way to cover interface problems [73].

3 C
1 Condition

The C1 condition associated with the treatment of hypersingular equations is
the main weakness of collocation, and hence a principal argument in favor of
Galerkin. We therefore digress somewhat to present a simple demonstration of
the necessity of this condition. The additional justi�cation for subjecting the



reader to this exercise is that it illustrates the limit to the boundary and analytic
integration procedures that will be used in Section 4 to de�ne and evaluate the
singular integrals. To establish the C1 condition, evaluation of the hypersingular
integral will be attempted for P a point on a at boundary segment. It will be
seen that, without di�erentiability, the integral fails to exist. This is essentially
the two dimensional version of the calculation presented in [26].

E
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E
1

P
-1

P
0

P
1

Pε = ( 0 , ε )

-1 0 1

Figure 2: Limit to the boundary for collocating the hypersingular integral.

Consider, as shown in Fig. 2, a at boundary segment lying along the x�axis,
consisting of the interval [�1; 1]. This segment is divided into the two elements
E0 = [�1; 0] and E1 = [0; 1], outward normals n = N = (0;�1), with nodes
P�1 = (�1; 0), P0 = (0; 0), and P1 = (1; 0). Note that for P = P0, the
hypersingular integral

� 1

2�

Z
E0+E1

�(Q)

�
�N �n

r2
+ 2

(n �R)(N �R)

r4

�
dQ : (10)

simply does not exist. The limit to the boundary is e�ected by replacing P0 with
the interior point

P" = P0 � "N : (11)

With P o� the boundary the integral exists, and then the limit " ! 0 can be
considered. Thus, in this case R = Q� P" = Q� (0; ").

On E0 the linear interpolation for � is �(Q) = �(Q(t)) = �0 + t(�0 � ��1),
where �j = �(Pj) and t 2 [�1; 0]. For E1, �(Q) = �0 + t(�1 � �0), t 2 [0; 1]. It
is only the linear terms (multiplying t) that are of interest here, and the required
integrals over E0 and E1 are

I0 = ��0 � ��1
2�

Z 0

�1
t

(
� 1

t2 + "2
+ 2

2"2

(t2 + "2)2

)
dt ;

I1 = ��1 � �0
2�

Z 1

0
t

(
� 1

t2 + "2
+ 2

2"2

(t2 + "2)2

)
dt : (12)

Simple calculus results in

I0 = (�0 � ��1) log(") + � � � ;
I1 = � (�1 � �0) log(") + � � � : (13)



Our only concern is the potentially divergent terms, and thus the contributions
which are well behaved as " ! 0 are suppressed. For the hypersingular integral
to have a �nite value, the two log(") terms must cancel, and thus it follows that

�0 � ��1 = �1 � �0 : (14)

The expressions on the left and right are in fact the tangential derivatives of
�(Q) on E0 and E1, respectively, and thus for a non-C1 interpolation at P0 the
hypersingular integral does not exist.

More precisely, without a di�erentiable interpolation of � at P0, there is no
way to de�ne the integral in Eq. (10) so that it is continuous from the interior.
The Hadamard Finite Part [15, 74, 75, 76] will assign a value to this integral,
essentially by ignoring the log(") singularity, but lacking continuity to the bound-
ary, the physical relevance of this de�nition is dubious. More important, perhaps,
is that hypersingular boundary integral calculations employing a C0 element can
give nonsensical solutions.

For Galerkin, the additional boundary integration reduces the strength of the
singularity, and thus the hypersingular kernel should only require a C0 interpo-
lation. This will be veri�ed in the next section, again by simply evaluating the
integrals directly.

4 Singular Integrals: Linear Element

A Galerkin calculation requires the evaluation of integrals for each pair of ele-
ments fEP ; EQg and, as illustrated in Fig. 3, two types of singular integrals
arise in a two dimensional calculation. The case EP = EQ is designated coin-

cident, and adjacent refers to EP 6= EQ but sharing a common node. In three
dimensions, there are two varieties of adjacent integration, adjacent elements can
share a common edge or a common vertex. In this section, the integration pro-
cedures are �rst presented in detail for the Laplace equation. The next section
will discuss, in somewhat less detail, the analysis for orthotropic elasticity.

Q
-1

Q
0

Q
1

Q
2

E
0

E
-1

E
0

E
1

s = 0 s = 1

P  element

Q  element

t = 0 t = 1

Figure 3: For EP = E0, the coincident singular integration is EQ = E0, and the
adjacent singular integrations are EQ = E1 and EQ = E�1.

A goal of this chapter is to demonstrate that Galerkin singular integral eval-
uation, often perceived as a far more complicated undertaking than for colloca-
tion, is a reasonably straightforward process. Unfortunately, to make this case,



a discussion of the details of the singular integration process cannot be avoided.
We have opted to present this material by displaying the Maple scripts used to
construct the boundary integral programs. As the Maple operations are usu-
ally named sensibly, it is hoped that these scripts are mostly self-explanatory.
Comments will be provided as needed. In an attempt to make reading through
this material less boring, we have, in some cases, omitted parts of the scripts
that are primarily cosmetic in nature, aimed at simplifying the appearance of the
formulas.

It will become clear that symbolic computation is not absolutely necessary
to carry out the analysis of the Laplace singular integrals. With integration
tables, and a moderate amount of pain and su�ering, it is certainly possible to
develop the formulas by hand. However, for more complicated kernels, symbolic
computation is virtually essential. Moreover, even for the simple Laplace case,
the time and e�ort required to construct and debug a boundary integral code is
most likely considerably less if symbolic computation is employed.

As indicated in Fig. 3, the parameters for the P and Q integrations will be
denoted by t 2 [0; 1] and s 2 [0; 1], respectively. The linear element approximation
is de�ned by the boundary and surface function approximations, which for the
element E0 = fQ0; Q1g are given by

Q(s) = (1� s)Q0 + sQ1 =M1(s)Q0 +M2(s)Q1

�(Q(s)) = M1(s)�(Q0) +M2(s)�(Q1) (15)

@�

@n
(Q(s)) = M1(s)

@�

@n
(Q0) +M2(s)

@�

@n
(Q1) :

As shown in Fig. 1, the Galerkin weighting functions  k(P ) are also de�ned by
the linear shape functions,M1(z) = 1�z,M2(z) = z. Thus, at the node P1 = Q1,

 P1(t) =

8><
>:

t P 2 E0

1� t P 2 E1

0 otherwise
: (16)

The general form of the double integrals to be computed can be expressed asZ 1

0
Mk(t)Jp(t)

Z 1

0
Mj(s)Jq(s)H(s; t) ds dt ; (17)

where H can be the Green's function or one of its derivatives and 1 � k � 2,
1 � j � 2. Note that one major simpli�cation of the linear element is that the
jacobians Jp and Jq are constants.

4.1 Coincident Integration

Although the coincident integration has a line of singularities along t = s, this
is actually a somewhat simpler situation than the adjacent integration with its
single singular point. We therefore begin the trek through the singular integral
evaluations with this easier task. All kernel functions contain the distance r =
kRk = kQ�Pk, and for the element EP = EQ de�ned by the nodes Q0 = (x0; y0)
and Q1 = (x1; y1), Eq. (15) yields

r(s; t) = kQ(s)� P (t)k = ajs� tj (18)



where a = Jq = Jp =
�
(x1 � x0)

2 + (y1 � y0)
2
�1=2

.

