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Abstract— This paper is concerned with the development of to accelerate the solution of BIE for large scale problems.
a fast spectral method for solving boundary integral equations These acceleration methods are based on some type of fast
in three-dimensional potential theory. Upon discretizing the summation technique which consists of (i) grouping boupdar

underlying boundary integrals via a Galerkin approximation, . . . . " h .
the proposed method overlays the problem domain with a influences into near-field and far-field, and (ii) using spéci

regular Cartesian grid that serves as an auxiliary platform techniques to treat short and long range influences separate
for computation. With the aid of the Fast Fourier Transform, In this decoupled process, long-range influences are tipica

the necessary influence matrices of the discretized problem are gpproximated by means of a suitable, less expensive agproac
rapidly evaluated on the regular grid in a sparse manner. Unlike rather than calculated directly

traditional techniques dealing with boundary integrals, the sparse ; ) )
representation of the featured coefficient matrices results in a A fast spectral algorithm presented herein follows thedine

significant reduction in computer memory requirements. The of the Precorrected-FFT (PFFT) developed in [5]. It revelve
computational cost associated with the sparse approximation of 5rqund the use of an auxiliary regular Cartesian grid coinagi

influence matrices is asymptotically lower than that of conven- . : .
tional methods. For a numerical solution of the resulting linear the discretized boundary, and the Fast Fourier TransfoffT)F

system, a Krylov-subspace (e.g. BICGSTAB) iterative method {0 rapidly approximate far-field influences. The calculatidga
is further employed wherein the sparse influences are used to the homogeneous grid incorporates inaccurate near-figld co
rapidly compute the matrix-vector products involved at each tributions that are removed and replaced (i.e., preccetddby
iteration. Several key features of the formulation, including the explicit pre-computed short range influences. This procedu

mapping of density distributions onto the regular Cartesian grid, . : .
are highlighted. Numerical experiments are presented to illustrate leads to a sparse representation of boundary influencecestri

the performance of the spectral method. The proposed apprazh which, in turn, results in a significant reduction in memory
will find application in areas involving large simulations with ~requirements.
complex and moving boundaries. Although most numerical treatments of boundary integrals
Index Terms—Boundary integral method, regular grid by the PFFT method deal with single-layer potentials [51][1
method, fast Fourier transform, fast algorithm, potential theory and piecewise constant surface interpo'a‘[ions [12]’ aystud
utilizing a double-layer potential has been presented Bj [1
wherein the discretized solution could not be obtained daho
I. INTRODUCTION points on the surface mesh but only at integration points on

HE mathematical modeling of many engineering prooundary elements. Moreover, so far, there have not been any

lems often involves the solution of boundary integra®ttempts to systematically extend the PFFT methodology to
equations. A numerical technique for producing discretiz¢he solution of direct BIEs.
boundary integral equations is known as the Boundary ElémenAimed at bridging this gap, a generalization of the PFFT
Method (BEM) [1], [2]. Boundary element techniques ar¢or solving direct BIEs, i.e., involving single- and doub&yer
highly accurate and, in comparison to domain methods, thetentials, and arbitrarily varying local interpolatiomnictions
inherent surface-only discretization can be very advaedag. is the focus of this study. To this end, a Galerkin approadh [1
For instance, the Boundary Integral Equation (BIE) appnoa¢s employed to discretize the boundary integral equations.
is the preferred modeling choice for practical problems irBy means of a well-defined homogeneous Cartesian grid, the
volving unbounded media, cracks, and moving or unknowfast Fourier transform and local surface-to-grid integtimns,
boundaries. However, BIE methods typically produce lineatie necessary influence matrices of the discretized problem
systems that contain fully-populated influence matrices. Fare rapidly computed in a sparse manner. In the decoupling
practical problems demanding a fine discretization to copgocess, a computational savings is gained through the use
with the details of surface structures, the solution timel af the FFT algorithm, and a substantially less memory re-
storage requirement of the dense linear systems become pjoirement is also a consequence of the sparsification. To
hibitive. efficiently resolve the linear system, the sparse repratient

Over the past decade, several sparsification techniques, Fet influences is used in a Krylov-subspace iterative solver

Multipole Method (FMM) [3], [4], fast Fourier transform such as GMRES [15], [16] or BiCGSTAB [17] to compute
methods [5]-[7], Regular Grid Method (RGM) [8], waveletthe matrix-vector multiplications featured at every itéva of
based discretization method [9], [10], have been developg solution process.

The U.S. Government retains a nonexclusive royalty-freene to publish _Detalls of the corr?putatlona}l treatment, 'nClu_dmg the gene
or reproduce the published form of this contribution, ooallothers to do ation of the sparse interpolation operators which map beund

so, for U.S. Government purposes. o ary data onto the regular grid and back to the surface, are
S. Nintcheu Fata is in Computer Science and Mathematics DivisDak

Ridge National Laboratory, P.O. Box 2008, MS 6367, Oak Ridge 37831- €lucidated. Numerical examples are included to illusttate
6367, USA. Email: nintcheufats@ornl.gov performance of the proposed method.
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[l. PROBLEM FORMULATION In practice, boundary elements ¢hare often constructed as

Of interest in this study is the numerical treatment of {iangular or quadrilateral surface patches (see Fig. &gl a
three-dimensional boundary integral equation for the heel shape functions are selected as constant, linear or higer o
equation in a domainD C R? with boundary S via a Polynomials over a boundary element.

Galerkin approximation. With reference to a Cartesian ffam
{0; 1, 25,3}, consider the boundary-value problem for the
potential functionu(x) (x € D) satisfying

Viu =0 1)

in the domainD. It is further assumed that satisfies either a
Dirichlet, Neumann or Mixed boundary condition ShBy use

of Green’s theorem [2], [18], it can be shown that a solution
u to (1) admits the representation

Fig. 1. Triangulation of a unit sphere featuriig6 triangles with400 nodes.
| Gty ds, -
S

With the above definition, the Galerkin approach for solv-
/H(w,y)-n(y) u(y) dsy = { u(®), “’GDB _(2) ing (5) rests on a weighted-residual statement, wherein the
s 0, zeR\D interpolatorsy; serve as the weighting functions in an error
whered is the free space fundamental solution of the Lapla@gggument as
equation expressed as

1 lim / )i () {/ G(xe,y) t(y) dsy —
G((B,y) = T iB,yER?’, T # y. (3) &0 S S !
drlle — y||
In addition, t = n - Vu denotes the flux associated with the /H(:vg,y)-n(y) u(y) dsy} dse =0. (7)
potentialu, and H is the gradient ol given by s

1 z—y 3 The use of the interpolated approximations (6) in (7) leads
H(z,y) = arr [l — g3’ T,YeRY, x#y, (4) 1o a dense linear system of algebraic equations for boundary

: . . . otentialu and fluxt
with n=mn(y) denoting the unit normal t&' directed towards P

the exterior ofD. It is important to mention that the numerical G{t} = H{u}, (8)

analysis presented below is applicable regardless of hesty . )
of boundary conditions, i.e., Dirichlet, Neumann or Mixed"he_re {u} and {t} are vecto_rs containing nodal potentlals
boundary conditions u(y?) and fluxest(y’) respectively; components of influence

