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Abstract— This paper is concerned with the development of
a fast spectral method for solving boundary integral equations
in three-dimensional potential theory. Upon discretizing the
underlying boundary integrals via a Galerkin approximation,
the proposed method overlays the problem domain with a
regular Cartesian grid that serves as an auxiliary platform
for computation. With the aid of the Fast Fourier Transform,
the necessary influence matrices of the discretized problem are
rapidly evaluated on the regular grid in a sparse manner. Unlike
traditional techniques dealing with boundary integrals, the sparse
representation of the featured coefficient matrices results in a
significant reduction in computer memory requirements. The
computational cost associated with the sparse approximation of
influence matrices is asymptotically lower than that of conven-
tional methods. For a numerical solution of the resulting linear
system, a Krylov-subspace (e.g. BiCGSTAB) iterative method
is further employed wherein the sparse influences are used to
rapidly compute the matrix-vector products involved at each
iteration. Several key features of the formulation, including the
mapping of density distributions onto the regular Cartesian grid,
are highlighted. Numerical experiments are presented to illustrate
the performance of the spectral method. The proposed approach
will find application in areas involving large simulations with
complex and moving boundaries.

Index Terms— Boundary integral method, regular grid
method, fast Fourier transform, fast algorithm, potential theory.

I. I NTRODUCTION

T HE mathematical modeling of many engineering prob-
lems often involves the solution of boundary integral

equations. A numerical technique for producing discretized
boundary integral equations is known as the Boundary Element
Method (BEM) [1], [2]. Boundary element techniques are
highly accurate and, in comparison to domain methods, the
inherent surface-only discretization can be very advantageous.
For instance, the Boundary Integral Equation (BIE) approach
is the preferred modeling choice for practical problems in-
volving unbounded media, cracks, and moving or unknown
boundaries. However, BIE methods typically produce linear
systems that contain fully-populated influence matrices. For
practical problems demanding a fine discretization to cope
with the details of surface structures, the solution time and
storage requirement of the dense linear systems become pro-
hibitive.

Over the past decade, several sparsification techniques, Fast
Multipole Method (FMM) [3], [4], fast Fourier transform
methods [5]–[7], Regular Grid Method (RGM) [8], wavelet-
based discretization method [9], [10], have been developed
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to accelerate the solution of BIE for large scale problems.
These acceleration methods are based on some type of fast
summation technique which consists of (i) grouping boundary
influences into near-field and far-field, and (ii) using special
techniques to treat short and long range influences separately.
In this decoupled process, long-range influences are typically
approximated by means of a suitable, less expensive approach
rather than calculated directly.

A fast spectral algorithm presented herein follows the lines
of the Precorrected-FFT (PFFT) developed in [5]. It revolves
around the use of an auxiliary regular Cartesian grid containing
the discretized boundary, and the Fast Fourier Transform (FFT)
to rapidly approximate far-field influences. The calculation via
the homogeneous grid incorporates inaccurate near-field con-
tributions that are removed and replaced (i.e., precorrected) by
explicit pre-computed short range influences. This procedure
leads to a sparse representation of boundary influence matrices
which, in turn, results in a significant reduction in memory
requirements.

Although most numerical treatments of boundary integrals
by the PFFT method deal with single-layer potentials [5], [11]
and piecewise constant surface interpolations [12], a study
utilizing a double-layer potential has been presented in [13]
wherein the discretized solution could not be obtained at nodal
points on the surface mesh but only at integration points on
boundary elements. Moreover, so far, there have not been any
attempts to systematically extend the PFFT methodology to
the solution of direct BIEs.

Aimed at bridging this gap, a generalization of the PFFT
for solving direct BIEs, i.e., involving single- and double-layer
potentials, and arbitrarily varying local interpolation functions
is the focus of this study. To this end, a Galerkin approach [14]
is employed to discretize the boundary integral equations.
By means of a well-defined homogeneous Cartesian grid, the
fast Fourier transform and local surface-to-grid interpolations,
the necessary influence matrices of the discretized problem
are rapidly computed in a sparse manner. In the decoupling
process, a computational savings is gained through the use
of the FFT algorithm, and a substantially less memory re-
quirement is also a consequence of the sparsification. To
efficiently resolve the linear system, the sparse representation
of influences is used in a Krylov-subspace iterative solver
such as GMRES [15], [16] or BiCGSTAB [17] to compute
the matrix-vector multiplications featured at every iteration of
the solution process.

Details of the computational treatment, including the gener-
ation of the sparse interpolation operators which map bound-
ary data onto the regular grid and back to the surface, are
elucidated. Numerical examples are included to illustratethe
performance of the proposed method.
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II. PROBLEM FORMULATION

Of interest in this study is the numerical treatment of a
three-dimensional boundary integral equation for the Laplace
equation in a domainD ⊂ R

3 with boundary S via a
Galerkin approximation. With reference to a Cartesian frame
{0;x1, x2, x3}, consider the boundary-value problem for the
potential functionu(x) (x∈D) satisfying

∇2u = 0 (1)

in the domainD. It is further assumed thatu satisfies either a
Dirichlet, Neumann or Mixed boundary condition onS. By use
of Green’s theorem [2], [18], it can be shown that a solution
u to (1) admits the representation

∫

S

G(x,y) t(y) dsy −

∫

S

H(x,y)·n(y)u(y) dsy =

{
u(x), x∈D

0, x∈R
3\D̄

, (2)

whereG is the free space fundamental solution of the Laplace
equation expressed as

G(x,y) =
1

4π‖x − y‖
, x,y∈R

3, x 6= y. (3)

In addition, t = n ·∇u denotes the flux associated with the
potentialu, andH is the gradient ofG given by

H(x,y) =
1

4π

x − y

‖x − y‖3
, x,y∈R

3, x 6= y, (4)

with n=n(y) denoting the unit normal toS directed towards
the exterior ofD. It is important to mention that the numerical
analysis presented below is applicable regardless of the types
of boundary conditions, i.e., Dirichlet, Neumann or Mixed
boundary conditions.

Herein, the boundary integral equation to be solved is
understood in the sense of alimit to the boundary( [14],
[19]). This approach enables writing the same equation for
points either inside/outside the domainD or on the boundary
S. In what follows, letR3\D̄∋xε = x+εn(x), x∈S, ε > 0,
n(x) is the unit outward normal toS at x. The singular BIE

lim
ε→0

(∫

S

G(xε,y) t(y) dsy −

∫

S

H(xε,y)·n(y)u(y) dsy

)
= 0, (5)

is to be solved with the singular integrals calculated forxε

approaching the boundaryS from outside the domainD.

A. Galerkin approximation

To accomplish the numerical solution of (5) associated
with a boundary value problem, it is common practice to
(i) partition S into non-overlapping surface patches called
boundary elements, each of which is characterized by its
nodes, and (ii) to approximate the boundary potentialu(y)
and flux t(y) (y∈S) in terms of respective nodal values and
basis shape functionsψj at discrete pointsyj on S as

u(y) =
∑

j

u(yj)ψj(y), t(y) =
∑

j

t(yj)ψj(y). (6)

In practice, boundary elements onS are often constructed as
triangular or quadrilateral surface patches (see Fig. 1), and
shape functions are selected as constant, linear or higher order
polynomials over a boundary element.

Fig. 1. Triangulation of a unit sphere featuring796 triangles with400 nodes.