4.1.1 G

Substituting Eq. (18) and Eq. (3) into Eq. (6), the integrals to be evaluated are

� a
2

2�

Z 1

0
Mk(t)

Z 1

0
Mj(s) log (ajs� tj) ds dt ; (19)

and the �nal result is

� a
2

8�

�
�7

4
+ log(a)

�
; k = j

� a
2

8�

�
�5

4
+ log(a)

�
; k 6= j : (20)

The simple, and mostly self-explanatory, Maple script that was used to obtain
this result is:

ker1 := ln(a*(t-s));

ker2 := ln(a*(s-t));

b1 := int((1-s)*ker1,s=0..t) + int((1-s)*ker2,s=t..1);

b2 := int(s*ker1,s=0..t) + int(s*ker2,s=t..1);

b11 := int((1-t)*b1,t=0..1);

b12 := int(t*b1,t=0..1);

b21 := int((1-t)*b2,t=0..1);

b22 := int(t*b2,t=0..1);

As might be guessed, ln is the logarithm and int is the integration operator.
The splitting of the inner s integration into two pieces is to help Maple around
the absolute value that appears inside the logarithm.

4.1.2 First derivative of G

Di�erentiating the Green's function with respect to Q, the potential integral in
Eq. (6) becomes

� a

2�

Z 1

0
Mk(t)

Z 1

0
Mj(s)

Jqn �R

r2
ds dt : (21)

The factor a in front is Jp. It is convenient in this case to attach Jq to the kernel
function, as Jqn is simpler to compute than the unit normal. For the linear
element coincident integration it would seem that this is a trivial calculation: the
vector R = Q � P is the unnormalized tangent vector and therefore orthogonal
to the normal n. Hence, Eq. (21) is identically zero. This, however, neglects the
fact that for P 2 �, Eqs. (1) and (6) were valid provided the singular integrals
were de�ned as a limit to the boundary. The singularity in G is weak enough
that the integral exists for P on the boundary, and consequently a limit process
was not necessary.

In the boundary limit process, the point P is �rst replaced by the interior
point P � "n (recall that n is an outward normal). The integrals, which are now



nonsingular, can be evaluated and the limit "! 0 considered. The implementa-
tion of this process is easily explained by annotating the Maple script. The �rst
section of code sets up the kernel function, the variable eps playing the role of ",
and then computes the Q integration:

p1 := (1-t)*x0 + t*x1 - eps*(y1-y0);

p2 := (1-t)*y0 + t*y1 - eps*(x0-x1);

q1 := (1-s)*x0 + s*x1;

q2 := (1-s)*y0 + s*y1;

r1 := q1 - p1;

r2 := q2 - p2;

rsq := r1*r1 + r2*r2;

rsq := collect(rsq,[s,t]);

jnr := (y1-y0)*r1 + (x0-x1)*r2;

ker := jnr/rsq;

c1 := int((1-s)*ker,s=0..1);

Note that, for brevity, we only consider the shape functionM1(s), asM2(s) follows
in the same manner. At this point the limit can be evaluated, and this requires
informing Maple, via the substitution operator subs, that lim tan(�1=") = ��=2
and that " > 0:

c1 := subs(arctan(t/sqrt(eps^2))=pi/2,c1);

c1 := subs(arctan((-1+t)/sqrt(eps^2))=-pi/2,c1);

c1 := subs(1/sqrt(eps^2)=1/eps,c1);

c1 := expand(c1);

c1 := subs(sqrt(eps^2)=eps,c1);

c1 := subs(eps=0,c1);

Finally, the P integration can be carried out:

b11 := int(expand((1-t)*c1),t=0..1);

b21 := int(expand(t*c1),t=0..1);

The result for Eq. (21) is simply

�a
6
; k = j

� a

12
; k 6= j : (22)

The singular integral has been evaluated directly, without the complicated
and mysterious `symmetric bumping out the surface' Cauchy Principal Value pro-
cedure that is commonly used [4]. The `angle coe�cient' that results from CPV
(usually included explicitly in the boundary integral statement) can sometimes be
troublesome to compute [70]. Here it is automatically taken care of by the direct
calculation. The advantages of this limit approach, for collocation or Galerkin,
are further discussed in [71]. Finally, note that the single derivative kernel in
the hypersingular ux equation Eq. (7) is @G=@N, and as n = N for coincident
elements, there is no need to discuss this integral.



4.1.3 Second derivative of G

The @G=@n integral, which is somewhat contentious for collocation, is well be-
haved for Galerkin, and thus nothing very interesting has emerged as yet from
the analytic integrations. However, the Galerkin integration of the hypersingular
kernel,

� 1

2�

Z 1

0
Mk(t)

Z 1

0
Mj(s)

�
�(JpN) �(Jqn)

r2
+ 2

(Jqn �R)(JpN �R)

r4

�
ds dt ; (23)

will resemble, in the strength of the singularity, the collocation CPV integral.
This term then should not prove boring. The initial Maple coding for setting
up the geometry and the " limit is the same as the �rst section of coding above,
and will not be repeated. For k = j = 1, the Q integration and limit " ! 0 can
proceed as before:

jn1 := y1 - y0;

jn2 := x0 - x1;

ker := -(jn1*jn1 + jn2*jn2)/rsq + 2*(jn1*r1+jn2*r2)^2/(rsq*rsq);

b11 := int((1-t)*(1-s)*ker,s=0..1);

b11 := expand(b11);

b11 := subs(sqrt(eps^2)=eps, b11);

b11 := subs(1/sqrt(eps^2)=1/eps, b11);

b11 := subs(arctan(t/eps)=pi/2,b11);

b11 := subs(arctan((t-1)/eps)=-pi/2,b11);

b11 := subs(eps=0,b11);

b11 := subs(ln(t^2-2*t+1)=2*ln(1-t),b11);

At this point however, the P integration will fail because of the presence of
a t�1 term (�nally, something interesting!). This is not surprising, as this is
the divergent term that CPV gets rid of for collocation. This divergent t�1

contribution will eventually cancel: in terms of the notation in Fig. 3, if the
coincident integration is EP = EQ = E0, it will be seen that the balancing term
appears in the left adjacent integration EP = E0, EQ = E�1. This term is
therefore explicitly removed, and the analytic integration proceeds as

b11 := b11 - 1/t;

b11 := int(b11,t=0..1);

It is easy to see that t�1 arises from the constant term in the product of the shape
functions, and therefore multiplies �(Q0). By contrast, in Section 3, the log(")
divergence occurred in the linear term. Thus Galerkin only requires continuity
between elements to achieve cancellation and �nite integrals. Similarly, the k =
j = 2 term in Eq. (23) will produce a (1� t)�1 contribution, multiplying �(Q1),
which will disappear once the right adjacent integration is computed. For k 6= j,
the product of the two shape functions is zero at both endpoints, and thus no
divergent terms arise. The �nal result for Eq. (23) is

1

4�
; k = j

� 1

4�
; k 6= j : (24)



A signi�cant advantage of the direct limit approach is that the canceling
divergent terms can be identi�ed and removed from the calculation. The cancel-
lation is therefore achieved exactly, and each individual integral is a well de�ned
quantity. The alternative, approximate quadrature of divergent integrals and
e�ecting the cancellation numerically, is not an attractive proposition.

4.2 Adjacent Integration

Thus far the integrations have been relatively trivial, and complete analytical
evaluation of the double integral was possible. Moreover, the resulting exact for-
mulas are simple enough that computation time is not an issue, and thus analytic
integration is the obvious choice. For the adjacent singular integration, the sin-
gularities are necessarily weaker, being at a single point in the two-dimensional
ft; sg parameter space, but the integrands are less simple. As a consequence,
we adopt a hybrid method, the analytical work restricted to one dimension in
parameter space, and one dimension left to numerical means.

It is convenient to introduce a polar coordinate transformation, ft; sg !
f�; �g centered at the singular point. The nasty part of the function is associated
with �, and the � d� d� jacobian helps to reduce the strength of the singularity.
The � integration will be performed analytically, leaving a smooth function of �
for the numerical quadrature.

t

wθ

ρ

Figure 4: Polar coordinates for the adjacent singular integrations.