Herein, the boundary integral equation to be solved [§atricesG andH take the form

understood in the sense of lmit to the boundary( [14], G i // ()G () dsd

[19]). This approach enables writing the same equation for ~* <0 e Swl(w) (e, y) ¥5(y) dsydse,

points either inside/outside the domainor on the boundary

S. In what follows, letR*\D >z, = z +en(zx), z€S, e > 0, H;; = lil%/ / i(x) H(x:,y) -n(y) ¥, (y) dsydss. (9)
==0/sJs

n(x) is the unit outward normal t& at . The singular BIE
. Following the standard approach for solving (8), the double
lin% (/ G(ze,y) t(y) dsy — integrations in (9) are explicitly evaluated. In doing s@; a
- o propriate techniques are used to treat singular integfiadé [
As a result, the influence matricés and H are formed and
/SH(ws, y)-n(y) u(y) dsy) =0, ®)  storedin the computer memory. Upon specifying the boundary
conditions of the boundary-value problem dealing with {tg
linear system (8) can be recast as

A{z} = {0}, (10)

here all unknown quantities o$i have been collected ifx},

d {b} is a vector whose entries are obtained from known
§oundary data.
.._The dense linear system (10) can be solved in a conventional
Fﬂc’anner by thd.U decomposition scheme. Unfortunately, the

U or Gaussian elimination method becomes prohibitive when
he order of the matrixA, N, is “large” since it requires
O(N3) arithmetic operations and(N?) memory storage.
u(y) = Z“(yj)’/}j(y)’ t(y) = Zt(yj)wﬂ’(y)' (6) In this situation, Kryloy—subspace iterative solvers suh

; J GMRES [15], [16] or BiCGSTAB [17] are preferable as they

is to be solved with the singular integrals calculated for
approaching the boundary from outside the domaib.

A. Galerkin approximation

To accomplish the numerical solution of (5) associate
with a boundary value problem, it is common practice t
() partition S into non-overlapping surface patches calle
boundary elements, each of which is characterized by
nodes, and (i) to approximate the boundary potentigy)
and fluxt(y) (y€5S) in terms of respective nodal values an
basis shape functions; at discrete pointg’ on S as
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demand onlyO(N?) operations per iteration. This latter num-define by M and M, respectively, the total number of cells
ber of operations directly stemming from the dense matriand non-empty cells in the computational box. To facilitie
vector multiplications in each iteration is still ratherpensive ensuing analysis, lef), be the union of all boundary elements
for large scale problems. The goal of this study is to redbee tin a non-empty cellk. With this definition, it is clear that
number of operations per iteration and the computer memasy may protrude out of thé:-th cell. Also, denote byVg,
needed to evaluate the matrix-vector products featuredOn ( the number of boundary elements 6, and letV;, be the
whenN is very large. To this end, a homogeneous grid methadimber of boundary nodes &),.

for computing a matrix-vector product called theecorrected-
FFT is generalized.
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Originally introduced in [5] for the 3D analysis of the <
Laplace equation employing only single-layer potentisie
Precorrected-FFT (PFFT) technique is an algorithm fordapi
computation of a dense matrix-vector multiplication asstec [}
with discretized integral equations. Related work in 2Dsela
ticity, utilizing an FFT and multipole type Green’s funatio
expansions, was first considered in [6]. Fig. 2. Side view of a uniform Cartesian grid in the computagiobox with

The underlying idea for acceleration in the PFFT revolved Cells (n = 3) and27 grid points § = 3) per cell.
around the fact that (i) integrals featured in (9), when eatdd
over boundary elements, can be decomposed into near-fieldRegular grid approximation
and far-field parts, and (ii) the far-field part can be approxi To describe the grid approximation of ttiar-field part of
mated accurately and efficiently on a regular grid by use gie integrals in (9), mostly involving interaction witistant
the fast Fourier transform. On the other hand, the near-figihundary elements, one can assume without loss of gewyeralit
part of (9) that includes not only all singular and weaklythat the convolution-type kernets and H are non-singular,
singular integrals is computed in a conventional manngfell-behaved and bounded in the auxiliary computational
i.e., by numerically performing the double integrations igype. In view of these assumptions, can be safely replaced
which suitable limiting strategies are carried out to de#hw py 4 in the limit in (9). With reference to (9b), one can write

singular integrals (see [14]). Unlike the popular fast imale  an approximation td,;; as
method [4], the PFFT algorithm can be easily implemented

for all kernels of convolution type, i.e., kernels that dege
only on the relative positiofiz — y) between the source point
x and the receiver poing.

In this study, a new version of the PFFT method capab%ereﬁf; is the contribution td1,; from thek-th cell when it
of dealing with (i) single-layer and double-layer potefsa interacts with the-th cell. In (11), it is assumed tha!! = 0

and (ii) arbitrary shape functions, will be described inailet if cell k£ is empty or celll is empty. For a pair of non-empty
In addition, a general mathematical framework for definingells & and1,

the interpolation operators to/from the regular grid isoals

1>
[
Vi

15'
A

7]

Lt
v
YAY)'
%'A‘;‘
Agn
NJ

K

sjuiod puo

N/
AV A,

)
A
%y
8,

ﬁij =

Mx<

M ~
> HE, (11)
=1

>
Il

1

Ng, N
presented. The new fast spectral method, also referred to as k- o k0 12
precorrected-FFT technique, will be used to rapidly coraput ij Z_; ; ij 12)

the matrix-vector multiplication&{¢} andH{u} involved in
the iterative solution of (10) without explicitly genenagi G where ﬁf‘j?(s*t) is the contribution tof{f} from an element
andH. For large problems, this procedure is highly desirableouple (Ey, E;) € Sk, x S;, and it is given by
as a direct formation of the coefficient matrk is avoided.

To effectively deal with Galerkin boundary integrals sucﬂ{f;(s"t) :/ Yi(x) H(z,y) n(y) ¥;(y) dsydsz. (13)
as those featured in (9), it is important to employ an auwilia Es J By
parallelepiped containing the discretized boundaryf the By use of a suitable integration scheme, e.g., Gaussiarrguad
domain D as shown in Fig. 2. With reference to the figureture rules [20] on triangular boundary elemerﬁﬁ(s’” can
the computational box is partitioned inte x m x m cubes be approximated as
termed cells, wheren is the number cells in each coordinate 3 No No
direction. With this subdivision, it is assumed that evee§i c rki(s:t) _ 88 o, to sB , ta
is formed withp x p x p grid points, wherep is the number Hy ™ =22 > GOy g, (14)
of points per cell in each coordinate direction. This cell-
to-cell discretization creates a uniform grid throughohe t Where
computational parallelepiped. Next, boundary elementsSon Cfﬁ = wB T (2P )y (z°P),
are sorted (without repetition) into the computationalseh
cell containing boundary elements is called non-empty. Now Ci* =wJ(y" ) (y™), nf =ngy'). (15)

f=1p8=1a=1
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In (15), z*# andw*’ are Gauss points and weights on elementhere

E,, and J(x*%) is the jacobian of the mapping of a parent Ng ~ Ng
triangle (i.e. parameter space) info, € Sj; y'*, w'® and Wk — Z are’, v = Z dieclonle. (21)
J(y'®) are respectively Gauss points, weights, and jacobian B=1 ' a=1

on By € 5;; Ne is the number of Gauss points on a boundal?rlhe superscripté and!/ in (20) and (21) are used to indicate
element. that the coefficientdV"* and Vql;tf pertain to thek-th and
s .8 I-th non-empty cells respectively. With the aid of (20) in )12
1 the contribution toH;; from two interacting non-empty cells,
k andl, can be expressed as