With the above definition, the Galerkin approach for solv-
ing (5) rests on a weighted-residual statement, wherein the
interpolatorsψi serve as the weighting functions in an error
argument as

lim
ε→0

∫

S

ψi(x)

{∫

S

G(xε,y) t(y) dsy −

∫

S

H(xε,y)·n(y)u(y) dsy

}
dsx = 0. (7)

The use of the interpolated approximations (6) in (7) leads
to a dense linear system of algebraic equations for boundary
potentialu and flux t

G{t} = H{u}, (8)

where {u} and {t} are vectors containing nodal potentials
u(yj) and fluxest(yj) respectively; components of influence
matricesG andH take the form

Gij = lim
ε→0

∫

S

∫

S

ψi(x)G(xε,y)ψj(y) dsydsx,

Hij = lim
ε→0

∫

S

∫

S

ψi(x)H(xε,y)·n(y)ψj(y) dsydsx. (9)

Following the standard approach for solving (8), the double
integrations in (9) are explicitly evaluated. In doing so, ap-
propriate techniques are used to treat singular integrals [14].
As a result, the influence matricesG andH are formed and
stored in the computer memory. Upon specifying the boundary
conditions of the boundary-value problem dealing with (1),the
linear system (8) can be recast as

A{z} = {b}, (10)

where all unknown quantities onS have been collected in{z},
and {b} is a vector whose entries are obtained from known
boundary data.

The dense linear system (10) can be solved in a conventional
manner by theLU decomposition scheme. Unfortunately, the
LU or Gaussian elimination method becomes prohibitive when
the order of the matrixA, N , is “large” since it requires
O(N3) arithmetic operations andO(N2) memory storage.
In this situation, Krylov-subspace iterative solvers suchas
GMRES [15], [16] or BiCGSTAB [17] are preferable as they
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demand onlyO(N2) operations per iteration. This latter num-
ber of operations directly stemming from the dense matrix-
vector multiplications in each iteration is still rather expensive
for large scale problems. The goal of this study is to reduce the
number of operations per iteration and the computer memory
needed to evaluate the matrix-vector products featured in (10)
whenN is very large. To this end, a homogeneous grid method
for computing a matrix-vector product called theprecorrected-
FFT is generalized.

III. PRECORRECTED-FFT FOR SINGULARBIE

Originally introduced in [5] for the 3D analysis of the
Laplace equation employing only single-layer potentials,the
Precorrected-FFT (PFFT) technique is an algorithm for rapid
computation of a dense matrix-vector multiplication associated
with discretized integral equations. Related work in 2D elas-
ticity, utilizing an FFT and multipole type Green’s function
expansions, was first considered in [6].

The underlying idea for acceleration in the PFFT revolves
around the fact that (i) integrals featured in (9), when evaluated
over boundary elements, can be decomposed into near-field
and far-field parts, and (ii) the far-field part can be approxi-
mated accurately and efficiently on a regular grid by use of
the fast Fourier transform. On the other hand, the near-field
part of (9) that includes not only all singular and weakly-
singular integrals is computed in a conventional manner,
i.e., by numerically performing the double integrations in
which suitable limiting strategies are carried out to deal with
singular integrals (see [14]). Unlike the popular fast multipole
method [4], the PFFT algorithm can be easily implemented
for all kernels of convolution type, i.e., kernels that depend
only on the relative position(x−y) between the source point
x and the receiver pointy.

In this study, a new version of the PFFT method capable
of dealing with (i) single-layer and double-layer potentials,
and (ii) arbitrary shape functions, will be described in detail.
In addition, a general mathematical framework for defining
the interpolation operators to/from the regular grid is also
presented. The new fast spectral method, also referred to as
precorrected-FFT technique, will be used to rapidly compute
the matrix-vector multiplicationsG{t} andH{u} involved in
the iterative solution of (10) without explicitly generating G

andH. For large problems, this procedure is highly desirable
as a direct formation of the coefficient matrixA is avoided.

To effectively deal with Galerkin boundary integrals such
as those featured in (9), it is important to employ an auxiliary
parallelepiped containing the discretized boundaryS of the
domainD as shown in Fig. 2. With reference to the figure,
the computational box is partitioned intom ×m ×m cubes
termed cells, wherem is the number cells in each coordinate
direction. With this subdivision, it is assumed that every cell
is formed withp × p × p grid points, wherep is the number
of points per cell in each coordinate direction. This cell-
to-cell discretization creates a uniform grid throughout the
computational parallelepiped. Next, boundary elements onS
are sorted (without repetition) into the computational cells. A
cell containing boundary elements is called non-empty. Now,

define byM andM , respectively, the total number of cells
and non-empty cells in the computational box. To facilitatethe
ensuing analysis, letSk be the union of all boundary elements
in a non-empty cellk. With this definition, it is clear that
Sk may protrude out of thek-th cell. Also, denote byNEk

the number of boundary elements onSk, and letNk be the
number of boundary nodes onSk.

G
rid points

Fig. 2. Side view of a uniform Cartesian grid in the computational box with
27 cells (m = 3) and27 grid points (p = 3) per cell.

A. Regular grid approximation

To describe the grid approximation of thefar-field part of
the integrals in (9), mostly involving interaction withdistant
boundary elements, one can assume without loss of generality
that the convolution-type kernelsG and H are non-singular,
well-behaved and bounded in the auxiliary computational
cube. In view of these assumptions,xε can be safely replaced
by x in the limit in (9). With reference to (9b), one can write
an approximation toHij as

H̃ij =
M∑

k=1

M∑

l=1

H̃kl
ij , (11)

whereH̃kl
ij is the contribution tõHij from thek-th cell when it

interacts with thel-th cell. In (11), it is assumed that̃Hkl
ij = 0

if cell k is empty or celll is empty. For a pair of non-empty
cells k and l,

H̃kl
ij =

NEk∑

s=1

NEl∑

t=1

H̃
kl(s,t)
ij , (12)

where H̃
kl(s,t)
ij is the contribution toH̃kl

ij from an element
couple(Es, Et)∈Sk×Sl, and it is given by

H̃
kl(s,t)
ij =

∫

Es

∫

Et

ψi(x)H(x,y)·n(y)ψj(y) dsydsx. (13)

By use of a suitable integration scheme, e.g., Gaussian quadra-
ture rules [20] on triangular boundary elements,H̃

kl(s,t)
ij can

be approximated as

H̃
kl(s,t)
ij =

3∑

f=1

NG∑

β=1

NG∑

α=1

Csβ
i Ctα

j ntα
f Hf (xsβ ,ytα), (14)

where

Csβ
i = wsβJ(xsβ)ψi(x

sβ),

Ctα
j = wtαJ(ytα)ψj(y

tα), ntα
f = nf (ytα). (15)
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In (15),xsβ andwsβ are Gauss points and weights on element
Es, and J(xsβ) is the jacobian of the mapping of a parent
triangle (i.e. parameter space) intoEs ∈ Sk; ytα, wtα and
J(ytα) are respectively Gauss points, weights, and jacobian
onEt∈Sl; NG is the number of Gauss points on a boundary
element.

1

4

5 6

7 8

2

3

Fig. 3. Generic computational cell withp = 2.

Now, for a non-singular and sufficiently smooth kernelH

in the computational box, one can postulate the decomposition

Hf (x,y) =

p3∑

r=1

p3∑

q=1

dr(x) dq(y)Hf (x̂r, ŷq), (16)

wherex̂
r, ŷ

q represent computational grid points in thek-th
and l-th cells respectively;dr(x) can be given, for instance,
by the Lagrange interpolation polynomials constructed forthe
k-th cell such that

dr(x̂
r) = 1, dr(x̂

s) = 0, s 6= r. (17)

In the above settings, the parameterp thus corresponds to the
polynomial order in each coordinate direction. With reference
to Fig. 3, an example of polynomial interpolation functions
dr(x), with p = 2, for a generic cube[−1, 1]×[−1, 1]×[−1, 1]
can be expressed as

ζ1(x) =
1

2
(1 − x), ζ2(x) =

1

2
(1 + x), x∈ [−1, 1]

d1(x) = ζ1(x1)ζ1(x2)ζ1(x3), d2(x) = ζ2(x1)ζ1(x2)ζ1(x3)

d3(x) = ζ1(x1)ζ2(x2)ζ1(x3), d4(x) = ζ2(x1)ζ2(x2)ζ1(x3)

d5(x) = ζ1(x1)ζ1(x2)ζ2(x3), d6(x) = ζ2(x1)ζ1(x2)ζ2(x3)

d7(x) = ζ1(x1)ζ2(x2)ζ2(x3),

d8(x) = ζ2(x1)ζ2(x2)ζ2(x3), x = (x1, x2, x3). (18)