We treat only the left adjacent case, EP = E0, EQ = E�1, the right adja-
cent can be treated analogously. Or, even more simply, reverse direction of the
elements EP = E0 and EQ = E1 and use the left adjacent algorithm, making
a needed sign change to account for the wrong orientation. Referring again to
Fig. 3, the singularity is at t = 0, s = 1. Changing variables, w = 1 � s, the
singular point is at the origin t = w = 0, and polar coordinates is then de�ned



by w = � cos(�), s = � sin(�). As indicated in Fig. 4,

Z 1

0

Z 1

0
� � �ds dt!

Z �

4
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Z sec(�)

0
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Z �

2

�

4

Z csc(�)

0
� � � � d� d� : (25)

In the following Maple script, appearing in all adjacent integrations, xm1 stands
for x�1, the x-coordinate of Q�1, and the distance function becomes r2 = a2�2,
where a is a function of �.

q1 := w*xm1 + (1-w)*x0;

q2 := w*ym1 + (1-w)*y0;

p1 := (1-t)*x0 + t*x1;

p2 := (1-t)*y0 + t*y1;

r1 := q1 - p1;

r2 := q2 - p2;

rsq := r1*r1 + r2*r2;

rsq := subs(w=rho*ct,t=rho*st,rsq);

asq := expand(rsq/rho^2);

4.2.1 G and its �rst derivative

As the integration of these two terms is straightforward, we discuss them together.
For G(P;Q), the additional coding is

ker := rho*ln(a*rho);

b11 := int((1-rho*st)*rho*ct*ker,rho=0..L):

b12 := int((1-rho*st)*(1-rho*ct)*ker,rho=0..L):

b21 := int(rho*st*rho*ct*ker,rho=0..L):

b22 := int(rho*st*(1-rho*ct)*ker,rho=0..L):

Here, L stands for the upper limit sec(�) or csc(�), depending upon the value of
�. For the normal derivative of G(P;Q), including the � factor from the jacobian
with the kernel makes this term independent of �. The � integration therefore
simply reduces to the product of the shape functions, and as this is a trivial task,
this calculation is omitted. The @G=@N integral from the ux equation follows
exactly as above and is likewise omitted.

4.2.2 Second derivative of G

With the exception of k = 1, j = 2, the product of the shape functions is zero
at the singular point Q0, and as a consequence these integrals in Eq. (23) are
perfectly well behaved. These contributions, and the non-constant terms from
k = 1, j = 2, namely M1(t)M2(s) � 1, can be handled as above. We therefore
focus solely on the constant term integration arising from k = 1, j = 2. As a
balancing divergent �t�1 term is expected, polar coordinates is not an option,
and we return to integrating over ft; sg. The compensation is that a complete
analytic integration of this term is possible.

Of all the calculations, this is the most complicated, and the Maple coding
will require some explanation.



q1 := w*xm1 + (1-w)*x0;

q2 := w*ym1 + (1-w)*y0;

p1 := (1-t)*x0 + t*x1;

p2 := (1-t)*y0 + t*y1;

r1 := q1 - p1;

r2 := q2 - p2;

rsq := r1*r1 + r2*r2;

rsq := collect(rsq,w);

a0 := coeff(rsq,w,0);

a1 := coeff(rsq,w,1);

a2 := coeff(rsq,w,2);

betasq := expand((4*a2*a0-a1^2)/t^2);

rsq := c2*w*w + c1*w +c0;

ker := -(jnjN)/rsq + 2*(jnq1*r1+jnq2*r2)*

(jnp1*r1+jnp2*r2)/(rsq*rsq);

b12s := int(ker,w=0..1);

Note that r2 = a2w
2+a1w+a0; these polynomial coe�cients are replace by new

constants fcjgmerely to simplify the appearance of the formulas. The integration
results in two types of rational function terms, one with denominators which are
not zero at t = 0, and one with terms of the form tk. It is these latter terms that
we are most interested in, and thus a change of variables, t�k ! v�k is made so
that these contributions can be isolated.

b12s := subs(arctan(c1/sqrt(4*c2*c0-c1^2))=at1,b12s):

b12s := subs(arctan((c1+2*c2)/sqrt(4*c2*c0-c1^2))=at2,b12s):

b12s := subs((4*c2*c0-c1^2)^(-5/2)=beta^(-5)*t^(-5),b12s):

b12s := subs((4*c2*c0-c1^2)^(3/2)=beta^(3)*t^(3),b12s):

b12s := subs(c0=a0,c1=a1,c2=a2,b12s):

b12s := subs(t^6=v^6,t^5=v^5,t^4=v^4,t^(-5)=v^(-5),b12s):

b12s := subs(jnjN=(y0-ym1)*(y1-y0)+(xm1-x0)*(x0-x1),b12s):

b12s := expand(b12s):

b12s := collect(b12s,v):

cf1 := coeff(b12s,v,-1);

cf1 := normal(subs(1/beta^2=1/betasq,cf1));

b12s := b12s - cf1/v;

As expected, the coe�cient of the 1=t term, cf1, is equal to �1, and cancels with
the coincident integration. After integrating b12s with respect to t, the �nal
result is

� 1

4�
log

 
(x1 � x�1)2 + (y1 � y�1)2

J2q

!
: (26)

The process of reducing the answer to this simple form is not straightforward,
but not especially interesting. We therefore omit the details.

4.3 Accuracy

Simple test calculations have been carried out to verify the correctness of the
above procedures. Consider �rst a Dirichlet problem on the unit disk, with



boundary values � = x2�y2. Table 1 compares the maximum and L2 errors in the
computed normal ux for Symmetric-Galerkin and collocation approximations,
both employing a linear element approximation. The L2 error is de�ned as

 
1

M

MX
k=1

e2k

!1=2

; (27)

where M is the number of nodes and ek is the error at node k. Results for four
uniform discretizations of the circle are reported, M = 30; 60; 150; 300. In both
methods, all numerical quadratures were computed using a 4-point Gauss rule,
and the singular integrals in the collocation method were calculated analytically.
In this case, the Symmetric-Galerkin results are signi�cantly more accurate than
collocation.

M Symmetric-Galerkin Collocation
Max L2 Max L2

30 .00326354 .00230768 .01518792 .01073948
60 .00086900 .00061446 .00417751 .00295394
150 .00014453 .00010220 .00070568 .00049900
300 .00003703 .00002619 .00017957 .00012698

Table 1: A comparison of Symmetric-Galerkin and collocation nodal errors for a
Dirichlet problem on the unit disk.

For the Dirichlet boundary conditions, the Symmetric-Galerkin method em-
ploys the potential equation. To examine the performance of the hypersingular
ux equation, a Neumann problem is solved exterior to the unit disk. The cho-
sen exact solution is � = x=(x2 + y2), which also turns out to be the form of
the normal ux boundary condition. The errors in the computed potential are
shown in Table 2, and once again Symmetric-Galerkin is more accurate than
collocation. Note that the collocation solution was obtained using the potential
equation { the hypersingular equation cannot be used with the C0 linear element
approximation.

M Symmetric-Galerkin Collocation
Max L2 Max L2

30 .00191174 .00135180 .00941169 .00665506
60 .00047500 .00033588 .00231805 .00163911
150 .00009619 .00006802 .00036755 .00025990
300 .00006431 .00004547 .00009158 .00006476

Table 2: A comparison of Symmetric-Galerkin and collocation nodal errors for a
Neumann problem on the domain exterior to the unit disk.

That Galerkin is more accurate than collocation is not surprising. Similar
behavior was observed for two dimensional elasticity (using a non-symmetric
Galerkin formulation) by de Paula and Telles [67].



5 Orthotropic Elasticity

As discussed in the introduction, hypersingular equations were developed pri-
marily in response to the need for an e�cient boundary integral fracture analysis
algorithm. Crack calculations are therefore a main motivation for developing the
Galerkin method. To present some computational fracture results, this section
will present a brief discussion of the boundary integral equations for orthotropic
elasticity. Further details can be found in [22, 77, 78].