[)3

3 2
il 4 B =SS S WEE @Y. @)

f=1r=1gq=1

In deriving (22), (21) was employed to write the interpatati
coefficients as

Fig. 3. Generic computational cell with= 2. Ng, Ng NE; Ng

Now, for a non-singular and sufficiently smooth keridl s=1 g=1 t=1 a=1

in the computational box, one can postulate the decompnsitLr0 compactly express (22) for all boundary nodes in the

p* P interacting cellsk, !, denote byW* € R’ >N the matrix

Hi(z,y) = dr(x)dy(y) He (2", 97), (16) whose entriesiV%, are given via (23a), and 1af%f ¢ RP" >N
r=1g=1 be the matrix with componentﬁ’qu'cf, as defined in (23b). Also,

where&”, 47 represent computational grid points in theh let HY € RP"*7° be the matrix whose entries afé; (2", ),

and i-th cells respectivelyi,.(x) can be given, for instance,where " is a grid point that lies in theé:-th cell and g*

by the Lagrange interpolation polynomials constructedttier is a grid point that resides in theth cell. With the above

1 2

k-th cell such that definitions, (22) can be written in matrix form as
AT A5 3
dp(@") =1, d(2°) =0, s#r (17) M — ZWkTI’_\IIchl Vi M RN (24)
In the above settings, the paramepethus corresponds to the =1

polynomial order in each coordinate direction. With refere oT - . .
to Fig. 3, an example of polynomial interpolation function¥/here W* is the transposed or adjoint of the interpolation

d,(z), with p = 2, for a generic cubé—1, 1] x [1,1]x[~1,1] Matrix W*. A multiplication of W*" by a vector defined in

can be expressed as the k-th cell will be calledadjoint interpolationor simply
1 1 anterpolationas in [21]. With the aid of (11), (24) and the
G(z) = 5(1 —z), (z)= 5(1 +x), wze[-1,1] fact thatH}] = 0 if at least cellk or cell I is empty, one can

write the far-field approximation oH as

di(z) = C(z1)Ci(z2)Ci(23), do(x) = Ca(z1)Ci(2z2)Ci(23) 3 M M
T kT Ikl x7Lf
(@) = ()G (ws), di@) = )Gl (s) H=2 0 0 WHHIVY, @)
ds(x) = C1(21)C1(22)C2(23), de(x) = Ca(21)C1(22)C2(z3)  where M is the total number of non-empty cells in the
computational parallelepiped. In case of cell self-intéimm,
dr(@) = Gi(21)Ca(w2)C2(3), i.e., whenk = [, the diagonal components df5* can be
ds(x) = Co(1)Ca(@2)Co(23), & = (21, T2, T3). (18) set to any constant value. It is typically set to zero,.i.e.,

Hy(z",2") = 0. The cell self-interaction contribution will be
In practice, the parameter is usually a small integer. Typ- handled with care in the subsequent development. Also, note
ically, p = 2,3,4. It now follows from (16) that there exist that an individual entry of (25) can be obtained by summing
in the auxiliary computational parallelepiped coefficidt’, yp the contributiondI}! over all cellsk andi, and grouping

dé“ such that similar terms at corresponding grid points to yield
P pd _ 3 Q Q
Hy(@*?,y') =Y > dPdi* Hy(@", %), (19) =Y YN W Hy (@™, 5%V, (26)
r=1q9=1 f=1r=1q=1
whered:’ = d,(z*°), di* = dg(y*). whereQ = (m(p—1)+1)? is the total number of grid points in
By use of (19) in (14), one can write the computational box, and the interpolation coefficidits,
5 PP P and Vq’; are set to zero for all grid points and ¢ pertaining
ﬁf]?(svt) - ZZZWQSHJC(;@T’@‘I)VHﬂ (20) to empty cells. In view of (26), denote b ; € R?*? the

Fe1r—=1q=1 matrix whose entries arél;(z", y?) with Hy(z",2") = 0,
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i.e., Hy evaluated on the entire grid in the computational bos8. Precorrection

Next, defineW RQXfN and V/ € R?*Y matrices with  The rapid far-field approximation of the producG{t}
componentdV,; and V;; respectively. With such definitions, and H{u}, carried out over the entire computational grid

(26) can formally be written in matrix form as via the FFT technique, will inaccurately represent the near
_ 3 o field contribution toG and H. For example, the cell self-
H= ZW H;V/, (27) interaction terms such a®* GF*W* and W+ HkFVE:i
f=1 which are embedded in the regular grid evaluations via the

where the superscriptr™ stands for the matrix transpose. InFFT, represent unsatisfactory approximations of the actua

fact, (27) is an alternative representation of (25) overdhire double integrals featured in (9) from V\(ithin the consideced.
computational grid. It simply illustrates the factorizatiof AISO, from the smoothness assumption on the kereland

the far-field approximation o in terms of global operators . the regular grid approximation cannot accurately handle
defined on the whole computational grid. An efficient impleSingular or weakly-singular boundary integrals. To aligei
mentation of the PFFT technique should never geneviite these |rr_1ped|me_nts, a correction of near-field contribugtitm
Vi andH; (i = 1,2, 3) explicitly. the designated influences is performed for every non-empty
Owing to the fact thatil; (i = 1,2,3) is a convolution- cell and their set of near—nelghborlng non-empty ceIIs.Higt
type kemel, the grid-to-grid mapping characterized Hy end, letA;, be thg number of near—nelghbor|ng cells of a given
corresponds to discrete convolutioron a regular grid. As a Mon-empty cellk in the computational cube.
result, an operation consisting of multiplyifd; by a vector __1aking (9b) again as a point of departure, assume that some
on the grid can be effected by the FFT algorithm (e.g. [22f§oundary trial data{u} are prescribed orf, and one is to
over the entire computational grid. The FFT scheme requirt8™PUte th’f'l prO(J:ivcht]IV{u}. To facilitate the ensuing develop-
on the order of(Q In Q) arithmetic operations. However, for MeNt, letH™ e R7:" denote the block oH expressed in
grid and surface discretizations that are such thatscales (9P) associated with boundary nodes in the interaction éetw
as O(N) and the fact thap is a small integer, the cost of Cell k and its near-neighbor cell where N, is the n]:Jlmber
the FFT in the fast spectral method will reduce¢N In ). ©Of boundary nodes in thé-th cell. The entries o™ are

Such is the case for the so-called homogeneous distribationc°MPuted by explicitly evaluating the integrals

boundary elements into computational cells (see [5]). HE — g / () H . A
Following the procedures elaborated above, it can be showri? — =0 Sy Slwl(w) (e, y)-n(y) v;(y) dsydsa, (30)
that the far-field approximation ofx in (9a), involving the

i \ - : (i=1,2,...,Ng, j=1,2,..., Ny), for all boundary element
single-layer potential kernel, admits the representation

pairs (Es, E;) € S, x S;. In the computation of (30), suitable
G— WTéW, (28) Iimiting _techniques are_used the tackle th_e singular bginavi
R of coincident, vertex-adjacent and edge-adjacent elepairg
where G € R9*? is a matrix with components:(z",9?) (see [14]). Also, let{u}* be the vector composed with the
and G(9,9?) = 0, W is the interpolation matrix featured entries of{u} associated with the boundary nodes in thth
in (27). Note that the symmetry of the Galerkin integral fogell, and denote byu}* the regular grid approximation (i.e.,
the kernelG is preserved. The contribution ¥ from a pair the far-field approximation obtained globally via the FFT) o
of interacting non-empty cells; and/, can be expressed as H{u} in the k-th cell.
With theses definitions,
3
where W* € RP**Ni is the interpolation matrix for thek- {u} ™) = ZW"’T HF V) (31)
th cell as in (24),Aan(ﬁ’” € RP**?° is the portion of the i1
convolution matrixG associated with the interaction betweeRepresents the inaccurate contribution {te}* from the grid