In practice, the parameterp is usually a small integer. Typ-
ically, p = 2, 3, 4. It now follows from (16) that there exist
in the auxiliary computational parallelepiped coefficients dsβ

r ,
dtα

q such that

Hf (xsβ ,ytα) =

p3∑

r=1

p3∑

q=1

dsβ
r dtα

q Hf (x̂r, ŷq), (19)

wheredsβ
r = dr(x

sβ), dtα
q = dq(y

tα).
By use of (19) in (14), one can write

H̃
kl(s,t)
ij =

3∑

f=1

p3∑

r=1

p3∑

q=1

W k,s
ri Hf (x̂r, ŷq)V l,tf

qj , (20)

where

W k,s
ri =

NG∑

β=1

dsβ
r Csβ

i , V l,tf
qj =

NG∑

α=1

dtα
q Ctα

j ntα
f . (21)

The superscriptsk and l in (20) and (21) are used to indicate
that the coefficientsW k,s

ri and V l,tf
qj pertain to thek-th and

l-th non-empty cells respectively. With the aid of (20) in (12),
the contribution toH̃ij from two interacting non-empty cells,
k and l, can be expressed as

H̃kl
ij =

3∑

f=1

p3∑

r=1

p3∑

q=1

W k
riHf (x̂r, ŷq)V l,f

qj . (22)

In deriving (22), (21) was employed to write the interpolation
coefficients as

W k
ri =

NEk∑

s=1

NG∑

β=1

dsβ
r Csβ

i , V l,f
qj =

NEl∑

t=1

NG∑

α=1

dtα
q Ctα

j ntα
f . (23)

To compactly express (22) for all boundary nodesi, j in the
interacting cellsk, l, denote byWk ∈ R

p3×Nk the matrix
whose entries,W k

ri, are given via (23a), and letVl,f ∈R
p3×Nl

be the matrix with components,V l,f
qj , as defined in (23b). Also,

let Ĥkl
f ∈R

p3×p3

be the matrix whose entries areHf (x̂r, ŷq),
where x̂

r is a grid point that lies in thek-th cell and ŷ
q

is a grid point that resides in thel-th cell. With the above
definitions, (22) can be written in matrix form as

H̃
kl =

3∑

f=1

W
kT

Ĥ
kl
f V

l,f , H̃
kl∈R

Nk×Nl , (24)

whereW
kT

is the transposed or adjoint of the interpolation
matrix W

k. A multiplication of WkT

by a vector defined in
the k-th cell will be called adjoint interpolation or simply
anterpolationas in [21]. With the aid of (11), (24) and the
fact thatH̃kl

ij = 0 if at least cellk or cell l is empty, one can
write the far-field approximation ofH as

H̃ =

3∑

f=1

M∑

k=1

M∑

l=1

W
kT

Ĥ
kl
f V

l,f , (25)

where M is the total number of non-empty cells in the
computational parallelepiped. In case of cell self-interaction,
i.e., whenk = l, the diagonal components of̂Hkk

f can be
set to any constant value. It is typically set to zero,.i.e.,
Hf (x̂r, x̂r) = 0. The cell self-interaction contribution will be
handled with care in the subsequent development. Also, note
that an individual entry of (25) can be obtained by summing
up the contributions̃Hkl

ij over all cellsk and l, and grouping
similar terms at corresponding grid points to yield

H̃ij =

3∑

f=1

Q∑

r=1

Q∑

q=1

WriHf (x̂r, ŷq)V f
qj , (26)

whereQ = (m(p−1)+1)3 is the total number of grid points in
the computational box, and the interpolation coefficientsWri,
andV f

qj are set to zero for all grid pointsr and q pertaining
to empty cells. In view of (26), denote bŷHf ∈ R

Q×Q the
matrix whose entries areHf (x̂r, ŷq) with Hf (x̂r, x̂r) = 0,
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i.e.,Hf evaluated on the entire grid in the computational box.
Next, defineW ∈ R

Q×N and V
f ∈ R

Q×N matrices with
componentsWri andV f

qj respectively. With such definitions,
(26) can formally be written in matrix form as

H̃ =

3∑

f=1

W
T

ĤfV
f , (27)

where the superscript “T” stands for the matrix transpose. In
fact, (27) is an alternative representation of (25) over theentire
computational grid. It simply illustrates the factorization of
the far-field approximation ofH in terms of global operators
defined on the whole computational grid. An efficient imple-
mentation of the PFFT technique should never generateW,
V

i andĤi (i = 1, 2, 3) explicitly.
Owing to the fact thatHi (i = 1, 2, 3) is a convolution-

type kernel, the grid-to-grid mapping characterized byĤi

corresponds to adiscrete convolutionon a regular grid. As a
result, an operation consisting of multiplyinĝHi by a vector
on the grid can be effected by the FFT algorithm (e.g. [22])
over the entire computational grid. The FFT scheme requires
on the order ofO(Q lnQ) arithmetic operations. However, for
grid and surface discretizations that are such thatm3 scales
asO(N) and the fact thatp is a small integer, the cost of
the FFT in the fast spectral method will reduce toO(N lnN).
Such is the case for the so-called homogeneous distributionof
boundary elements into computational cells (see [5]).

Following the procedures elaborated above, it can be shown
that the far-field approximation ofG in (9a), involving the
single-layer potential kernelG, admits the representation

G̃ = W
T

ĜW, (28)

where Ĝ ∈ R
Q×Q is a matrix with componentsG(x̂r, ŷq)

and G(ŷq, ŷq) = 0; W is the interpolation matrix featured
in (27). Note that the symmetry of the Galerkin integral for
the kernelG is preserved. The contribution tõG from a pair
of interacting non-empty cells,k and l, can be expressed as

G̃
kl = W

kT

Ĝ
kl
W

l, G̃
kl∈R

Nk×Nl , (29)

where W
k ∈ R

p3×Nk is the interpolation matrix for thek-
th cell as in (24), andĜkl ∈ R

p3×p3

is the portion of the
convolution matrixĜ associated with the interaction between
cell k and celll.

In view of (27) and (28), one can infer that interpolation
matricesW andV

i (i = 1, 2, 3) map boundary data prescribed
on S onto the regular grid. Furthermore,W

T

maps grid
quantities back onto the boundaryS. Owing to the cell-by-cell
construction of the global interpolation matrices viaW

k and
V

k,i (i = 1, 2, 3), W andV
i are sparse. They containO(N)

non-zero entries. Indeed, the number of operations needed to
generate, e.g.,W is roughly equal toMp3Nk, wherep3Nk is
the cost ofWk. Sincep is small andNk ≤N , the operation
count needed to generateWk is O(N). Moreover, for large
N , the number of non-empty cellsM is much smaller than
N . With these results, it follows that the computational costof
W scales asO(N). Consequently, the multiplication ofW or
V

i by a vector will requireO(N) arithmetic operations and
memory storage.

B. Precorrection

The rapid far-field approximation of the productsG{t}
and H{u}, carried out over the entire computational grid
via the FFT technique, will inaccurately represent the near-
field contribution toG and H. For example, the cell self-
interaction terms such asWkT

Ĝ
kk

W
k and W

kT

Ĥ
kk
i V

k,i,
which are embedded in the regular grid evaluations via the
FFT, represent unsatisfactory approximations of the actual
double integrals featured in (9) from within the consideredcell.
Also, from the smoothness assumption on the kernelsG and
H, the regular grid approximation cannot accurately handle
singular or weakly-singular boundary integrals. To alleviate
these impediments, a correction of near-field contributions to
the designated influences is performed for every non-empty
cell and their set of near-neighboring non-empty cells. To this
end, letMk be the number of near-neighboring cells of a given
non-empty cellk in the computational cube.