The singularities arising in the elastic analysis are no di�erent from those
in the corresponding point source potential and its derivatives, and thus there is
no substantive change in the nature of the singular integrations. However, the
fundamental displacement solution U(P;Q) involves two logarithmic terms rather
than the one in G(P;Q), and moreover is a tensor of order 2. The expressions
for the derivative kernels are therefore more numerous and rather longer than for
the Laplace equation. Thus, symbolic computation is, if not absolutely essential,
at least highly useful for simplifying the construction of the algorithm.

5.1 Orthotropic Boundary Integral Equations

The boundary integral formulation for two dimensional orthotropic elasticity was
developed by Rizzo and Shippy [78], and we follow their presentation. If uj and
�jk denote the components of the displacement vector and stress tensor, the plane
stress constitutive relationship is given by

�11 = c11u1;1 + c12u2;2

�22 = c12u1;1 + c22u2;2 (28)

�12 = c66(u1;2 + u2;1) ;

where cij are material constants. The Navier{Cauchy equilibrium equations, in
the absence of body forces, are

c11u1;11 + (c12 + c66)u2;12 + c66u1;22 = 0

c22u2;22 + (c12 + c66)u1;12 + c66u2;11 = 0 : (29)

The boundary integral equations take the same general form as for the Laplace
equation, the displacement u and traction � playing the roles of potential and ux,
respectively. Thus, corresponding to Eq. (1) and Eq. (2) are the displacement
and traction equations

uk(P ) =
Z
�
Ukj(P;Q) �j(Q) dQ�

Z
�
Tkj(P;Q) uj(Q) dQ (30)

�k(P ) =
Z
�
Skj(P;Q) �j(Q) dQ�

Z
�
Wkj(P;Q) uj(Q) dQ (31)

(as usual, summation over the repeated index j is implied). The fundamental
solution Ukj(P;Q) is the displacement �eld at Q due to a point force at P in an
in�nite sheet of orthotropic material [78, 79]. This function is given by

U11(P;Q) =
1

�

hp
�1A

2
2 log(r1)�

p
�2A

2
1 log(r2)

i



U12(P;Q) =
1

�
[A1 A2 (�2 � �1)]

U21(P;Q) = U12(P;Q) (32)

U22(P;Q) =
1

�

"
A2
2 log(r2)p

�2
� A2

1 log(r1)p
�1

#
;

where the distance and angle functions are given by

r2k = (Q1 � P1)2 + 1

�k
(Q2 � P2)2 (33)

and

�k = tan�1
"

Q2 � P2p
�k (Q1 � P1)

#
: (34)

The constants are de�ned by

� = 2� (�1 � �2) s22

�1 + �2 =
2s12 + s66

s22

�1 �2 =
s11
s22

(35)

Ak = s12 � �k s22
and "

c11 c12
c12 c22

#
=

"
s11 s12
s12 s22

#
�1

; c66 =
1

s66
: (36)

The expressions for the subsequent derivatives T (P;Q), S(P;Q) andW (P;Q), are
quite lengthy, and these formulas have consequently been exiled to the appendix.

5.2 Singular Integrals

There are several aspects of the orthotropic singular integral analysis that dis-
tinguish it from Laplace. Foremost perhaps is that in the limit to the boundary,
it is no longer convenient to approach along the normal direction. The approach
direction is arbitrary, as long as it is not tangent to the boundary, and for the
Laplace kernels a normal limit was chosen to simplify the form of r2: in this case
r2 = (s � t)2 + "2, i.e., there is no �rst order term. The integrations are quite
a bit simpler if this linear term is missing. For the orthotropic analysis, a linear
term is avoided by an appropriate non-normal limit direction. Second, as noted
above, the kernel functions are more complicated than for Laplace. For compu-
tational e�ciency of the analysis code, it makes sense to break the integration
into its basic components, rather than attempting to provide analytic formulas
for a complete kernel function. This somewhat vague statement will be clari�ed
in the discussion of the Maple scripts below. The reader will probably be relieved
to hear that the entire analysis of Section 4 will not be repeated { these points
can be illustrated by examining the coincident integration for the hypersingular
kernel.

In this �rst section of Maple script note the revised limit direction, where
alpha will be either �1 of �2 (de�ned in Eq. (35)), depending upon which term
is being integrated:



mp[1] := 1-t;

mp[2] := t;

mq[1] := 1-s;

mq[2] := s;

jn[1] := y1-y0;

jn[2] := x0-x1;

p1 := mp[1]*x0 + mp[2]*x1 - eps*jn[1];

p2 := mp[1]*y0 + mp[2]*y1 - eps*alpha*jn[2];

q1 := mq[1]*x0 + mq[2]*x1;

q2 := mq[1]*y0 + mq[2]*y1;

rsq := b2*(s-t)^2 + b0*eps^2;

The coe�cients b0 and b2 are once again stand-ins for quantities that can be
computed, inserted to simplify the appearance of the formulas. Examining the
expressions for WkjL in the appendix, the hypersingular kernel is seen to consist
of linear combinations of r�2k and r�4k terms, and this next section considers the
r�2k case. It might appear from this script that terms of the form "�1 are being
recklessly thrown away. However, it is easily checked (again, with Maple) that
these terms cancel with corresponding ones from the r�4k part of the kernel. (The
"�1 term did not appear in the Laplace analysis because the two components of
the hypersingular kernel were treated together). First the s integration:

KW1 := 1/rsq;

for j from 1 to 2 do

z := int(mq[j]*KW1,s=0..1);

z := subs(sqrt(b2*b0*eps^2)=eps*sqrt(b2*b0),z):

z := subs(1/sqrt(b2*b0*eps^2)=1/(eps*sqrt(b2*b0)),z):

z := subs(arctan(

b2*(-1+t)/eps/sqrt(b2*b0))=-pi/2,z):

z := subs(arctan(

(b2*t)/eps/sqrt(b2*b0))=pi/2,z):

z := expand(z);

z := subs(1/eps=ee,z);

z := collect(z,ee);

z := coeff(z,ee,0);

z := subs(eps=0,z);

as[j] := z;

od;

and then the t integration:

for k from 1 to 2 do

for j from 1 to 2 do

z := as[j];

z := int(z*mp[k],t=0..1);

w1[k,j] := z;

od;

od;



The numerators attached to r�4 in WkjL come in three avors, and this is con-
veniently handled by de�ning the array KW[m], 1 �m� 3. This piece of coding is
further complicated by the fact that the t�1 divergent expression arises here:

KW[1] := expand((q1-p1)^2)/(rsq*rsq);

KW[2] := expand((q1-p1)*(q2-p2))/(rsq*rsq);

KW[3] := expand((q2-p2)^2)/(rsq*rsq);

for m from 1 to 3 do

for j from 1 to 2 do

z := int(mq[j]*KW[m],s=0..1);

z := subs(sqrt(b2*b0*eps^2)=eps*dd,z):

z := subs(1/sqrt(b2*b0*eps^2)=1/(eps*dd),z):

z := subs(arctan(b2*(-1+t)/eps/dd)=-pi/2,z):

z := subs(arctan((b2*t)/eps/dd)=pi/2,z):

z := subs((b2*b0*eps^2)^(3/2)=eps^3*dd^3,z):

z := subs(1/(b2*b0*eps^2)^(3/2)=1/(eps^3*dd^3),z):

z := expand(z);

z := subs(1/eps=ee,z);

z := collect(z,ee);

z := coeff(z,ee,0);

z := subs(eps=0,z);

ax[j,m] := z;

od;

od;

for k from 1 to 2 do

for j from 1 to 2 do

for m from 1 to 3 do

z := ax[j,m];

z := expand(z*mp[k]);

# get rid of 1/t or 1/(1-t)

if j=1 then

z := subs(1/t=tt,z);

z := collect(z,tt);

z := coeff(z,tt,0);

fi;

if j=2 then

z := subs(t=1-w,z);

z := expand(z);

z := subs(1/w=ww,z);

z := collect(z,ww);

z := coeff(z,ww,0);

z := subs(w=1-t,z);

z := expand(z);

fi;

z := int(z,t=0..1);

w2[k,j,m] := z;

od;



od;

od;

The formulas for w1[k,j] and w2[k,j,m] are used directly in the fortran coding.