cell & and celll. . . ~ approximation due to surface density}! in the neighboring
In view of (27) and (28), one can infer that interpolation.th cell. A complete approximation d{v} in the k-th cell

matricesW and V" (i = 1,2, 3) map boundary data prescribedyye to surface densitju}! from the!-th cell can be obtained
on S onto the regular grid. FurthermorédV  maps grid g

guantities back onto the boundasy Owing to the cell-by-cell i i
construction of the global interpolation matrices Wé* and {(H{up Y = fu — fu} 0 + B}, (32)
Vi (i =1,2,3), W and V' are sparse. They contald(N) j.e., subtracting off the inaccurate contribution from téd
non-zero entries. Indeed, the number of operations neemlechpd adding in the correct near-field contribution. In view
generate, e.gW is roughly equal ta\/p3 N, wherep? Ny is  of (31), (32) can be expressed as

the cost of W¥. Sincep is small andN, < IV, the operation (k1) i Kl o a1

count needed to genera®* is O(N). Moreover, for large {H{u}} ™ = {u}” + P¥ {u}, (33)

N, the number of non-empty celld/ is much smaller than where P** ¢ RV+*Nt is a precorrection matrix for thé-th

N. With these results, it follows that the computational afst cell in interaction with the-th near-neighboring cell given by
W scales a®)(N). Consequently, the multiplication &V or 3

V' by a vector will requireO(N) arithmetic operations and PH — HF _ ZWkT HH Vi, (34)
memory storage.

Gk — VVkT@'klvvz7 GH RN XN (29)

i=1
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With (33) and (34), a satisfactory approximation Hf{u} The interpolation operatorsW and V¢ (i = 1,2,3),
(from the k-th cell) is obtained by adding up corrections fronfeatured in the decomposition (36) and (40) play a key role

all near-neighboring cellg as in the PFFT method. Specifically, these operators are used to
M, map data to/from the auxiliary computational grid in the so-
{H{u}}k _ {u}k n Z Pk {u}l (35) called interpolation/anterpolation process of the PFHieste.

With the assumption that the near-field correction is exthet,
accuracy of the PFFT method is entirely determined by the
rr'Jrecision of the interpolation operators. By constructitiis

=1
where M}, is the number of computational cells in the nea

field region of thek-th non-empty cell. By construction, it is precision is strongly affected by the method paramgtehich

kl __ i i . . . . .
assumed thaP™ = 0 if at least cellk or cell | is empty. cparacterizes the order of interpolations in each cootdina
With the above settings, local precorrection matrig$ can direction.

be accumulated for all cells and all near-neighboring cells

to form the whole precorrection matriR. Since interactions

involving non-neighboring cells are approximated glopaila IV. POTENTIAL MATCHING METHOD

the regular grid, the whole precorrection matiixis sparse.

With this analysis and (27), it follows that an approximatio To establish a direct connection with the PFFT method pro-
of the influence matrixH by the precorrected-FFT methodposed in [5], it is useful to introduce an alternative praged
results in the decomposition to generate the interpolation operat®éandV* (i = 1,2, 3).

To this end, a particular form & andV* can be constructed
on a cell-by-cell basis via a potential matching method. In
this approach, potentials given ¢fy, a portion of the surface

, S in the k-th non-empty cell, are replaced by “equivalent”
whereP, V' and W are sparse matrices. potentials generated by a set of point sources in the designa

Similarly, for the treatment of (9a), one can also introducegell. To illustrate this procedure, consider, e.g., thelsirayer
a precorrection matrix for thé-th cell in interaction with a potential

near-neighboring-th cell as
RM — G _ W GH W @@= [Gawiwds, eeE\T @)
’ r

3
H=P+) W HV, (36)
=1

1kl Sxp? i i i . . . . . . .
where G™ € R” *"" is the block of the convolution matrix yith potential density¢ that is piecewise continuous on a

G in the interaction between celt and its near-neighbor g facer. The far-field behavior obs: can be expressed as
cell I; GF ¢ RN«*Ni denotes the portion o6 expressed

in (9a) when cellk interacts with its near-neighbor céll The
components ofG*! are obtained via direct calculation of the ¥
integrals

SL(as)zG(w,mqw(l), as |z] — oo, (42)

]|

I where0 = (O,O,O)T is the origin of the coordinate system,
Gij = 6113(1)/ Yi(x) G(ze,y) ¥j(y) dsydsz,  (38) andg= [, ((y)ds, is termed the monopole moment. It is seen
S 5t from (42) that the monopole ter@(x, 0) ¢ can be used as a
(i=1,2,...,Ny, j=1,2,...,Np), for all boundary element first order approximation of the single-layer potential sidé
pairs(Es, E;) € SpxS;. In the computation of (38), appropriateany ball enclosing the origif andT.
limiting procedures are also used to deal with weakly-siagu  Now, define the double-layer potential
integrals. On the basis of (37), an approximationGyft} in
the k-th cell can be conveniently written as vl (x) = / H(z,y)-n(y) x(y) dsy, zeR3\I  (43)
M, r
k k ki gyl
(G ={t}" + ZR {ty, (39 with piecewise continuous density on I'. The far-field
=1 contribution tov°~ can be shown to take the form
where {t}" is the regular grid approximation a&{t} in the 1
k-th cell obtained via interpolation to the grid, convolutio v°*(x) = H(x,0)-d + O <|w3) , as |lz[| — oo, (44)
on the grid,land anterpolation to the surface portion in the
k-th cell; {t}" is the flux density in the near-neighboring Ce'l/vhered:fF n(y)x(y)ds, is called the dipole moment. The
I. Similar to the situation involvindd, the precorrected-FFT (aq it given by (44) suggests that the dipole teffiiz, 0)-d
approximation ofG yields the decomposition can be used to approximate the double-layer potential deitsi
G-R+ WTéW, (40) any pall enclosing the 9r|g|0 .and.l“. .
With these observations, it will be shown in the sequel
whereR and W are sparse matrices. A decomposition of ththat alternative local interpolation matrice¥,* and X
form (40) was first proposed in [5] for the study of the Laplacé = 1,2, 3), can be generated by representing the single-layer
equation using only single-layer potential representatiad potential with monopoles and the double-layer potentiahwi
piece-wise constant approximations. dipoles at grid points in thé-th non-empty cell respectively.
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A. Monopole representation and the entries oD* ¢ RV+*Nr are expressed as

To construct the linear operatoY that maps boundary L iy .
data onto a regular grid in the computational parallelepipe it :/S G y) v (y)dsy, 1=1,2,....,Np. (52)
k

consider the single-layer potential
For an efficient computation of the mapping, the test spteere i

vt (z) = [ G(z,y)(F(y)ds,, x€R?\S,,  (45) selected so that it is centered at fheh cell. With this choice,

Sk the relative position of the test points and the grid poifis;-
whereS;, is the union of all boundary elements in theh non- 2’”), does not depend on the cell numlierAs the full-space
empty cell and¢® is a piecewise continuous density define@reen’s functiorn’ is of convolution-type, it follows from (51)
on S;. Similar to the decomposition (6), the potential densitthat G* is also independent of the cell numbeand remains
¢* in the k-th computational cell can be approximated as the same for all cells in the computational parallelepip&s.