Taking (9b) again as a point of departure, assume that some
boundary trial data{u} are prescribed onS, and one is to
compute the productH{u}. To facilitate the ensuing develop-
ment, letHkl ∈R

Nk×Nl denote the block ofH expressed in
(9b) associated with boundary nodes in the interaction between
cell k and its near-neighbor celll, whereNk is the number
of boundary nodes in thek-th cell. The entries ofHkl are
computed by explicitly evaluating the integrals

Hkl
ij = lim

ε→0

∫

Sk

∫

Sl

ψi(x)H(xε,y)·n(y)ψj(y) dsydsx, (30)

(i = 1, 2, . . . , Nk, j = 1, 2, . . . , Nl), for all boundary element
pairs (Es, Et)∈Sk×Sl. In the computation of (30), suitable
limiting techniques are used the tackle the singular behavior
of coincident, vertex-adjacent and edge-adjacent elementpairs
(see [14]). Also, let{u}k be the vector composed with the
entries of{u} associated with the boundary nodes in thek-th
cell, and denote by{u}k the regular grid approximation (i.e.,
the far-field approximation obtained globally via the FFT) of
H{u} in the k-th cell.

With theses definitions,

{u}
(k/l)

=

3∑

i=1

W
kT

Ĥ
kl
i V

l,i {u}
l (31)

represents the inaccurate contribution to{u}k from the grid
approximation due to surface density{u}l in the neighboring
l-th cell. A complete approximation ofH{u} in the k-th cell
due to surface density{u}l from the l-th cell can be obtained
as

{H{u}}
(k/l)

= {u}k − {u}(k/l) + H
kl{u}l, (32)

i.e., subtracting off the inaccurate contribution from thegrid
and adding in the correct near-field contribution. In view
of (31), (32) can be expressed as

{H{u}}
(k/l)

= {u}
k

+ P
kl {u}

l
, (33)

whereP
kl ∈ R

Nk×Nl is a precorrection matrix for thek-th
cell in interaction with thel-th near-neighboring cell given by

P
kl = H

kl −

3∑

i=1

W
kT

Ĥ
kl
i V

l,i. (34)
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With (33) and (34), a satisfactory approximation ofH{u}
(from thek-th cell) is obtained by adding up corrections from
all near-neighboring cellsl as

{H{u}}
k

= {u}
k

+

Mk∑

l=1

P
kl {u}

l
, (35)

whereMk is the number of computational cells in the near-
field region of thek-th non-empty cell. By construction, it is
assumed thatPkl = 0 if at least cellk or cell l is empty.
With the above settings, local precorrection matricesP

kl can
be accumulated for all cellsk and all near-neighboring cellsl
to form the whole precorrection matrixP. Since interactions
involving non-neighboring cells are approximated globally via
the regular grid, the whole precorrection matrixP is sparse.
With this analysis and (27), it follows that an approximation
of the influence matrixH by the precorrected-FFT method
results in the decomposition

H = P +

3∑

i=1

W
T

ĤiV
i, (36)

whereP, V
i andW are sparse matrices.

Similarly, for the treatment of (9a), one can also introduce
a precorrection matrix for thek-th cell in interaction with a
near-neighboringl-th cell as

R
kl = G

kl − W
kT

Ĝ
kl

W
l, (37)

where Ĝ
kl ∈ R

p3×p3

is the block of the convolution matrix
Ĝ in the interaction between cellk and its near-neighbor
cell l; G

kl ∈ R
Nk×Nl denotes the portion ofG expressed

in (9a) when cellk interacts with its near-neighbor celll. The
components ofGkl are obtained via direct calculation of the
integrals

Gkl
ij = lim

ε→0

∫

Sk

∫

Sl

ψi(x)G(xε,y)ψj(y) dsydsx, (38)

(i = 1, 2, . . . , Nk, j = 1, 2, . . . , Nl), for all boundary element
pairs(Es, Et)∈Sk×Sl. In the computation of (38), appropriate
limiting procedures are also used to deal with weakly-singular
integrals. On the basis of (37), an approximation ofG{t} in
the k-th cell can be conveniently written as

{G{t}}
k

= {t}
k

+

Mk∑

l=1

R
kl {t}

l
, (39)

where{t}k is the regular grid approximation ofG{t} in the
k-th cell obtained via interpolation to the grid, convolution
on the grid, and anterpolation to the surface portion in the
k-th cell; {t}l is the flux density in the near-neighboring cell
l. Similar to the situation involvingH, the precorrected-FFT
approximation ofG yields the decomposition

G = R + W
T

ĜW, (40)

whereR andW are sparse matrices. A decomposition of the
form (40) was first proposed in [5] for the study of the Laplace
equation using only single-layer potential representation and
piece-wise constant approximations.

The interpolation operators,W and V
i (i = 1, 2, 3),

featured in the decomposition (36) and (40) play a key role
in the PFFT method. Specifically, these operators are used to
map data to/from the auxiliary computational grid in the so-
called interpolation/anterpolation process of the PFFT scheme.
With the assumption that the near-field correction is exact,the
accuracy of the PFFT method is entirely determined by the
precision of the interpolation operators. By construction, this
precision is strongly affected by the method parameterp which
characterizes the order of interpolations in each coordinate
direction.

IV. POTENTIAL MATCHING METHOD

To establish a direct connection with the PFFT method pro-
posed in [5], it is useful to introduce an alternative procedure
to generate the interpolation operatorsW andV

i (i = 1, 2, 3).
To this end, a particular form ofW andV

i can be constructed
on a cell-by-cell basis via a potential matching method. In
this approach, potentials given onSk, a portion of the surface
S in the k-th non-empty cell, are replaced by “equivalent”
potentials generated by a set of point sources in the designated
cell. To illustrate this procedure, consider, e.g., the single-layer
potential

vSL(x) =

∫

Γ

G(x,y) ζ(y) dsy, x∈R
3 \Γ (41)

with potential densityζ that is piecewise continuous on a
surfaceΓ. The far-field behavior ofvSL can be expressed as

vSL(x) = G(x,0) q +O

(
1

‖x‖2

)
, as ‖x‖ → ∞, (42)

where0 = (0, 0, 0)
T

is the origin of the coordinate system,
andq=

∫
Γ
ζ(y)dsy is termed the monopole moment. It is seen

from (42) that the monopole termG(x,0) q can be used as a
first order approximation of the single-layer potential outside
any ball enclosing the origin0 andΓ.

Now, define the double-layer potential

vDL(x) =

∫

Γ

H(x,y)·n(y)χ(y) dsy, x∈R
3 \Γ (43)

with piecewise continuous densityχ on Γ. The far-field
contribution tovDL can be shown to take the form

vDL(x) = H(x,0)·d +O

(
1

‖x‖3

)
, as ‖x‖ → ∞, (44)

whered=
∫
Γ

n(y)χ(y)dsy is called the dipole moment. The
result given by (44) suggests that the dipole termH(x,0)·d
can be used to approximate the double-layer potential outside
any ball enclosing the origin0 andΓ.

With these observations, it will be shown in the sequel
that alternative local interpolation matrices,Yk and X

k,i

(i = 1, 2, 3), can be generated by representing the single-layer
potential with monopoles and the double-layer potential with
dipoles at grid points in thek-th non-empty cell respectively.
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A. Monopole representation

To construct the linear operatorY that maps boundary
data onto a regular grid in the computational parallelepiped,
consider the single-layer potential

vSL(x) =

∫

Sk

G(x,y) ζk(y) dsy, x∈R
3\Sk, (45)

whereSk is the union of all boundary elements in thek-th non-
empty cell andζk is a piecewise continuous density defined
on Sk. Similar to the decomposition (6), the potential density
ζk in the k-th computational cell can be approximated as

ζk(y) =

Nk∑

j=1

ζkj ψk
j (y), ζkj = ζk(yj), (46)

where yj is the j-th boundary node onSk, and ψk
j is the

shape function associated withyj in thek-th cell. On the basis
of (46), the single-layer potential expressed in (45) reduces to

vSL(x) =

Nk∑

j=1

ζkj

∫

Sk

G(x,y)ψk
j (y) dsy, x∈R

3\Sk. (47)

T
est points

Fig. 4. Test surface centered at a generic non-empty computational cell.

