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Abstract. An efficient iterative method for the solution of the linear equations arising from a Hermite boundary
integral approximation has been developed. Along with equations for the boundary unknowns, the Hermite system
incorporates equations for the first order surface derivatives (gradient) of the potential, and is therefore substantially
larger than the matrix for a corresponding linear approximation. However, by exploiting the structure of the Hermite
matrix, a two-level iterative algorithm has been shown to provide a very efficient solution algorithm. In this approach,
the boundary function unknowns are treated separately from the gradient, taking advantage of the sparsity and near-
positive definiteness of the gradient equations. In test problems, the new algorithm significantly reduced computation
time compared to iterative solution applied to the full matrix. This approach should prove to be even more effective
for the larger systems encountered in three-dimensional analysis, and increased efficiency should come from pre-
conditioning of the non-sparse matrix component.
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1. Introduction. The distinguishing feature of a cubic Hermite boundary integral approxima-
tion [16] is that the surface gradient of the primary function is obtained simultaneously with the
solution of the boundary unknowns. For general boundary integral analysis, two motivations for
pursuing this approximation scheme are to have a differentiable (C1) interpolation of this primary
function, e.g., potential for the Laplace equation, displacement for elasticity, and to construct a
higher order, more accurate, element using just the nodes employed for a simple linear element.
Moreover, the Hermite approach is, for a number of reasons, attractive for moving boundary appli-
cations (see e.g. [5]): the gradient is generally required to compute surface velocities, and the higher
accuracy and smoothness could be crucial for successfully evolving the boundary in time.

However, the price that is paid for the advantages of Hermite is rather steep: significantly increased
computational costs associated with the construction, storage, and solution of a larger system of
linear equations. For a two-dimensional scalar problem discretized with N boundary nodes, the
resulting coefficient matrix is of order 3N , compared to N for a corresponding linear approximation.
For a vector problem these numbers are 6N versus 2N , and in three dimensions the matrix order
increases by a factor of 4 over a linear analysis.

Nevertheless, from the work in [8] (this reference also contains a more complete discussion of pre-
vious work on Hermite methods), the penalties associated with constructing and storing the extra
boundary integral gradient equations have largely been removed. The gradient equations can now
be expressed solely in terms of ‘local’ singular integrals, avoiding the usual complete boundary
integration and moreover producing sparse, rather than dense, set of linear equations [10]. The
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computation time to assemble these equations is therefore O(N) rather than O(N2), and if stored
in sparse format, the storage cost is also O(N).

This paper now addresses the remaining drawback of Hermite, the computational cost in solving
the larger system of linear equations. As the gradient equations in [10] are sparse, this suggests,
if not demands, an iterative solution of the linear system. Moreover, as will be discussed further
below, the principal sub-matrices for the gradient values are well-conditioned and the equations for
the separate components of the gradient are only weakly coupled. While an iterative solution of the
full Hermite matrix can take advantage of the sparsity, it would not exploit these other features of
the system. A ‘two-level’ iterative scheme is therefore proposed, the basic idea being to separate the
solution of the gradient equations from the boundary integral equation. Tests employing the two-
dimensional Laplace equation will compare the performance of this algorithm with the application
of the iterative solver to the full Hermite matrix.

The paper is organized as follows. The next section very briefly summarizes the Hermite algorithm
presented in [8], the reader is asked to consult this reference for further details. Section 3 describes
the new iterative algorithm in the context of the two-dimensional Laplace equation. However, there
is nothing specific to this equation, and the methods also extend directly to three dimensions. Test
results, for three-dimensional axisymmetric geometries as well as two-dimensional, are discussed in
Section 4, to be followed by some concluding remarks.

2. Hermite Interpolation. For the Laplace equation ∇2φ = 0, φ = φ(x, y), the exterior limit

boundary integral equation can be written as [7]

lim
PE→P

∫

Γ

φ(Q)
∂G

∂n
(PE , Q) dQ−

∫

Γ

G(P,Q)
∂φ

∂n
(Q) dQ = 0 , (2.1)

where the Green’s function is

G(P,Q) = −
1

2π
log(‖Q− P‖) = −

1

2π
log(r) , (2.2)

and PE are exterior points converging to P . Following standard practice [3], a finite system of linear
equations is obtained by approximating the boundary and the boundary functions. Herein, as in [8],
a linear interpolation is employed for the surface flux, while cubic Hermite shape functions ψj(t),
0 < t < 1,

ψ1(t) = (1 + 2t)(1 − t)

ψ2(t) = t2(3 − 2t)

ψ3(t) = t(1 − t)2 (2.3)

ψ4(t) = −t2(1 − t) .

are employed to define the approximate boundary

Q(t) = (x(t), y(t)) =

2
∑

j=1

(xj , yj)ψj(t) +

4
∑

j=3

(aj , bj)ψj(t) (2.4)

and the interpolation of the potential function

φ(Q(t)) =

2
∑

j=1

φ(Qj)ψj(Q) +

4
∑

j=3

dφ

dt
(Qj−2)ψj(Q) . (2.5)
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In the above, the two nodes defining the element are Q1 = (x1, y1) and Q2 = (x2, y2) and the
coefficients (a3, b3) and (a4, b4) are defined by specifying the unit normals at the nodes. In addition,
the tangential derivatives in Eq. (2.5) are given in terms of the nodal gradients,

d

dt
φ(t) =

d

dt
φ(x(t), y(t)) =

∂φ

∂x
x′(t) +

∂φ

∂y
y′(t) , (2.6)

and thus from Eq. (2.4)

dφ

dt
(Q1) = a3

∂φ

∂x
(Q1) + b3

∂φ

∂y
(Q1)

dφ

dt
(Q2) = a4

∂φ

∂x
(Q2) + b4

∂φ

∂y
(Q2) . (2.7)

Finally, Eq. (2.1) and the gradient equation discussed below are approximated using a Galerkin
approximation [3, 7].