N a result, GF will be denoted simply as;. By use of the
Fly) = CKik(y), M = ¢k (y), 46 smgular value decomposition [23], the linear system (5@) c
w) ; i) ) (46) be inverted for{y}* and one can write
where y/ is the j-th boundary node orf, and ¢ is the {v}¥ = GTDF{¢}*, (53)

shape function associated wigh in the k-th cell. On the basis

. . . el - -j ¢
of (46), the single-layer potential expressed in (45) reguo where G is the Moore-Penrose pseudo-inverseGafOn the

basis of (53), one can now introduce the interpolation matri

Ny, k 3% Ny
. Y" cRP & for the k-th cell as
VSt (x) = § :gkﬂ/s Gz, y) V) (y)dsy, xER®\Sk. (47)
j*l k

2uE
N

Fig. 4. Test surface centered at a generic non-empty compuihtcell.

Y+ = GIDF. (54)

By construction,Y* = 0 wheneverN, = 0. For any given
cell k&, Y* maps the prescribed boundary data onto the grid
data in the designated cell.

To formally generate the global interpolation mati¥, it
is important to note that the grid density’ at a grid point
2*7 shared by multiple cells is obtained as a sum of the
contribution from all cells havingz*/ as a common node.
With the presence of empty cells in the computational box,
the whole interpolation matriY” is sparse. Moreover, the op-
eration count necessary to creafereduces ta(N). Indeed,
the computational cost of constructifij is proportional to
Mp3 N, where the cost of the local linear map® is p>N,.

On recalling thatN, < N, p is small (usuallyp = 2,3,4)

and that, for largeN, the number of non-empty cell3/

. ) o is much smaller than the boundary meah it follows that

ve(m) =Y Gx, ")y, zeR*\ ("}, (48) the generation ofY requiresO(N) operations and memory
j=1 storage.

To establish a link with the polynomial-based interpolatio
method presented iflll, it is useful to employ the same
numerical integration scheme as in (14) and write an approx-
iemation to (52) as

sjuiod 191

To represent the surface potential- outside thek-th cell,
one can introduce the grid potential

3

as a sum of monopole&!(x, 2*/)~*/ with moments~*7
located at grid pointg2*/}?_, in the k-th cell.

Now, suppose that boundary dafd (I = 1,2,...,N,) are
prescribed onS. With this assumption, one can evaluate th

source intensities®’ (j = 1,2, ..., p%) by requiring that Ng;, Ng
. . kE _ 9[3 ~l sB
ve (&) = vst(z'), i=1,2,...,N, (49) D ; ;OJ G@.y™), (55)

at selected test point®® resting on a sphere containing thel 19 Ne i— 19 N here *% is af
k-th cell (see Fig. 4). In practice, the number of test poiNits E) s Eron é;:_) jth_ . ’%’4"" ereb i 1S glve(;\
is specified so thatV, > p3. The equality expressed in (49) y (15). From (35), the entries of (54) can be expressed as

makes sense as it is in accordance with the far-field pattern NEg, Ng
i i i i s (s
given by (42). By virtue of (47) and (48), equality (49) yisld le§' = Z Z ds8 cs?, (56)
GM"{y}" = D*{¢}, o=t
3 (r=1,2,...,p% j=1,2,...,N;), whereds’ is the value
{7}k = {’Yk] }§=17 {C}k = {Ckl lj\ﬁlv (50) of the function

= 3 .
where the components @* ¢ RV:<P" are given as

Nt
. . do(y) =Y GG, 57
GE=G(@',2"Y), i=12,...,N, j=12,...p° (51) ) ; @.9) 1)
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at an integration pointy*’ resting onSy, i.e. thatd’® = whereH'" is the generalized inverse #i’. By virtue of (64),
d.(y*?). In (57), GI, is an individual component o&'. It one can define the interpolation mati* e R*"*N+ for the
is important to note thaY,.’} in (56) is formally expressed by k-th cell as
the same formula aﬁ/f'j in (23a) except that the coefficients L _
. . kg __ it k.,
ds? are characterized by the Green’s functions (57). One also X =H"TE™. (65)
has to recall thaWT’“j was derived using grid polynomials as, . o ,
for example, in (18). With these observations, the monopofdso. the assumption thavj, = 0 implies thatX** = 0.
representation is indeed an interpolation method gergrate The global matrixX* (i = 1,2, 3) can be formally assem-
by the Green’s functions(&’,-) acting at test pointgz’ bled from local contributionsX*¢ for all non-empty cells.
(i=1,2,...,N;). By specifying the shape function to be AS in the case of the single-layer potenti& is sparse.
constant on thé-th boundary element o, the local operator Moreover, it can be shown that the operation count necessary
Y* expressed in (54) corresponds to the mapping given in [3p. generate the global matriX® is O(N), where V is the
The interpolation operato¥ can be used in place &V in total number of boundary nodes.
the PFFT method to map the potential density on the FourierThe connection of the foregoing procedure with the
grid. polynomial-based interpolation method examinedlith can
be established provided that the same numerical integratio
. . scheme as in (14) is employed to approximate (63). With such
B. Dipole representation an integration scheme, approximation of (63) can be given as

To compute the entries oK’ (i = 1,2,3), the linear

operator that maps the flux density onto the regular grid, Iy Ney, Ng B o
consider the potential Ef =Y CPH (@@ v )n”, (66)
s=1 pg=1
vPh(x) = | Hi(z,y)ni(y) ¢ (y)dsy, xeR*\S, (58) \
Sk Y (l=1,2,....Ny, j=1,2,...,Ng), wherec;ﬁ is, as before,

(no sum oni), where¢* now denotes the flux density that isgiven by (15) andzfﬂk:i ni(y*”). With the aid of (66) in (65),
confined to thek-th cell according to a decomposition similath® components oK™ can be written as
to (46). In view of (44),vP" can be approximated outside Ne. N

. ki S .. k Na
cell by use of a set of dipoleH; (z, 2*7) v*i with intensities Xff _ Z Z ash C;ﬁn‘:ﬁ,

) . 67
~*i located at grid pointg 2"/ }§:1 in the k-th cell as (67)

s=1 =1

p3

(@) = Hi(w,2Y)4M, 2zeR®\ (M) . (59)
j=1

(r=1,2,...,p% j=1,2,...,Nz), whered®’ is the value
of the function

With reference to Fig. 4 and the specified boundary data Al i - )
¢l =1,2,...,N}) ogr]\ Sk, one can F()ietermine the cgeﬁ‘i- dr(y) = ZHTIHi(xl’y)’ (no sum oni) (68)
cientsy* (j = 1,2,...,p% by requiring that =t
at an integration pointy*” resting onSy, i.e. thatd:;® =
d.(y*?). In (68) H'I is an entry of H'. It is again clear
at selected test pointg? resting on a sphere centered at, antiom (67) thatij‘:i is formally expressed via the same formula
enclosing, the:-th cell. By use of (46), (58) through (60), oneas V,,’;l in (23b) except that the multiplierés® are specified

v (27) = vPr(&9), ¢=1,2,...,N;, Ny>p> (60)

can write the linear system by (68). It is also instructive to note thaf"" was obtained
Hi{}* = ERi{(}F by virtue of local grid polynomials (see, e.g., (18)). These
’ remarks reveal that the dipole representation corresptmas
k _ (o kiye’ k _ [k Ne interpolation method generated by functioHs(', -) acting
V=YL G = {CD, (61) potati 9 y ’
b} { }] S , i at test pointsz' (I = 1,2,...,N,). In the PFFT scheme, the
where the components @ € RN*?" specified as interpolation operatoX’ can be used as a replacement\of

i . ] 3 to map the flux density on the regular grid.
Hy; = Hi(@,2%), ¢=1,2,..., Ny, j=1,2,...,p° (62) Compared to the polynomial-based interpolation procedure
are independent of the cell numbierowing to the choice of the potential matching meth_od introduces t\_/vo addiftiongl pa
the test sphere; the entries Bf+* ¢ RV N+ are given by rameters to the PFFT technique. More precisély,which is
the radius of the test sphere ang which is the number of
EN = [ H(@9,y)ni(y) ¢f (y) dsy, (63) test points resting on the test sphere. By constructiorsethe
I Sk parameters can affect the accuracy of the mapp¥igmdX®
( = 1,2,...,Ny). On employing the singular value decomWhich determine the precision of the PFFT method. Moreover,
position, (61) can be solved fdry}* and one can write the overall performance_ of the PFFT alg_orlthr_n can also be
affected, as the generation of these mappings involvesgbe u