5.3 Fracture Calculations

The two plane stress examples to be presented involve a single interior crack, one
horizontal, Fig. 5(a), and one inclined at an angle � = 45o with the horizontal
Fig. 5(b). The crack has length 2a = 0.4, the plate has height 2H = 2.0 and width
2W = 1.0, and the applied traction is �a = 10 MPa. The material properties
correspond to average smeared-out properties of �breglass [80] and are given in
terms of the Young's moduli, shear modulus and Poisson's ratio,

E1 = 48:26 GPA

E2 = 17:24 GPA

�12 = 6:89 GPA (37)

�12 = 0:291 :

These quantities can be related to the elastic constants [81].
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Figure 5: Geometry and boundary conditions for a central crack in a plane or-
thotropic plate under remote loading. (a) horizontal crack; (b) inclined crack.

The linear element Symmetric-Galerkin solution for these problems has been
compared against the �nite element solution provided by the program FRANC
[82]. The point of comparison is the main quantity of interest in these calcula-
tions, the jump in displacement (`displacement discontinuity' or crack opening
displacement (COD)) �u along the crack.



The �nite element meshes, and the corresponding solution, are illustrated
in Figures 6 and 7. The mesh for the horizontal crack has 768 nodes and 266
quadratic (six-noded triangles, and eight-noded quadrilaterals) elements. The
mesh for the inclined crack has 790 nodes and 276 elements. As indicated by the
rosette of �nite elements around the crack tips, special quarter-point elements
are used in the crack tip region.

For the Symmetric-Galerkin calculations, the outer boundary of the plate
has been discretized with 60 equal length linear elements. The nodal locations
coincide with the FEM boundary discretization. The crack face employs 8 linear
boundary elements, with a �ner discretization towards the crack tip.

Table 3 shows the COD results for the horizontal crack. Due to symmetry
symmetry, the reported results are for the left portion of the crack only. The last
column of this table is computed as

�u
�
(%) =

�u
�
(FEM)��u

�
(SG-BEM)

�u
�
(FEM)

100% (38)

The CODs obtained are in good agreement, the largest discrepancy being less
than 5%. For this problem, the crack sliding displacement should be zero (i.e.
�ux = 0). The numerical values for both the BEM and FEM are of the order of
10�8 or less, which indicates that consistent solutions have been obtained.

Figure 6: Finite element solution for a central crack in an orthotropic plate under
remote tension; solid line denotes the deformed con�guration and the dashed line
denotes the original con�guration.

Tables 4 and 5 show the results for the displacement discontinuity �u =
(�ux; �uy) for the inclined crack (Figure 6(b)). As before, the results for �uy
are in good agreement, the largest discrepancy being 5:07%. The results for �ux,



Table 3: Crack Opening Displacement �uy for the horizontal crack.
The solution is for half crack, starting at the left crack tip.

SG-BEM FEM
x y �uy (x10�3) �uy (x10�3) �uy(%)

0.3000 1.000 0.000000 0.000000 0.00
0.325 1.000 0.227131 0.230606 1.51
0.400 1.000 0.391940 0.411062 4.65
0.450 1.000 0.439092 0.460448 4.64
0.500 1.000 0.453433 0.476836 4.91

however, display a larger discrepancy, especially for the quarter point nodes in
the �nite element mesh. These nodes are very close to the crack tip and the BEM
results, which do not employ a special tip approximation, are consequently sen-
sitive to the numerical discretization. Nevertheless, the actual numerical values
for �ux are of comparable magnitudes. A �ner boundary element mesh or an
appropriate crack tip treatment in the BEM analysis would probably reduce the
di�erence between the results.

Figure 7: Finite element solution for an inclined crack in an orthotropic plate un-
der remote tension; solid line denotes the deformed con�guration and the dashed
line denotes the original con�guration.



Table 4: Displacement discontinuity �ux for the inclined crack.

�ux(x10
�4) �ux(%)

x y SG-BEM FEM

0.3586 0.8586 0.000000 0.000000 0.00
0.3763 0.8763 -0.049903 -0.065051 23.29
0.4293 0.9293 -0.105063 -0.113276 7.25
0.4646 0.9646 -0.125796 -0.139346 9.72
0.5000 1.0000 -0.132743 -0.145958 9.05
0.5353 1.0353 -0.125730 -0.139309 9.75
0.5707 1.0707 -0.104960 -0.113400 7.44
0.6237 1.1237 -0.049838 -0.064930 23.24
0.6414 1.1414 0.000000 0.000000 0.00

Table 5: Displacement discontinuity �uy for the inclined crack.

�uy(x10�4) �uy(%)
x y SG-BEM FEM

0.3586 0.8586 0.000000 0.000000 0.00
0.3763 0.8763 0.163476 0.164245 0.47
0.4293 0.9293 0.283705 0.298861 5.07
0.4646 0.9646 0.318479 0.334257 4.72
0.5000 1.0000 0.329145 0.345614 4.77
0.5353 1.0353 0.318613 0.334217 4.67
0.5707 1.0707 0.283939 0.298794 4.97
0.6237 1.1237 0.163708 0.164171 0.28
0.6414 1.1414 0.000000 0.000000 0.00



6 Singular Integrals: Curved Elements

Although it may appear that the techniques described above are inherently lim-
ited to the linear element, they are in fact equally applicable to higher order
approximations [68]. In the linear interpolation, the simpli�cations that allow
the analytic integration and limit evaluation to go forward are that (a) the dis-
tance function r2 is a quadratic polynomial, and (b) the jacobian is a constant.
Lacking these properties with a higher order interpolation, the integrands be-
come su�ciently complicated that exact integration is not immediately possible.
Nevertheless, the singular integrals can be split into two pieces: the singular term
will look essentially like a linear element integral, and will therefore be amenable
to analytic integration and limit evaluation; the remainder term, although some-
what complicated, will be completely non-singular. Moreover, it will usually be
relatively small in value compared to the singular part, and can therefore be
treated e�ciently by low order numerical quadrature. This section will show how
to accomplish this decomposition.

The procedures for a curved element will be described using the Overhauser
cubic spline [42], probably the most complicated two-dimensional element that
has been used in boundary element analysis. This element takes four consecutive
nodes, fPkg4k=1, to de�ne the piece of curve between the second and third nodes
[P2; P3]. The explicit parametric form is

Q(t) =

 
4X

k=1

xkMk(t);
4X

k=1

ykMk(t)

!
; (39)

where Pk = (xk; yk) and the shape functions for 0 � t � 1 are

M1(t) = �
�
t� 2t2 + t3

�
=2

M2(t) =
�
2� 5t2 + 3t3

�
=2 (40)

M3(t) =
�
t+ 4t2 � 3t3

�
=2

M4(t) = �
�
t2 � t3

�
=2 :

The motivation for this less than obvious de�nition is that the corresponding
isoparametric approximation for �,

� (Q(t)) =
4X
1

�(Pk)Mk(t) ; (41)

is di�erentiable everywhere on the boundary.
To illustrate the splitting into singular and non-singular parts, it su�ces to

consider the coincident integration, the corresponding treatment of the adjacent
case being straightforward. Including the limit to the boundary term, R =
Q(s)� (P (t)� "N) = (r1(t; s); r2(t; s)) and using Eqs. (39) and (40),

r1(t; s) = ax(s� t) + bx(s� t)2 + gx(s� t)3 � "N1

r2(t; s) = ay(s� t) + by(s� t)2 + gy(s� t)3 � "N2 (42)

r2 = "2 + �(s� t)2 + �(s� t)3 + � � � ;



where the polynomial coe�cients fa; b; gg are given in terms of the nodal coordi-
nates,

ax = (x3 � x1) =2
bx = (2x1 � 5x2 + 4x3 � x4) =2 (43)

gx = (�x1 + 3x2 � 3x3 + x4) =2 ;

and expressions for �, �, etc. are easily obtained. In addition, the jacobian is
given by

Jq(s) = k d
ds
Q(s)k =

�
j0 + j1s+ j2s

2
� 1

2 : (44)

With the appearance of a square root in the jacobians, and the high order poly-
nomials in the denominators, analytic integration of the boundary integrals is
clearly not possible.