To represent the surface potentialvSL outside thek-th cell,
one can introduce the grid potential

vG(x) =

p3∑

j=1

G(x, ẑkj) γkj , x∈R
3 \ {ẑkj}p3

j=1 (48)

as a sum of monopolesG(x, ẑkj) γkj with momentsγkj

located at grid points{ẑkj}p3

j=1 in the k-th cell.
Now, suppose that boundary dataζkl (l = 1, 2, . . . , Nk) are

prescribed onSk. With this assumption, one can evaluate the
source intensitiesγkj (j = 1, 2, . . . , p3) by requiring that

vG(x̃i) = vSL(x̃i), i = 1, 2, . . . , Nt (49)

at selected test points̃xi resting on a sphere containing the
k-th cell (see Fig. 4). In practice, the number of test pointsNt

is specified so thatNt ≥ p3. The equality expressed in (49)
makes sense as it is in accordance with the far-field pattern
given by (42). By virtue of (47) and (48), equality (49) yields

Ǧ
k{γ}k = D

k{ζ}k,

{γ}k = {γkj}p3

j=1, {ζ}k = {ζkl}Nk

l=1, (50)

where the components of̌Gk∈R
Nt×p3

are given as

Ǧk
ij = G(x̃i, ẑkj), i = 1, 2, . . . , Nt, j = 1, 2, . . . , p3, (51)

and the entries ofDk ∈ R
Nt×Nk are expressed as

Dk
il =

∫

Sk

G(x̃i,y)ψk
l (y) dsy, l = 1, 2, . . . , Nk. (52)

For an efficient computation of the mapping, the test sphere is
selected so that it is centered at thek-th cell. With this choice,
the relative position of the test points and the grid points,(x̃i−
ẑ

kj), does not depend on the cell numberk. As the full-space
Green’s functionG is of convolution-type, it follows from (51)
that Ǧk is also independent of the cell numberk and remains
the same for all cells in the computational parallelepiped.As
a result, Ǧk will be denoted simply ašG. By use of the
singular value decomposition [23], the linear system (50) can
be inverted for{γ}k and one can write

{γ}k = Ǧ
†
D

k{ζ}k, (53)

whereǦ
† is the Moore-Penrose pseudo-inverse ofǦ. On the

basis of (53), one can now introduce the interpolation matrix
Y

k ∈ R
p3×Nk for the k-th cell as

Y
k = Ǧ

†
D

k. (54)

By construction,Yk = 0 wheneverNk = 0. For any given
cell k, Y

k maps the prescribed boundary data onto the grid
data in the designated cell.

To formally generate the global interpolation matrixY, it
is important to note that the grid densityγkj at a grid point
ẑ

kj shared by multiple cells is obtained as a sum of the
contribution from all cells havinĝzkj as a common node.
With the presence of empty cells in the computational box,
the whole interpolation matrixY is sparse. Moreover, the op-
eration count necessary to createY reduces toO(N). Indeed,
the computational cost of constructingY is proportional to
Mp3Nk, where the cost of the local linear mapYk is p3Nk.
On recalling thatNk ≤ N , p is small (usuallyp = 2, 3, 4)
and that, for largeN , the number of non-empty cellsM
is much smaller than the boundary meshN , it follows that
the generation ofY requiresO(N) operations and memory
storage.

To establish a link with the polynomial-based interpolation
method presented in§III, it is useful to employ the same
numerical integration scheme as in (14) and write an approx-
imation to (52) as

Dk
lj =

NEk∑

s=1

NG∑

β=1

Csβ
j G(x̃l,ysβ), (55)

(l = 1, 2, . . . , Nt, j = 1, 2, . . . , Nk), whereCsβ
j is given

by (15). From (55), the entries of (54) can be expressed as

Y k
rj =

NEk∑

s=1

NG∑

β=1

dsβ
r Csβ

j , (56)

(r = 1, 2, . . . , p3, j = 1, 2, . . . , Nk), wheredsβ
r is the value

of the function

dr(y) =

Nt∑

i=1

Ǧ†
riG(x̃i,y) (57)
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at an integration pointysβ resting onSk, i.e. that dsβ
r =

dr(y
sβ). In (57), Ǧ†

ri is an individual component of̌G†. It
is important to note thatY k

rj in (56) is formally expressed by
the same formula asW k

rj in (23a) except that the coefficients
dsβ

r are characterized by the Green’s functions (57). One also
has to recall thatW k

rj was derived using grid polynomials as,
for example, in (18). With these observations, the monopole
representation is indeed an interpolation method generated
by the Green’s functionsG(x̃i, ·) acting at test points̃xi

(i = 1, 2, . . . , Nt). By specifying the shape functionψk
l to be

constant on thel-th boundary element ofSk, the local operator
Y

k expressed in (54) corresponds to the mapping given in [5].
The interpolation operatorY can be used in place ofW in
the PFFT method to map the potential density on the Fourier
grid.

B. Dipole representation

To compute the entries ofXi (i = 1, 2, 3), the linear
operator that maps the flux density onto the regular grid,
consider the potential

vDL

i (x) =

∫

Sk

Hi(x,y)ni(y) ζk(y) dsy, x∈R
3\Sk, (58)

(no sum oni), whereζk now denotes the flux density that is
confined to thek-th cell according to a decomposition similar
to (46). In view of (44),vDL

i can be approximated outside
cell k by use of a set of dipolesHi(x, ẑ

kj) γkj with intensities
γkj located at grid points{ẑkj}p3

j=1 in the k-th cell as

vH

i (x) =

p3∑

j=1

Hi(x, ẑ
kj) γkj , x∈R

3 \ {ẑkj}p3

j=1. (59)

With reference to Fig. 4 and the specified boundary data
ζkl (l = 1, 2, . . . , Nk) on Sk, one can determine the coeffi-
cientsγkj (j = 1, 2, . . . , p3) by requiring that

vH

i (x̃q) = vDL

i (x̃q), q = 1, 2, . . . , Nt, Nt ≥ p3 (60)

at selected test points̃xq resting on a sphere centered at, and
enclosing, thek-th cell. By use of (46), (58) through (60), one
can write the linear system

Ȟ
i{γ}k = E

k,i{ζ}k,

{γ}k = {γkj}p3

j=1, {ζ}k = {ζkl}Nk

l=1, (61)

where the components of̌Hi∈R
Nt×p3

specified as

Ȟi
qj = Hi(x̃

q, ẑkj), q = 1, 2, . . . , Nt, j = 1, 2, . . . , p3, (62)

are independent of the cell numberk owing to the choice of
the test sphere; the entries ofE

k,i∈R
Nt×Nk are given by

Ek,i
ql =

∫

Sk

Hi(x̃
q,y)ni(y)ψk

l (y) dsy, (63)

(l = 1, 2, . . . , Nk). On employing the singular value decom-
position, (61) can be solved for{γ}k and one can write

{γ}k = Ȟ
i†
E

k,i{ζ}k, (64)

whereȞ
i† is the generalized inverse of̌Hi. By virtue of (64),

one can define the interpolation matrixXk,i∈R
p3×Nk for the

k-th cell as

X
k,i = Ȟ

i†
E

k,i. (65)

Also, the assumption thatNk = 0 implies thatXk,i = 0.
The global matrixXi (i = 1, 2, 3) can be formally assem-

bled from local contributionsXk,i for all non-empty cells.
As in the case of the single-layer potential,X

i is sparse.
Moreover, it can be shown that the operation count necessary
to generate the global matrixXi is O(N), whereN is the
total number of boundary nodes.