{y}F = HTEF{ (Y, (64) of the singular value decomposition.
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V. NUMERICAL TREATMENT T = FFT({t}),
. _ . U’ = FFT({a'}) /IFFTs of grid data
The precorrected-FFT method is an algorithm to rapidly R o _

compute the matrix-vector produd@{¢} andH{u} involved 7=GT, U =H;U" l[Convolution
in an iterative solution of discretized BIEs such as (10), {t} :FFT_l(f)
where {¢t} and {u} are some trial data prescribed on the - =)’
bouqdaryS. More precisely, the gnd-bas_ed .treatment. of a {M} _ FFT‘l(Lli) /linverse EETs
matrix-vector product can be achieved via (i) a mapping of

boundary data onto a regular grid, (i) a convolution on the j/anterpolation
grid, (iii) an adjoint interpolation (anterpolation) to adary

nodes, and (iv) a precorrection of near-field influences dénat
not accurately approximated on the uniform grid.

To practically describe these operations, one can use
mappingsW and V* introduced in§lll, to construct the grid
data{{} = W{t} and {a'} = V'{u}. With this grid data,

the FFT algorithm can be employed to rapldly compute the

discrete convolunons{t} G {i} and{a} = Y7, H,{a'},
featured in (27) and (28) respectively. NeX¥ can again be
used to obtain the far-field approximationg} = W' {i}
and{u} = W' {4}, of G{t} andH{u} respectively. In view
of (36) and (40), the far-field approximatiofs} and{u} are
combined with corresponding correctiols{¢} and P{u} to
complete the matrix-vector procedure.

Set{t} =0and{u'} =0

Fork =1,...,M [/Loop over all non-empty cells
e = (e + W (i)
{wt = {w} s W a}

end (For)

Set{u} =0

Fori=1,2,3 //Loop over all components
{u} = {u} + {u'}

end (For)

the

For an efficient design of the PFFT scheme, steps (i), (iii) //Precorrection
and (iv) are implemented on a cell-by-cell basis for all non-

empty cells, i.e., cells containing boundary elements.sThi Fork =1,..., M /lLoop over all non-empty cells
methodology results in a significant reduction in memory Forl=1,..., My /[Loop over all near-
requirements. Step (ii) is performed over the entire comput IIneighboring cells to thé-th cell

tional grid and requires the FFTs of the single-layer pa#gnt

kernelG (g FFT(G)) and double-layer potential kernél
(H = FFT(HZ)) on the grid, whereG: and H; are matrices
representings and H; over the computational grid (s&#l).

In the implementation of the PFFT method, it is important

to note that the generation of interpolation matrid&¢ and
Vki (i = 1,2,3) for all non-empty cellsk = 1,2,..., M,
the FFTs of the featured kernels and H, and the formation
of precorrection matriceR* andP* (I =1,2,...,M;) do
not depend on the trial boundary ddtg and{«}. Therefore,
these laborious procedures are performed only once in the
called pre-processing phase of the PFFT algorithm.

(1" = (0" + R (1)
{u}® = {u}* + P*{u}!
end (For)
end (For).

An complete application of the above routine will yield
G{t} =~ {t} and H{u} ~ {u}. In the routine, one can
respectively replace the interpolation operat§¥sand Vi by
%e alternative mapping¥ andX‘ introduced in§lV to obtain
the PFFT method with potential matching technique.

With the assumption that the pre-processing part of the

PFFT scheme is already computed, the following pseudo-code

constitutes a complete algorithm for the rapid evaluatibiine
matrix-vector product${¢} and H{u}.

Algorithm 1 (PFFT):
llInterpolation
Set{t} =0and{a'} =0
Fork =1,...,M //ILoop over all non-empty cells
(i} = {1 + Wiy
{ﬁz}k — {ﬁz}k + Vk,i{u}k
end (For)

/[Convolution

VI. RESULTS

To present the numerical experiments more efficiently, it
is important to recall that the auxiliary computational box
containing the discretized boundary of the problem domain
is formed with uniform cubes termed cells (séBl). On
denoting byd. the diameter of a computational cell and
assuming thaW andV? (i = 1,2, 3) are used as interpolation
matrices, the PFFT method is mainly governed by three
parametersyn, p, andgq, that affect the accuracy, the memory
requirements and the computational time of the algorithhe T
parametern characterizes the number of computational cells
in each coordinate direction and it is mostly responsible fo
the overall performance of the PFFT algorithm. An illustvat
of the behavior ofn will be exposed in the sequel. Further,
represents the number of grid points per cell in each coatdin
direction and significantly affects the accuracy of the PFFT
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technique via the far-field approximation. In fact, it waswsh be written aslyat + 71t + Trus and Tprpr + 11T + TRHS

in §lll that p corresponds to the degree of the interpolatiofor the conventional approach and the PFFT technique respec
functions used on the grid in each coordinate direction. Thigely. Here Tyt is the time needed to generafe and H
parametel; can be introduced via the relatidi. = ¢(d./2), influence matricesTprpr is the pre-processing time by the
where R, is the radius of the sphere defining the neaPFFT method;Tit = Tgicastap(3) IS the time consumed
neighboring region in the precorrection process of the faly the biconjugate gradient stabilized method, &hdis is
spectral algorithm. Namely, the near-neighboring regiéra o the time necessary to compute the right-hand side of the
given non-empty cell in the PFFT method can be specifidlihear system. Also, the BICGSTABY iterative solver is used

in practice, by all non-empty cells contained in the closuneithout preconditioner in all numerical examples presdnte
of a ball with radius R. constructed from the center ofin this study. The three-dimensional FFT algorithm emptbye
the considered cell. For example, ¢f = 1, then the near- in this communication is an adaptation of the power 2of
neighboring region of a non-empty cell is composed soleblgorithm from [22]. These calculations were all performed
with the cell itself. If¢ = 3, then the near-neighboring regionon a single Intel Xeon(EM64T) processor running3étGHz

of a non-empty cell is formed not only with the consideredith 1IMB L2 cache of a dual CPU workstation with a total
cell itself but also with all non-empty cells that have a&f 4GB DDR2 memory.

common vertex with the designated cell. This situation is

sometimes referred to as the first nearest neighbors (sée [24 L
With these definitionsg simply defines the near-neighboring 800 evsccece coscccccees * |
region in the precorrection process of the PFFT algorithich an - .
affects the memory and accuracy of the PFFT method via 600L |
the conventional near-field calculation. In view of the noeth
parameters, the polynomial-based precorrected-FFT ithgor =
will be denoted as PFF#(, p, q).