The splitting for G(P;Q) is accomplished by appropriately rewriting each
factor in the product Jq(s) log(r

2). The logarithm is straightforward,

log(r2) = log
�
�(s � t)2 + �(s � t)3 + � � �

�
= log

�
�(s � t)2

�
+ log

�
1 +

�

�
(s � t) + � � �

�
: (45)

The jacobian is handled as

Jq(s) = Ĵ(s; t) +
�
Jq(s)� Ĵ(s; t)

�
(46)

where Ĵ(s; t) is a Taylor expansion of Jq(s) expanded around s = t, and is
therefore a polynomial in s� t [83]. Hence, the partitioning is given by

Jq(s) log(r
2) = Ĵ(s; t) log

�
�(s � t)2

�
+ Jq(s) log

�
1 +

�

�
(s� t) + � � �

�

+
�
Jq(s)� Ĵ(s; t)

�
log

�
�(s � t)2

�
: (47)

The �rst term is simple enough to be integrated exactly and it contains all of
the singularity { the two remainder terms are well behaved and can be safely
evaluated numerically.

There remains the question of the order of the Taylor expansion Ĵ(s; t). The
main concern is the integration of the last term in Eq. (47), the remainder in
the Taylor series, which is O((s � t)), multiplied by the log singularity. With
symbolic computation, it is easy to include any number of terms in Ĵ(s; t), but
for e�ciency it is still desirable to limit the complexity of the analytic formulas
as much as possible. A three term expansion has been found to be satisfactory if
standard Gauss quadrature is used to evaluate this last term. However, a special
quadrature technique that speci�cally accounts for the logarithmic singularity
can also be employed [3, 84, 85]. This special Gauss rule is based on observing
that Z 1

0
f(t) log(t) dt = �

Z 1

0

Z 1

0
f(st) ds dt : (48)



For well behaved f(t), the non-singular double integral can be evaluated with a
simple Gauss rule. If this quadrature method is employed in the integration of
Eq. (47), a one term expansion Ĵ(s; t) = Jq(t) would probably su�ce.

For the more singular integrals, Jp appears in the integral of the �rst deriva-
tive of the Green's function, but otherwise the jacobians are absorbed into the
respective normals in the kernel function. Thus, the main stumbling block to
analytic integration is the presence of rational functions with denominators of
the form r2k. As with the logarithm, the goal will be to �nd a modi�ed form of
the rational function which is exactly integrable but which nevertheless retains
all of the singularity at t = s. This is achieved by replacing the r�2k terms with
the simpler expression r̂�2k,

1

r̂2k
=

1

(�(s � t)2 + "2)k
: (49)

consisting of the �rst two non-zero terms in r2, Eq. (42). These are the most
important terms as s ! t, and contain the essence of the singularity. Some
algebraic manipulation results in

1

r2
=

1

r̂2
+

�
1

r2
� 1

r̂2

�
(50)

=
1

r̂2
+

 
r̂2 � r2
r2r̂2

!
(51)

For the term in parenthesis, the lowest order term appearing in the numerator
is (s � t)3, and the denominator is essentially (s � t)4. The singularity in this
remainder is therefore one degree less than r�2, which behaves as (s� t)�2. The
remainder is, however, still singular, and thus this process is iterated one more
time. Replacing r�2 on the right by Eq. (51) results in

1

r2
=

1

r̂2
+
r̂2 � r2
r̂4

+
(r̂2 � r2)2

r2r̂4

=
1

r̂2
� �(s� t)3

r̂4
+ I0(t; s) ; (52)

where I0(t; s) is a rational function which is nonsingular at t = s. Thus, one can
set " = 0 in I0 and integrate numerically. As with the linear element, the �rst
two terms in Eq. (52) can be integrated analytically without any di�culty, and
the limit "! 0 can then be computed.

The r�4 term in the hypersingular kernel can be manipulated in the same
manner. Thus,

1

r4
=

1

r̂4
+

 
r̂4 � r4
r4r̂4

!

=
1

r̂4
+
r̂4 � r4
r̂8

+
(r̂4 � r4)2

r4r̂8
(53)

=
1

r̂4
� 2

�(s� t)3
r̂6

+ I1(t; s) ;



In this case I1 is still singular, of the form (s� t)�2, but this will be taken care of
by the zero in the numerator at t = s. As with the choice of order in the Taylor
expansion for the jacobian, the process represented by Eq. (52) or Eq. (53) can
be repeated as often as desired. More iterations will make the numerical part as
weaker, but also increase the complexity (and hence the eventual computational
cost) of the analytic formulas.

These simple techniques allow curved elements to be treated almost as easily
as the linear element. The two main di�erences are that numerical integration
will always be required, where before complete analytic integration was often
possible, and that the analytic integration is more involved (e.g., the r̂�4 term
in Eq. (52)). Again, with symbolic computation, this additional complication is
not a problem.

The basic idea of partitioning integrals into singular and non-singular parts
can also be applied to boundary integral formulations involving more complicated
fundamental solutions [68]. For example, the Green's function kernels for elastic
wave scattering (frequency domain) are de�ned in terms of Hankel functions
Hm(r), or exponentials eikr, in two [86] and three dimensions [70], respectively.
For the Hankel function, the singular integral analysis analysis can be carried out
by invoking the asymptotic form of the Hankel function as z ! 0 [87],

H(1)
m (z) � �2i

�

�
(m� 1)!

zm
� Jm(z) log

�
z

2

��
; (54)

where Jm is the Bessel function of order m. Only the leading order term in this
expansion is shown, the lower order contributions, z�k ; k < m, will become reg-
ular after multiplication by the appropriate coe�cient from the kernel function.
However, the integrable logarithm term is displayed, to indicate that this term
should be pulled out and handled via the special quadrature discussed above.

For three dimensional analysis, the integration of the exponential can be
handled simply by Taylor expansions,

eikr = 1 + ikr � k2r2

2
� � � : (55)

With the techniques presented in this section, the limit de�nition and analytic
integration process can be applied to virtually any boundary integral formulation.

7 Surface Derivatives

The `post-processing' evaluation of surface tangential derivatives is an important
topic wherein hypersingular integrals must be confronted, or at the very least,
sidestepped. It is therefore expected that the Galerkin approach can successfully
address this issue, and this section will argue that this is indeed the case. In po-
tential theory, the normal ux is known everywhere from the boundary element
solution and the prescribed data, but some applications demand the complete
derivative on the surface, e.g., the electric �eld vector. Employing the unit tan-
gent T in Eq. (2) instead of the normal N, the tangential component of the
electric �eld can be expressed as



@�(P )

@T
=

Z
�

"
@G

@T
(P;Q)

@�

@n
(Q)� �(Q) @

2G

@T@n
(P;Q)

#
dQ ; (56)

and the expression on the right involves only known quantities. However, the
kernel @2G=@T@N is hypersingular, and the C1 condition once again makes direct
evaluation of nodal tangential derivative values quite di�cult.