The connection of the foregoing procedure with the
polynomial-based interpolation method examined in§III can
be established provided that the same numerical integration
scheme as in (14) is employed to approximate (63). With such
an integration scheme, approximation of (63) can be given as

Ek,i
lj =

NEk∑

s=1

NG∑

β=1

Csβ
j Hi(x̃

l,ysβ)nsβ
i , (66)

(l = 1, 2, . . . , Nt, j = 1, 2, . . . , Nk), whereCsβ
j is, as before,

given by (15) andnsβ
i = ni(y

sβ). With the aid of (66) in (65),
the components ofXk,i can be written as

Xk,i
rj =

NEk∑

s=1

NG∑

β=1

dsβ
r Csβ

j nsβ
i , (67)

(r = 1, 2, . . . , p3, j = 1, 2, . . . , Nk), wheredsβ
r is the value

of the function

dr(y) =

Nt∑

l=1

Ȟi†
rlHi(x̃

l,y), (no sum oni) (68)

at an integration pointysβ resting onSk, i.e. that dsβ
r =

dr(y
sβ). In (68) Ȟi†

rl is an entry ofȞi†. It is again clear
from (67) thatXk,i

rj is formally expressed via the same formula
asV k,i

rj in (23b) except that the multipliersdsβ
r are specified

by (68). It is also instructive to note thatV k,i
rj was obtained

by virtue of local grid polynomials (see, e.g., (18)). These
remarks reveal that the dipole representation correspondsto an
interpolation method generated by functionsHi(x̃

l, ·) acting
at test points̃xl (l = 1, 2, . . . , Nt). In the PFFT scheme, the
interpolation operatorXi can be used as a replacement ofV

i

to map the flux density on the regular grid.
Compared to the polynomial-based interpolation procedure,

the potential matching method introduces two additional pa-
rameters to the PFFT technique. More precisely,Rt which is
the radius of the test sphere andNt which is the number of
test points resting on the test sphere. By construction, these
parameters can affect the accuracy of the mappingsY andX

i

which determine the precision of the PFFT method. Moreover,
the overall performance of the PFFT algorithm can also be
affected, as the generation of these mappings involves the use
of the singular value decomposition.
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V. NUMERICAL TREATMENT

The precorrected-FFT method is an algorithm to rapidly
compute the matrix-vector productsG{t} andH{u} involved
in an iterative solution of discretized BIEs such as (10),
where {t} and {u} are some trial data prescribed on the
boundaryS. More precisely, the grid-based treatment of a
matrix-vector product can be achieved via (i) a mapping of
boundary data onto a regular grid, (ii) a convolution on the
grid, (iii) an adjoint interpolation (anterpolation) to boundary
nodes, and (iv) a precorrection of near-field influences thatare
not accurately approximated on the uniform grid.

To practically describe these operations, one can use the
mappingsW andV

i introduced in§III, to construct the grid
data

{
t̂
}

= W{t} and {ûi} = V
i{u}. With this grid data,

the FFT algorithm can be employed to rapidly compute the
discrete convolutions,

{
t̂
}

= Ĝ
{
t̂
}

and{û} =
∑3

i=1 Ĥi{û
i},

featured in (27) and (28) respectively. Next,W can again be
used to obtain the far-field approximations,{t} = W

T {
t̂
}

and{u} = W
T

{û}, of G{t} andH{u} respectively. In view
of (36) and (40), the far-field approximations{t} and{u} are
combined with corresponding correctionsR{t} andP{u} to
complete the matrix-vector procedure.

For an efficient design of the PFFT scheme, steps (i), (iii)
and (iv) are implemented on a cell-by-cell basis for all non-
empty cells, i.e., cells containing boundary elements. This
methodology results in a significant reduction in memory
requirements. Step (ii) is performed over the entire computa-
tional grid and requires the FFTs of the single-layer potential
kernelG (Ĝ = FFT(Ĝ)), and double-layer potential kernelH

(Ĥi = FFT(Ĥi)) on the grid, whereĜ and Ĥi are matrices
representingG andHi over the computational grid (see§III).
In the implementation of the PFFT method, it is important
to note that the generation of interpolation matricesW

k and
V

k,i (i = 1, 2, 3) for all non-empty cellsk = 1, 2, . . . ,M ,
the FFTs of the featured kernelsG andH, and the formation
of precorrection matricesRkl andP

kl (l = 1, 2, . . . ,Mk) do
not depend on the trial boundary data{t} and{u}. Therefore,
these laborious procedures are performed only once in the so-
called pre-processing phase of the PFFT algorithm.

With the assumption that the pre-processing part of the
PFFT scheme is already computed, the following pseudo-code
constitutes a complete algorithm for the rapid evaluation of the
matrix-vector productsG{t} andH{u}.

Algorithm 1 (PFFT):

//Interpolation

Set
{
t̂
}

= 0 and{ûi} = 0

For k = 1, . . . ,M //Loop over all non-empty cells
{
t̂
}k

=
{
t̂
}k

+ W
k{t}k

{ûi}k = {ûi}k + V
k,i{u}k

end (For)

//Convolution

T̂ = FFT
({
t̂
})

,

Û i = FFT
(
{ûi}

)
//FFTs of grid data

T̂ = Ĝ T̂ , Û i = Ĥi Û
i //Convolution

{
t̂
}

= FFT−1
(
T̂

)
,

{
ûi

}
= FFT−1

(
Û i

)
//Inverse FFTs

//Anterpolation

Set{t} = 0 and
{
ui

}
= 0

For k = 1, . . . ,M //Loop over all non-empty cells

{t}k = {t}k + W
kT {

t̂
}k

{
ui

}k
=

{
ui

}k
+ W

kT {
ûi

}k

end (For)

Set{u} = 0

For i = 1, 2, 3 //Loop over all components

{u} = {u} +
{
ui

}

end (For)

//Precorrection

For k = 1, . . . ,M //Loop over all non-empty cells

For l = 1, . . . ,Mk //Loop over all near-

//neighboring cells to thek-th cell

{t}k = {t}k + R
kl{t}l

{u}k = {u}k + P
kl{u}l

end (For)

end (For).

An complete application of the above routine will yield
G{t} ≈ {t} and H{u} ≈ {u}. In the routine, one can
respectively replace the interpolation operatorsW andV

i by
the alternative mappingsY andX

i introduced in§IV to obtain
the PFFT method with potential matching technique.

VI. RESULTS

To present the numerical experiments more efficiently, it
is important to recall that the auxiliary computational box
containing the discretized boundary of the problem domain
is formed with uniform cubes termed cells (see§III). On
denoting by dc the diameter of a computational cell and
assuming thatW andV

i (i = 1, 2, 3) are used as interpolation
matrices, the PFFT method is mainly governed by three
parameters,m, p, andq, that affect the accuracy, the memory
requirements and the computational time of the algorithm. The
parameterm characterizes the number of computational cells
in each coordinate direction and it is mostly responsible for
the overall performance of the PFFT algorithm. An illustration
of the behavior ofm will be exposed in the sequel. Further,p
represents the number of grid points per cell in each coordinate
direction and significantly affects the accuracy of the PFFT
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technique via the far-field approximation. In fact, it was shown
in §III that p corresponds to the degree of the interpolation
functions used on the grid in each coordinate direction. The
parameterq can be introduced via the relationRc = q(dc/2),
where Rc is the radius of the sphere defining the near-
neighboring region in the precorrection process of the fast
spectral algorithm. Namely, the near-neighboring region of a
given non-empty cell in the PFFT method can be specified,
in practice, by all non-empty cells contained in the closure
of a ball with radiusRc constructed from the center of
the considered cell. For example, ifq = 1, then the near-
neighboring region of a non-empty cell is composed solely
with the cell itself. Ifq = 3, then the near-neighboring region
of a non-empty cell is formed not only with the considered
cell itself but also with all non-empty cells that have a
common vertex with the designated cell. This situation is
sometimes referred to as the first nearest neighbors (see [24]).
With these definitions,q simply defines the near-neighboring
region in the precorrection process of the PFFT algorithm and
affects the memory and accuracy of the PFFT method via
the conventional near-field calculation. In view of the method
parameters, the polynomial-based precorrected-FFT algorithm
will be denoted as PFFT(m, p, q).