400 b

250G ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 200+ B
2250*. = [o e®0g00000°
L 0""900‘-u‘\‘\‘\‘\‘\‘\‘
0 5 10 15 20 25 30 35 40 45
2000- — m
'_% 1750; , Fig. 6. lIteration time (in seconds) of the PFFT,(4, 3) for variousm.
1500~ a To facilitate the presentation of the computational restitt
., ] is useful to monitor the behavior of the PFFT(4, 3) in terms
1250 v, . ] of the running time as a function of the method paramster
o e T T ] To this end, one is to solve the interior Dirichlet problem
> 101520 25 30 35 40 45 specified above. The unit sphere is discretized wiil38
triangles utilizing4096 boundary nodes.
Fig. 5. Pre-processing time (in seconds) of the Pk, 3). On the basis of the problem parameters sepas4 and

g = 3, Fig. 5 shows the change dfprpr With respect to

In situations where the interpolation operatok8 and the method parameter. that characterizes the discretization
X (i = 1,2,3) are employed in the precorrected-FFTof the computational box. As can be seen from the figure,
algorithm, the fast spectral scheme will be denoted &%rpr levels up to an asymptotic value as evolves. In
PFFT(n,p, q,r:, N:), wherer, is the dimensionless radius ofcontrast, Fig. 6 depicts the time used by the BiCGSTAB(
the test sphere defined via = r.(d./2) and N, is the number iterative solver asn gradually increases. It is seen from the
of test points resting on the test sphere. figure thatlir experiences a finite jump at certain valuegrof

To illustrate the performance of the PFFT algorithm, #hat correspond to sharp increase in computer memory. This
Dirichlet problem for the Laplace equation (1) has beebehavior of7it is due to the fact that as rises withp fixed
solved on a unit sphere that is centered at the origin ¢f=4), the total number of grid point€) = (m(p — 1) +1)3,
a reference Cartesian frame. Namely, the following interion the auxiliary computational box also rises. As a result,
Dirichlet problem is considered everywhere in this studjve the computer memory needed to store the FFTSzofnd
the Laplace equation (1) in a unit ball = {(x1,2z2,23) € H kernels at all grid points suddenly increases. On Fig. 5
R? : 22 + 23 + 22 < 1} with boundary condition on a unit and Fig. 6, one could not go beyomd =42 because of the
sphereS specified asu|s = x? + 23 — 223. Obviously, the computer memory limitation o#GB of total RAM.
solution everywhere i is u(x1, x2,23) = 23+x3—2x3,and  In what follows, Fig. 7 displays the total running time
the sought boundary flux i§s = 222 + 223 — 42%. Also, the of the PFFT{n,4,3) as a function ofm. From this generic
Galerkin BEM of this study employs linear shape functionsbehavior, one can see that there existgin this casen =10)

On employing the BIiCGSTAB [17] method to solve iterfor which T, IS minimized. However, for a range of,
atively the discretized BIE (10), the total solution timencaTr.. remains around its minimal value and only the computer



S. NINTCHEU FATA: ACCELERATED GALERKIN BEM FOR 3D POTENTIALTHEORY 11

2509 W andV?, and the FFTs off and H kernels at all grid points.
2950° i One can also notice that the efficiency of the PER]4, 3)
1 ] is achieved with the same level of accuracy as compared to
2000~ vesosees sesecsseses & | the conventional approach. This accuracy is defined by the
= I . ] Euclidean norm of the discrepancy from an exact solution
1750 1 at all boundary points Vid.,-error = HtH;tﬁ”' wheret, is
1500’ .. ] a vector with entries generated from the known analytic flux
. | tls = 223 +22%—423, and the vectot is the numerical flux at
5o e - i all boundary nodes either by the conventional approach or by
I cee®*eonqee ] the PFFT method. From the columns displayingkhecrror,
100ttt one m!ght_ conclude that bqth algorilthrr)s do not converge as
m discretization increases. This behavior is caused byntag-

singular or quasi-singularintegrals (integrals over pairs of
triangular elements that are “very close”) in the tradiibn
Galerkin BEM. The PFFT simply mimics that behavior in
the precorrection step. Analytic integration techniques a
der development to deal with these quasi-singular iategr
e last two rows of Table | correspond to cases where the

Fig. 7. Total time (in seconds) of the PFRit(4, 3) for variousm.

memory is affected. With this latter fact, a usefiulcan always
be selected to benefit the most from the fast spectral methtfl;gI

TABLE |

3500 T T T T T T T
INTERIORDIRICHLET PROBLEM ON A UNIT SPHERE(TIME IN SECONDS L ‘ ‘ ‘ ‘ ‘/,
30000- |® Conventional Approagh /]
MEMORY IN.MEGABYTES). i . PFFT(T],4,3) /, |
Conventional approach 25000~ |- ¢, N+ c,N |
Nodes | TaviaT Tt Total Lag-error Mem Fo|— N InN L
400 107 0 107 4.750x 103 3.87 520000~ |- 6N 7
1024 291 0 291 3.668x1073 17 e I ]
2500 | 780 1 781  2.469x1073 97 1500¢- ]
4096 1411 3 1415  2.309x1073 258 10000 1
6400 | 2565 8 2577  2.471x1073 628 i ]
8281 3483 13 3503  2.912x1073 1024 5000 e i
10000 | 4522 21 4554  2.795x 103 1536 I Pt
16384 | 9237 58 9328  3.997x1073  4100.91 o P N R R S
36864 33893 304 34377 - 20794.76 0 5000 10000 15000N20000 25000 30000 35000
TABLE I Fig. 8. Total running time (in seconds) for interior Dirichleroblems and
estimate curves.
INTERIORDIRICHLET PROBLEM ON A UNIT SPHERE(TIME IN SECONDS
MEMORY IN MEGABYTES). memory required for the calculations has exceeded4tBB
PFFT(n, 4, 3) computer limit. In these situations, the running times and
Nodes | Toprr Ty Total Lo-error Mem  m memories shown in the table were estimated via regression
2 2 H
1024 290 1 291 3.667x1073 28 2 is the number of boundary unknowns. The coefficients:,
2500 693 10 703 2-8;5“0‘2 310 and a;,as were obtained via least squares approximations
4096 1173 12 1186  2.770x 10~ 142 10 : :
6400 1999 ol 1943 2997x10-3 283 10 using data from Table .I for boundary points up 16000
2981 2309 88 2400 3.995%x10-3 332 17 nodes. Another regression curvg N In N was constructed
10000 | 2778 104 2886 4.517x1073 332 20 with all running times of Table Il to compare the actual
3 d -3 .. . . .
16384 | 4700 125 4829  5.476x10 618 20 timings with the estimated curve. As can be seen from Fig. 8,

36864 11729 254 11987 7.031x 1073 2048 20

the PFFT(n, 4, 3) agrees extremely well with th©(N In N)
asymptotic curve. In view of the problem size which goes
) ) . i up to 36864 unknowns in this study, Fig. 8 also indicates
A. PFFT method with polynomial-based interpolations that the PFFTi2, 4, 3) agrees very well with a linear estimate
To contrast the traditional approach and the PFFT methad/N, where ¢, is computed via a least squares technique.
Table | and Table Il show results for the interior DirichletHowever, one should keep in mind that these estimate curves
problem with different discretizations. The last columnTaf describe the asymptotic behavior (i.e., “larg®) of the fast
ble Il represents values af for which the total computational spectral method and can be strongly affected by the geometry
time is minimized. It is seen from the tables tHBtrrr is and topology of the domain under consideration. Nonetkeles
never greater thafy st for all discretizations. In fact, the these examples on a simple spherical geometry illustrage th
PFFT(,p,q) is designed to completely replace the tradipotential behavior of the fast spectral method. On Fig. & it
tional approach for solving the Laplace equation. Indekd, tseen that the PFFT method indeed scales well with the linear
PFFT(, p, ¢) corresponds to the conventional approach with@mplexity curveas N, whereas is also obtained using a least
small overhead associated with the computation and stafagesquares approximation with Dirichlet data taken from Tdble
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TABLE IV
INTERIORDIRICHLET PROBLEM ON A UNIT SPHERETIME IN SECONDS
MEMORY IN MEGABYTES).