The existing methods for evaluating surface derivatives, mostly formulated in
terms of computing the surface stress tensor in elasticity, fall into three categories.
The initial e�orts employed �nite di�erencing [88, 89] or di�erentiation of the
shape functions [90]. These techniques are simple but not highly accurate. A
second avenue is to directly collocate the hypersingular integral at the nodes,
employing the required C1 elements [91]. As noted in the introduction, these
elements are not easy to work with, especially in three dimensions, and boundary
corners cannot be easily handled [92].

The third class of methods evaluates the derivatives indirectly, bypassing
the di�erentiability condition. A non-conforming approach computes tangential
derivatives at points interior to the element [93, 94, 95], where all functions are
di�erentiable, and the hypersingular integral therefore exists. Nodal values, how-
ever, must then be obtained by interpolation, which adds another approximation
and, moreover, is not a trivial task in three dimensions. A completely non-
hypersingular scheme for calculating nodal values is the `displacement gradient'
approach of Okada et al. [54, 96]. This technique develops a non-hypersingular
boundary integral equation for the gradient, from which the stress can be com-
puted. Standard numerical methods can be employed [97], but a completely new
boundary integral formulation, i.e., new kernel functions, must be implemented
and solved.

A general algorithm for direct evaluation of nodal surface derivatives, with
continuous (C0) elements, can be based upon the Galerkin approximation [55].
In Galerkin form, Eq. (56) becomes

Z
�
 k(P )

@�(P )

@T
dP = (57)

Z
�
 k(P )

Z
�

"
@G

@T
(P;Q)

@�

@n
(Q)� �(Q)

@2G

@T@n
(P;Q)

#
dQdP :

As with the displacement gradient method, this results in a system of algebraic
equations for the derivative values everywhere on the boundary: the equation
centered at a particular node P0 ( k(P0) = 1) will necessarily involve unknown
tangential derivative values at all neighboring nodes (on elements where  k(P0) 6=
0). However, unlike displacement gradient, Eq. (57) decouples at boundary
corners. This follows from the fact that the Galerkin weight functions  k at
a corner can be chosen to be non-zero only on one side of the corner [67]. In
applications which only require the tangential derivative on a segment of the
boundary, this can lead to signi�cant savings.

The coe�cient matrix, stemming from the left-hand side of Eq. (57), is trivial
to compute: it is symmetric, involves only `nearest neighbor interactions', and
the non-zero matrix elements simply require the integration of a pair of shape



functions. Although the evaluation of the right hand side of Eq. (57) will be
a relatively expensive calculation, the symmetry of the kernels functions can be
invoked to lessen the computation time.

7.1 Example Calculations

It is expected that, by now, the reader is tired of looking at Maple codes. Fortu-
nately, the singular integral evaluation for Eq. (57) provides no new challenges,
and can be accomplished with the techniques presented in Section 4. We therefore
dispense with a singular integral analysis, and immediately present the results
from two simple test calculations. More realistic problems will be discussed in the
next section. Aside from demonstrating that the method works, the main points
of interest are the accuracy of the results, and the ability to handle multiple
tangential derivative values at corners.
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Figure 8: Errors in the calculated normal and tangential components of r� for
D the unit disk.

As the �rst example, consider the Laplace equation posed on the unit disk,
with Dirichlet boundary values � = x2 � y2. Fig. 8 displays the errors in the
computed normal and tangential derivatives, employing 80 linear elements. The
results for the bottom half of the circle are shown, the results for the top being
the same. Note that the error in the tangential component is the same order of
magnitude as the error in the initial solution.

The second example solves the same Dirichlet problem, but now on the unit
square (employing a uniform grid spacing of 0:05). As mentioned in the introduc-
tion, previous methods for evaluating surface derivatives have serious di�culties
boundary corners and edges. For direct collocation of a hypersingular integral at
a corner point, the interpolation of the potential and the normal ux be consistent
[56, 98], and it is non-trivial to incorporate this constraint in the approximation
[57]. It is possible that the `displacement gradient' method can compute values



at a corner, but existing implementations appear to be valid only for smooth
surfaces [54, pg. 789].

corner Normal Derivative Tangential Derivative
point Calculated Exact Calculated Exact

(0:0+; 0:0) 0:03458 0:00000 0:01488 0:00000
(0:0; 0:0+) �0:03458 0:00000 0:01488 0:00000

(1:0�; 0:0) 0:03376 0:00000 1:98500 2:00000
(1:0; 0:0+) 1:96531 2:00000 �0:01467 0:00000

(1:0; 1:0�) 1:96613 2:00000 �1:98521 �2:00000
(1:0�; 1:0) �1:96613 �2:00000 �1:98521 �2:00000
(0:0+; 1:0) �1:96531 �2:00000 �0:01467 0:00000
(0:0; 1:0�) �0:03376 0:00000 1:98500 2:00000

Table 6: Calculated normal and tangential derivatives at the corners of the unit
square. The boundary values are � = x2 � y2.

The exibility provided by the choice of weight function allows a simple
treatment of corners within the Galerkin method [67]. In two dimensions, the
corner is represented by the usual technique of a `double node' pair, one node
for each side of the corner. A tangential derivative equation for each node is
obtained by specifying that the weight function  k be non-zero on only one side
of the corner. Thus, the two corner nodes have di�erent, non-overlapping, weight
functions. As a consequence the tangential derivative equations `terminate' at a
corner: the product of the two shape functions at the corner is zero, and thus
there is no matrix element connecting the two tangential derivative values. For
applications which do not require knowledge of the derivative everywhere on the
boundary, this is potentially very useful.

The calculated values for both normal and tangential derivatives at the cor-
ners of the square are shown in Table 7.1. The multiple values at the corners are
accurately represented. It is possibly surprising that the tangential values in this
case are more accurate than the computed normal derivative. However, this is
apparently not uncommon [93].

8 Application: Electromigration

As an application of the techniques presented above, we consider the modeling
of electromigration, void motion in aluminum thin �lm interconnects in micro-
electronic devices. Open-circuit failure due to electromigration is one of the most
serious reliability problems in integrated circuits [99, 100, 101]. Void nucleation
occurs during thin �lm thermal processing, and subsequent void migration takes
place during circuit operation. External forces, such as mechanical loads and
thermal stresses can a�ect void motion, but herein we will only consider the
interaction of the void with an imposed electric �eld.

The electric �eld interacts with the void through its tangential component
on the void surface. A Neumann boundary value problem for the electrostatic
potential � must �rst be solved, and then E �T = �r� �T must be computed.



The geometry for a two dimensional simulation of electromigration-induced void
dynamics is shown in Fig. 9. The domain D is a strip, �1 < x <1, 0 � y � W ,
representing an aluminum thin �lm which has been damaged by the formation of a
void. The boundary conditions are zero normal ux on the insulating strip bound-
aries and on the void surface, together with an imposed electric �eld E = (E1; 0)
at in�nity, i.e., far away from the void surface. It is convenient to reformulate
the problem by de�ning the potential � via

� = �E1x+ � ; (58)

so that � vanishes at in�nity. Note that the boundary conditions for � remain
zero normal ux on the strip boundaries, where n = (nx; ny) = (0;�1), while on
the void surface

r� �n = E1nx : (59)

The electric �eld contribution to the ux of atoms on the void surface is pro-
portional to the tangential component, Es = r� �T = r� �T � E1tx, where
T = (tx; ty) is the unit tangent vector on the void. Once the surface atomic
ux is known, the void velocity normal to the void surface can be computed
from the surface divergence, dEs=ds, where ds indicates an arclength derivative
[99, 102, 101]. The void surface can then be advanced in time, and the process
repeated with the new geometry. The calculations below were employed in de-
termining steady state void morphologies, and thus computing Es su�ced. The
derivative dEs=ds can be computed using the same techniques [103].