0 5 10 15 20 25 30 35 40 45
m

1000

1250

1500

1750

2000

2250

2500

T
P
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Fig. 5. Pre-processing time (in seconds) of the PFFT(m, 4, 3).

In situations where the interpolation operatorsY and
X

i (i = 1, 2, 3) are employed in the precorrected-FFT
algorithm, the fast spectral scheme will be denoted as
PFFT(m, p, q, rt, Nt), wherert is the dimensionless radius of
the test sphere defined viaRt = rt(dc/2) andNt is the number
of test points resting on the test sphere.

To illustrate the performance of the PFFT algorithm, a
Dirichlet problem for the Laplace equation (1) has been
solved on a unit sphere that is centered at the origin of
a reference Cartesian frame. Namely, the following interior
Dirichlet problem is considered everywhere in this study: solve
the Laplace equation (1) in a unit ballD = {(x1, x2, x3) ∈
R

3 : x2
1 + x2

2 + x2
3 < 1} with boundary condition on a unit

sphereS specified asu|S = x2
1 + x2

2 − 2x2
3. Obviously, the

solution everywhere inD is u(x1, x2, x3) = x2
1+x

2
2−2x2

3, and
the sought boundary flux ist|S = 2x2

1 + 2x2
2 − 4x2

3. Also, the
Galerkin BEM of this study employs linear shape functions.

On employing the BiCGSTAB [17] method to solve iter-
atively the discretized BIE (10), the total solution time can

be written asTMAT + TIT + TRHS andTPFFT + TIT + TRHS

for the conventional approach and the PFFT technique respec-
tively. HereTMAT is the time needed to generateG and H

influence matrices;TPFFT is the pre-processing time by the
PFFT method;TIT = TBiCGSTAB(3) is the time consumed
by the biconjugate gradient stabilized method, andTRHS is
the time necessary to compute the right-hand side of the
linear system. Also, the BiCGSTAB(3) iterative solver is used
without preconditioner in all numerical examples presented
in this study. The three-dimensional FFT algorithm employed
in this communication is an adaptation of the power of2
algorithm from [22]. These calculations were all performed
on a single Intel Xeon(EM64T) processor running at3.2GHz
with 1MB L2 cache of a dual CPU workstation with a total
of 4GB DDR2 memory.

0 5 10 15 20 25 30 35 40 45
m

0

200

400

600

800

T
IT

Fig. 6. Iteration time (in seconds) of the PFFT(m, 4, 3) for variousm.

To facilitate the presentation of the computational results, it
is useful to monitor the behavior of the PFFT(m, 4, 3) in terms
of the running time as a function of the method parameterm.
To this end, one is to solve the interior Dirichlet problem
specified above. The unit sphere is discretized with8188
triangles utilizing4096 boundary nodes.

On the basis of the problem parameters set asp = 4 and
q = 3, Fig. 5 shows the change ofTPFFT with respect to
the method parameterm that characterizes the discretization
of the computational box. As can be seen from the figure,
TPFFT levels up to an asymptotic value asm evolves. In
contrast, Fig. 6 depicts the time used by the BiCGSTAB(3)
iterative solver asm gradually increases. It is seen from the
figure thatTIT experiences a finite jump at certain values ofm
that correspond to sharp increase in computer memory. This
behavior ofTIT is due to the fact that asm rises withp fixed
(p=4), the total number of grid points,Q=(m(p− 1) + 1)3,
in the auxiliary computational box also rises. As a result,
the computer memory needed to store the FFTs ofG and
H kernels at all grid points suddenly increases. On Fig. 5
and Fig. 6, one could not go beyondm= 42 because of the
computer memory limitation of4GB of total RAM.

In what follows, Fig. 7 displays the total running time
of the PFFT(m, 4, 3) as a function ofm. From this generic
behavior, one can see that there existsm (in this casem=10)
for which TTotal is minimized. However, for a range ofm,
TTotal remains around its minimal value and only the computer
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Fig. 7. Total time (in seconds) of the PFFT(m, 4, 3) for variousm.

memory is affected. With this latter fact, a usefulm can always
be selected to benefit the most from the fast spectral method.

TABLE I

INTERIOR DIRICHLET PROBLEM ON A UNIT SPHERE(TIME IN SECONDS,

MEMORY IN MEGABYTES).

Conventional approach

Nodes TMAT Tit Total L2-error Mem

400 107 0 107 4.750×10
−3

3.87

1024 291 0 291 3.668×10
−3

17

2500 780 1 781 2.469×10
−3

97

4096 1411 3 1415 2.309×10
−3

258

6400 2565 8 2577 2.471×10
−3

628

8281 3483 13 3503 2.912×10
−3

1024

10000 4522 21 4554 2.795×10
−3

1536

16384 9237 58 9328 3.997×10
−3

4100.91

36864 33893 304 34377 −− 20794.76

TABLE II

INTERIOR DIRICHLET PROBLEM ON A UNIT SPHERE(TIME IN SECONDS,

MEMORY IN MEGABYTES).

PFFT(m, 4, 3)

Nodes TPFFT Tit Total L2-error Mem m

400 107 0 107 4.750×10
−3

7.07 2

1024 290 1 291 3.667×10
−3

28 2

2500 693 10 703 2.875×10
−3

73 10

4096 1173 12 1186 2.770×10
−3

142 10

6400 1922 21 1943 2.997×10
−3

283 10

8281 2309 88 2400 3.995×10
−3

332 17

10000 2778 104 2886 4.517×10
−3

332 20

16384 4700 125 4829 5.476×10
−3

618 20

36864 11729 254 11987 7.031×10
−3

2048 20

A. PFFT method with polynomial-based interpolations

To contrast the traditional approach and the PFFT method,
Table I and Table II show results for the interior Dirichlet
problem with different discretizations. The last column ofTa-
ble II represents values ofm for which the total computational
time is minimized. It is seen from the tables thatTPFFT is
never greater thanTMAT for all discretizations. In fact, the
PFFT(m, p, q) is designed to completely replace the tradi-
tional approach for solving the Laplace equation. Indeed, the
PFFT(1, p, q) corresponds to the conventional approach with a
small overhead associated with the computation and storageof

W andV
i, and the FFTs ofG andH kernels at all grid points.

One can also notice that the efficiency of the PFFT(m, 4, 3)
is achieved with the same level of accuracy as compared to
the conventional approach. This accuracy is defined by the
Euclidean norm of the discrepancy from an exact solution
at all boundary points viaL2-error = ‖t−te‖

‖te‖
, where te is

a vector with entries generated from the known analytic flux
t|S = 2x2

1+2x2
2−4x2

3, and the vectort is the numerical flux at
all boundary nodes either by the conventional approach or by
the PFFT method. From the columns displaying theL2-error,
one might conclude that both algorithms do not converge as
discretization increases. This behavior is caused by thenear-
singular or quasi-singular integrals (integrals over pairs of
triangular elements that are “very close”) in the traditional
Galerkin BEM. The PFFT simply mimics that behavior in
the precorrection step. Analytic integration techniques are
under development to deal with these quasi-singular integrals.
The last two rows of Table I correspond to cases where the

0 5000 10000 15000 20000 25000 30000 35000
N

0

5000

10000

15000

20000

25000

30000

35000

T
T

ot
al

Conventional Approach
PFFT(m,4,3)

c
1

N
2
+ c

2
N

c
3

N ln N
c

4
N

Fig. 8. Total running time (in seconds) for interior Dirichlet problems and
estimate curves.

memory required for the calculations has exceeded the4GB
computer limit. In these situations, the running times and
memories shown in the table were estimated via regression
curvesc1N2 + c2N and a1N

2 + a2N respectively. HereN
is the number of boundary unknowns. The coefficientsc1, c2
and a1, a2 were obtained via least squares approximations
using data from Table I for boundary points up to10000
nodes. Another regression curvec3N lnN was constructed
with all running times of Table II to compare the actual
timings with the estimated curve. As can be seen from Fig. 8,
the PFFT(m, 4, 3) agrees extremely well with theO(N lnN)
asymptotic curve. In view of the problem size which goes
up to 36864 unknowns in this study, Fig. 8 also indicates
that the PFFT(m, 4, 3) agrees very well with a linear estimate
c4N , where c4 is computed via a least squares technique.
However, one should keep in mind that these estimate curves
describe the asymptotic behavior (i.e., “large”N ) of the fast
spectral method and can be strongly affected by the geometry
and topology of the domain under consideration. Nonetheless,
these examples on a simple spherical geometry illustrate the
potential behavior of the fast spectral method. On Fig. 9, itis
seen that the PFFT method indeed scales well with the linear
complexity curvea3N , wherea3 is also obtained using a least
squares approximation with Dirichlet data taken from TableII.
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Fig. 9. Memory (in megabytes) used by the traditional and the PFFT methods
and their regression curves for the interior Dirichlet problem.