25000———— — .

[ | e« Conventional Approach ] PFFT(m, 4,3,3,100)
20000- |+ PFFT(4,3) A Nodes | Terrr T Total Lo-error Mem m
L |- aN+aN s 400 107 0 107 4.750x10~3 751 2
>15000 | — N S 1024 290 1 291  3.669x1073 28 2

-3
S 2500 691 9 700  2.511x10 73 10
S I 1 4096 1169 13 1183  2.361x1073 143 10
€ 10000~ - 6400 1917 21 1939  2.535x1073 290 10
I | 8281 2303 91 2397 3.036x1073 336 17
10000 2769 109 2882  2.944x10°3 375 20
5000~ e b 16384 4683 124 4811  4.085x1073 619 20
L 36864 | 11682 237 11924 5.821x1073 2048 20
—O’r

$*~* 200 10000 1éoobN 20000 25000 30000 35000
The results are displayed on Table IV, where the last column
Fig. 9. Memory (in megabytes) used by the traditional and theTRfethods  contains values ofn for which the total computational time
and their regression curves for the interior Dirichlet degh. is minimized. A comparison of Table I, Table Il and Table IV
reveals that solutions obtained by the PFRT{, 3, 3,100)
By settingp = 3, Table Il depicts computational resultsare more accurate than that of the PFRT4, 3). Also, the
for the same Dirichlet problem, again employing only thetfirgliscrepancy in running time between the two PFFT methods is
nearest neighbors. In the table,is selected so as to minimizenot significant. Moreover, both PFFTs require about the same
the total running time. A comparison of Table |, Table Il andhmount of memory. For problem sizes considered in this study
Table Il reveals a quick drop in accuracy of an order afne can conclude that the computational cost and memory
magnitude. It follows from these observations that quadratrequired by the singular value decomposition have a minimal

effect on the overall efficiency of the PFRR(4, 3, 3, 100).
TABLE IlI

INTERIORDIRICHLET PROBLEM ON A UNIT SPHERETIME IN SECONDS
MEMORY IN MEGABYTES).

TABLE V
INTERIORDIRICHLET PROBLEM ON A UNIT SPHERETIME IN SECONDS

PFFT(n, 3,3) MEMORY IN MEGABYTES).
Nodes | Tprrr T Total La-error Mem m PFFT(n, 3,3, 3, 100)
400 107 0 107 4.750x 1073 6.47 2 Nodes | TprpT T; Total La-error Mem m
-3
1024 289 1 290 3.667x1077 26 2 400 107 0 107 4750x103 677 2
2500 670 9 679  1.721x10 48 15 1024 080 1 900 366710~ 96 5
4096 | 1113 11 1124 1.735x10~2 83 15 5500 670 7 6T TAT3<10-3
. A73%10 50 15
6400 | 1770 15 1785  1.767x 10 150 15 1006 | 1112 9 1121 sesax10-3 83 1o
_2 .
180208010 ggig ;g ;gi; }'ZSZX 18_2 ;gg }g 6400 | 1770 14 1784 1.027x10~2 152 15
16384 | 4502 120 4625  2.541 X 102 421 31 8281 | 2825 17 2343  1101x107% 222 15
IR TR R T X v o, o 10000 | 2847 20 2867 1.161x10~2 302 15
3686 0619 18 080 757x10 64 3 16384 | 4499 107 4609 1.685x10~2 419 31
36864 | 10614 168 10786 2.079x10~2 11264 31

polynomials in every coordinate directiop & 2) are still

not sufficient to accurately capture the decaying kerr&ls  The situation withp=3 is shown in Table V. A comparison

and H in the far-field. Table Ill also shows a great reductiogith Table Il again shows that the PFRE(3,3,3,100)

in memory requirements wherein the Dirichlet problem witrovides more accurate results than the PFE T, 3).

36864 nodes can be solved using olyyGB of memory  Numerical experiments have also been performed for a

as compared to an estimated.3GB by the conventional exterior Neumann problem on the unit sphere. The problem

approach. was simulated via a point source solution at the origin. In al
aspects of the study, similar conclusions were obtainedas i

B. PFFT method with potential matching interpolations the case of the Dirichlet problem.

To provide further insight into the efficacy of the foregoing
fast spectral method, it is useful to re-examine the nurakric
solution of the Dirichlet problem for the Laplace equatiam 0 |n this study, a fast spectral method to expedite the saiutio
the unit sphere in the context of the PFRL{p,q,7:, N). of singular BIEs is investigated within the framework of the
To this end, it is therefore important to rerun previougrecorrected-FFT technique rooted in capacitance eidract
computational experiments and subsequently comparetsesgfoblems. To this end, the proposed method employs a regular
with the conventional approach and the polynomial-basethrtesian grid, the fast Fourier transform and boundary-to
PFFT(n, p, q) in terms of accuracy, memory and elapsed timeyid interpolations to rapidly generate surface influenufethe
The dimensionless radius of the test Sphere and the numbeﬂ@ijretized problem in a sparse manner. The sparse represen
test points are specified respectivelyras=-3 and N;=100.  tation of influences results in a significant memory reductio

VIl. CONCLUSIONS
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Further, the sparse influences are utilized in the BICGSTARs]
iterative solver to quickly compute the solution of the desh.

The new algorithm, also referred to as precorrected-FFT
method, is a systematic generalization of the capacitangel
extraction counterpart to deal with boundary value prolslém
the context of the direct and indirect boundary integrahfor 7]
lations. The proposed method can handle potential problems
involving not only the single-layer potential kernel bus@athe ]
double-layer kernel. It is founded on a more general matttema
ical framework and employs an improved interpolation schem
in the far-field treatment of boundary influences. [°]

In contrast to the popular fast multipole method, the PFFT
technique is relatively easy to implement and it is restdct [10]
only to problems featuring integral kernels that are asdedi
with a convolution-type tensor. These integral kernels afgy
defined as multilinear form of some vectors with coefficients
given by components of the associated convolution-type tefrfz]
sor. In particular, the foregoing methodology is applieatd
the hypersingular flux equation of potential theory whetéim
hypersingular kernel is a bilinear form of unit normal vesto (13]
and it is associated to a symmetric radkensor.

Numerical experiments have demonstrated that tifiet]
precorrected-FFT indeed accelerates the solution of fngu
BIEs while preserving the level of accuracy of the traditibn [15)
approach. It was shown that the proposed method performs
at best when the method parametey describing the number [16]
of computational cells in every coordinate direction, if7
selected so as to minimize the total computational time
of the considered problem. At the moment, one does n[%]
have a tool to identify this optimum parameter a priori.
However, it was also shown that for a wide range raf [19]
the overall running time remains around its minimal value.
This latter fact makes possible a selectiomefthat is useful |2
to efficiently resolve the problem. Computational details
have additionally indicated that the PFFT method with Ioc:[ﬂl]
interpolation operators generated by the potential matchi
technique yields a solution that is more accurate than that o
the simple polynomial-based PFFT algorithm. The memof?!
requirements of the PFFT method was shown to scale linearly
with the number of boundary unknowns. [23]

(24]
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