Insulating boundary
Void surface

W

x

y

Figure 9: A two dimensional model for a damaged interconnect �lm, consisting
of a strip of in�nite length and width W (solid line) containing a void defect
(dashed line).

The boundary integral solution for � is obtained using a linear element sym-
metric Galerkin approximation. As the boundary condition on the void is speci-



�ed ux, only the ux equation, Eq. (2), is required. The results of the boundary
element tangential derivative calculations are compared to corresponding com-
putations carried out with the �nite element method (FEM). The FEM meshes
were graded very �nely near the void surface where high potential gradients were
expected, and along the void surface for accurate evaluation of the tangential
component of E. Typically, the number of degrees of freedom involved in the
FEM simulations is on the order of 104. In the BEM calculations discussed be-
low, the number of nodes on the void is 101. This was the only surface modeled,
the boundary conditions on the interconnect being incorporated (approximately)
into the Green's function. Further details on the BEM and FEM solution proce-
dures can be found in [55].

The tangential derivative solutions for an initial void shape and three per-
turbations of this shape, shown in Fig. 10, are displayed in Fig. 11. The initial
shape is a circular arc, the steady state solution for E1 = 0, while the other
three void morphologies are steady state solutions for increasing E

1
. In this �rst

set of calculations the width of the interconnect is W = 3:0, and thus the void
is well separated from the top boundary. The results in Fig. 11 are in excellent
agreement with the �nite element solutions.

A second set of steady state void morphologies and the corresponding void
surface solutions for the tangential component of E are displayed in Figs. 12
and 13. The width of the strip has been reduced to W = 0:5, and thus the void
spans roughly 80% of the interconnect in the y direction. For such geometries,
the electric �eld computation becomes more di�cult for both �nite element and
boundary element methods. The magnitude of the electric �eld near the top of
the void is much higher and the electric �eld gradients are much steeper. Once
again, the results from both methods match very well.

9 Conclusions

Hybrid analytical/numerical algorithms for the evaluation of singular Galerkin
boundary integrals have been presented. We have tried to argue that singular
integration for the Galerkin method is not the beast that it appears to be. The
limit to the boundary provides a mathematically sound and physically sensi-
ble de�nition of the singular and hypersingular integrals, and leads to a direct,
and completely general, evaluation algorithm. In our opinion, this is much sim-
pler, conceptually and computationally, than `regularizing' a non-existent inte-
gral (e.g., an `exclusion zone' analysis). The task of carrying out the analytic
integrations and the limit process, admittedly onerous by hand, is conveniently
automated with symbolic computation.

One �nal advertisement for symbolic manipulation: once the procedures have
been worked out for one equation, it is relatively easy to modify the Maple scripts
to generate the needed formulas for another equation. This is due to the fact
that the nature of the corresponding kernel singularities is, in all cases, identical.
Thus, in creating the orthotropic code, the existence of the Laplace scripts was
exploited to considerably shorten the development time.

The important issue of e�ciency was not addressed herein, but previous
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FEM and BEM methods for the voids shown in Fig. 10.
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work [13, 53] has established that the hybrid algorithms are much faster than a
brute force numerical approach. These e�cient methods, added to the signi�-
cant computational advantages provided by symmetry, create a fast Symmetric-
Galerkin algorithm. With the other principal virtues of Galerkin { accuracy,
hypersingular analysis with standard C0 interpolation, and a reliable corner
treatment { Symmetric-Galerkin becomes a highly attractive general purpose
algorithm for boundary integral analysis.

The Galerkin approach was also shown to be very useful for the evaluation
of surface tangential derivatives. The primary advantages over previous methods
are essentially the same as those listed above: accurate nodal derivative values are
obtained with C0 interpolation, and the method is e�cient { stress components
can be calculated directly, and the system of equations naturally terminates at
boundary corners. Moreover, multiple values at corners can be accurately repro-
duced.

For those who are interested, the author intends to make the symbolic com-
putation programs discussed herein available over the internet. The home page
www.epm.ornl.gov/~gray contains a link to Symmetric-Galerkin material, and it
is hoped that the Maple scripts will eventually be found there.
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Appendix: Kernels for Orthotropic Elasticity

The formulas for the traction fundamental solution Tkj(P;Q) in the displacement
equation, and the tensors SkjL = Ukj;L andWkjL = Tkj;L for the traction equation
are presented below.

Tensor Tkj
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(61)

HereR = Q�P , n = n(Q) is the unit normal vector atQ, and the parameters
Mk are

Mk =
p
�k ny (Q1 � P1)� nxp

�k
(Q2 � P2) (62)

For a point P interior to the domain, the displacement equation Eq. (30) can
be di�erentiated with respect to P , the derivative moved underneath the integral
sign, resulting in

uk;L(P ) �
Z
�
SkjL(P;Q) �j(Q) dQ�

Z
�
WkjL(P;Q) uj(Q) dQ : (63)

where
SkjL = Ukj;L and WkjL = Tkj;L : (64)

The formulas for the kernel functions SkjL and WkjL are presented below. The
desired integral equations for surface traction or surface stress can be formed by
combining the equations for displacement derivatives according to Eq. (28), and
thus the full kernels are appropriate linear combinations of SkjL and WkjL.

Tensor SkjL = Ukj;L
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(Q1 � P1 )A2A1p

�1 r1 2
� (Q1 � P1 )A2A1p

�2 r2 2

#

S211 = S121

S212 = S122

S221 =
1

�

"
A2
1 (Q1 � P1 )p

�1 r1 2
� A2

2 (Q1 � P1 )p
�2 r2 2

#

S222 =
1

�

"
A2
1 (Q2 � P2 )

�13=2 r1 2
� A2

2 (Q2 � P2 )

�23=2 r2 2

#

Tensor WkjL = Tkj;L



All expressions should be multiplied by 1=�, where � is de�ned in Eq. (35).

W111 =
nx A2p
�1 r1 2

� nx A1p
�2 r2 2

+ 2 n �R (Q1 � P1)

"
A1p
�2 r2 4

� A2p
�1 r1 4

#

W112 =
ny A2p
�1 r1 2

� ny A1p
�2 r2 2

+ 2 n �R (Q2 � P2)

�
A1

�23=2 r2 4
� A2

�13=2 r1 4

�

W121 = �
p
�1 ny A2

r1 2
+

p
�2 ny A1

r2 2
+ 2 (Q1 � P1)

�
�F2A1

r2 4
+
F1A2

r1 4

�

W122 =
nx A2p
�1 r1 2

� nx A1p
�2 r2 2

+ 2 (Q2 � P2)
�
�F2 A1

�2 r2 4
+
F1A2

�1 r1 4

�

W211 = � ny A1p
�1 r1 2

+
ny A2p
�2 r2 2

+ 2 (Q1 � P1)
�
F1A1

�1 r1 4
� F2A2

�2 r2 4

�

W212 =
nx A1

�13=2 r1 2
� nx A2

�23=2 r2 2
+ 2 (Q2 � P2)

�
F1A1

�12 r1 4
� F2A2

�22 r2 4

�

W221 = � nx A1p
�1 r1 2

+
nx A2p
�2 r2 2

+ 2 n �R (Q1 � P1)

"
A1p
�1 r1 4

� A2p
�2 r2 4

#

W222 = � ny A1p
�1 r1 2

+
ny A2p
�2 r2 2

+ 2 n �R (Q2 � P2)

�
A1

�13=2 r1 4
� A2

�23=2 r2 4

�

The parameters Fi (i = 1; 2) are

F1 =
p
�1 ny (Q1 � P1 )� nx (Q2 � P2 )p

�1

F2 =
p
�2 ny (Q1 � P1 )� nx (Q2 � P2 )p

�2

and
n �R = nx (Q1 � P1 ) + ny (Q2 � P2 )
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