By setting p = 3, Table III depicts computational results
for the same Dirichlet problem, again employing only the first
nearest neighbors. In the table,m is selected so as to minimize
the total running time. A comparison of Table I, Table II and
Table III reveals a quick drop in accuracy of an order of
magnitude. It follows from these observations that quadratic

TABLE III

INTERIOR DIRICHLET PROBLEM ON A UNIT SPHERE(TIME IN SECONDS,

MEMORY IN MEGABYTES).

PFFT(m, 3, 3)

Nodes TPFFT Tit Total L2-error Mem m

400 107 0 107 4.750×10
−3

6.47 2

1024 289 1 290 3.667×10
−3

26 2

2500 670 9 679 1.721×10
−2

48 15

4096 1113 11 1124 1.735×10
−2

83 15

6400 1770 15 1785 1.767×10
−2

150 15

8281 2314 18 2332 1.790×10
−2

222 15

10000 2849 22 2872 1.794×10
−2

303 15

16384 4502 120 4625 2.541×10
−2

421 31

36864 10619 184 10807 2.757×10
−2

1126.4 31

polynomials in every coordinate direction (p = 2) are still
not sufficient to accurately capture the decaying kernelsG
andH in the far-field. Table III also shows a great reduction
in memory requirements wherein the Dirichlet problem with
36864 nodes can be solved using only1.1GB of memory
as compared to an estimated20.3GB by the conventional
approach.

B. PFFT method with potential matching interpolations

To provide further insight into the efficacy of the foregoing
fast spectral method, it is useful to re-examine the numerical
solution of the Dirichlet problem for the Laplace equation on
the unit sphere in the context of the PFFT(m, p, q, rt, Nt).
To this end, it is therefore important to rerun previous
computational experiments and subsequently compare results
with the conventional approach and the polynomial-based
PFFT(m, p, q) in terms of accuracy, memory and elapsed time.
The dimensionless radius of the test sphere and the number of
test points are specified respectively asrt =3 andNt =100.

TABLE IV

INTERIOR DIRICHLET PROBLEM ON A UNIT SPHERE(TIME IN SECONDS,

MEMORY IN MEGABYTES).

PFFT(m, 4, 3, 3, 100)

Nodes TPFFT Tit Total L2-error Mem m

400 107 0 107 4.750×10
−3

7.51 2

1024 290 1 291 3.669×10
−3

28 2

2500 691 9 700 2.511×10
−3

73 10

4096 1169 13 1183 2.361×10
−3

143 10

6400 1917 21 1939 2.535×10
−3

290 10

8281 2303 91 2397 3.036×10
−3

336 17

10000 2769 109 2882 2.944×10
−3

375 20

16384 4683 124 4811 4.085×10
−3

619 20

36864 11682 237 11924 5.821×10
−3

2048 20

The results are displayed on Table IV, where the last column
contains values ofm for which the total computational time
is minimized. A comparison of Table I, Table II and Table IV
reveals that solutions obtained by the PFFT(m, 4, 3, 3, 100)
are more accurate than that of the PFFT(m, 4, 3). Also, the
discrepancy in running time between the two PFFT methods is
not significant. Moreover, both PFFTs require about the same
amount of memory. For problem sizes considered in this study,
one can conclude that the computational cost and memory
required by the singular value decomposition have a minimal
effect on the overall efficiency of the PFFT(m, 4, 3, 3, 100).

TABLE V

INTERIOR DIRICHLET PROBLEM ON A UNIT SPHERE(TIME IN SECONDS,

MEMORY IN MEGABYTES).

PFFT(m, 3, 3, 3, 100)

Nodes TPFFT Tit Total L2-error Mem m

400 107 0 107 4.750×10
−3

6.77 2

1024 289 1 290 3.667×10
−3

26 2

2500 670 7 677 7.473×10
−3

50 15

4096 1112 9 1121 8.653×10
−3

83 15

6400 1770 14 1784 1.027×10
−2

152 15

8281 2325 17 2343 1.101×10
−2

222 15

10000 2847 20 2867 1.161×10
−2

302 15

16384 4499 107 4609 1.685×10
−2

419 31

36864 10614 168 10786 2.079×10
−2

1126.4 31

The situation withp=3 is shown in Table V. A comparison
with Table III again shows that the PFFT(m, 3, 3, 3, 100)
provides more accurate results than the PFFT(m, 3, 3).

Numerical experiments have also been performed for a
exterior Neumann problem on the unit sphere. The problem
was simulated via a point source solution at the origin. In all
aspects of the study, similar conclusions were obtained as in
the case of the Dirichlet problem.

VII. CONCLUSIONS

In this study, a fast spectral method to expedite the solution
of singular BIEs is investigated within the framework of the
precorrected-FFT technique rooted in capacitance extraction
problems. To this end, the proposed method employs a regular
Cartesian grid, the fast Fourier transform and boundary-to-
grid interpolations to rapidly generate surface influencesof the
discretized problem in a sparse manner. The sparse represen-
tation of influences results in a significant memory reduction.
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Further, the sparse influences are utilized in the BiCGSTAB
iterative solver to quickly compute the solution of the problem.

The new algorithm, also referred to as precorrected-FFT
method, is a systematic generalization of the capacitance
extraction counterpart to deal with boundary value problems in
the context of the direct and indirect boundary integral formu-
lations. The proposed method can handle potential problems
involving not only the single-layer potential kernel but also the
double-layer kernel. It is founded on a more general mathemat-
ical framework and employs an improved interpolation scheme
in the far-field treatment of boundary influences.

In contrast to the popular fast multipole method, the PFFT
technique is relatively easy to implement and it is restricted
only to problems featuring integral kernels that are associated
with a convolution-type tensor. These integral kernels are
defined as multilinear form of some vectors with coefficients
given by components of the associated convolution-type ten-
sor. In particular, the foregoing methodology is applicable to
the hypersingular flux equation of potential theory whereinthe
hypersingular kernel is a bilinear form of unit normal vectors
and it is associated to a symmetric rank2 tensor.

Numerical experiments have demonstrated that the
precorrected-FFT indeed accelerates the solution of singular
BIEs while preserving the level of accuracy of the traditional
approach. It was shown that the proposed method performs
at best when the method parameterm, describing the number
of computational cells in every coordinate direction, is
selected so as to minimize the total computational time
of the considered problem. At the moment, one does not
have a tool to identify this optimum parameter a priori.
However, it was also shown that for a wide range ofm,
the overall running time remains around its minimal value.
This latter fact makes possible a selection ofm that is useful
to efficiently resolve the problem. Computational details
have additionally indicated that the PFFT method with local
interpolation operators generated by the potential matching
technique yields a solution that is more accurate than that of
the simple polynomial-based PFFT algorithm. The memory
requirements of the PFFT method was shown to scale linearly
with the number of boundary unknowns.
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