2.1. Gradient equations. As discussed in detail in [10], the gradient equations exploit the
boundary limit formulation of the integral equations. Specifically, the difference of interior and
exterior limits results in

∇φ(P ) +

[

lim
PI→P

− lim
PE→P

] ∫

Γ

{

φ(Q)∇
∂G

∂n
(P,Q) −∇G(P,Q)

∂φ

∂n
(Q)

}

dQ = 0 . (2.8)

Note that the only integrations that survive the difference of the limits are singular, all nonsingular
integrations (and many singular integrals as well) are the same for either limit and must vanish. The
resulting matrix rows are therefore sparse. The second aspect of this equation that will prove useful
is that the matrix elements arising from the free term ∇φ(P ) outside the integral (and therefore
associated with boundary gradient values) are the dominant contributions to the gradient equations.
Moreover, as the approximation of the surface gradient is linear, these matrix elements are simply
integrals of the form

∫

ψk(P )ψj(P ) dP , (2.9)

where ψk(P ) are the linear element shape functions. This dominant free term (by itself) therefore
leads to a symmetric positive definite matrix.

The linear equations resulting from the Hermite algorithm therefore consist of three (in two di-
mensions) parts, the boundary integrals for the unknown values of potential or flux, together with
derivative equations for the x and y components of the gradient. This structure will be exploited in
the algorithm discussed in the next section.

3. Iterative Algorithm. If the boundary is discretized with N nodes, the Hermite algorithm
results in a 3N by 3N system of linear equations Ax = b. It is convenient to write these equations
in the form





A11 A12 A13

A21 A22 A23

A31 A32 A33









x1

x2

x3



 =





b1
b2
b3



 , (3.1)
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where each Aij submatrix is N × N . The vector x1 represents the unknown boundary values of
potential or flux, and the first block row of equations is the discretized form of Eq. (2.1). Similarly,
x2 and x3 are vectors containing the x− and y−components of the gradient, and the second and
third rows are obtained from Eq. (2.8).

As noted above, the gradient equations only involve local singular integrals, and thus all A2j and
A3j are sparse matrices. Moreover, if a linear interpolation had been employed to approximate the
potential in the gradient equations, then the only matrix elements multiplying the gradient values
would be from the free term in Eq. (2.8). Consequently, the diagonal blocks A22 and A33 would
be symmetric positive definite and moreover A23 = A32 = 0. As it is expected that the Hermite
sub-matrices are ‘small’ perturbations of the corresponding linear ones, the x− and y−component
gradient equations should be only weakly coupled, and A22, A33 should be well-conditioned.

The proposed algorithm therefore assumes an initial guess for x2 and x3 and then solves for x1 from

A11x1 = b1 −A12x2 −A13x3 . (3.2)

The values of x2 and x3 can then be updated by solving

A22x2 = b2 −A21x1 −A23x3 (3.3)

A33x3 = b3 −A31x1 −A32x2

and the whole process (termed an outer iteration) repeated until convergence. As just noted, the
two systems in Eq. (3.3) should be well-conditioned, and the coupling between them, provided by
A23 and A32, very weak. Thus, there is reason to expect that this ‘two-level’ iteration will first of
all converge, and second, be efficient.

Regarding computational cost, note that if all sparse matrix-vector multiplications are ignored,
applying an iterative solver to the full Hermite matrix requires 3N2 operations for each matrix-
vector multiplication. On the other hand, Eq. (3.2) requires only N2 operations per iteration,
plus 2N2 operations to compute the right hand side. Thus, depending upon the convergence, the
two-level scheme could provide considerable savings.

3.1. Stopping Criteria. The iterative solver employed for the new algorithm, Eq. (3.2) and
Eq. (3.3), and for comparison purposes the full Hermite matrix, is (Sylvain to add stuff here).

For the BiStab algorithm applied to Ax = b, the iteration terminates when the Euclidean norm of
the residual vector rk satisifes

‖rk‖ ≤ ǫ‖b‖ , (3.4)

and ǫ is a supplied tolerance.

For the two-level algorithm, we apply the same residual criterion as above. Note that this requires an
additional 3N2 operations to compute the global residual for every outer iteration of this algorithm.
However, the test cases indicate that relatively few outer iterations are necessary, and thus this
expense will not be critical.

The residual tolerances prescribed for the ‘inner’ solutions of Eq. (3.2) and Eq. (3.3) need not be
the same as the global tolerance, i.e. they can be adjusted within the outer iteration. Early on the



ITERATIVE HERMITE 5

right hand side values will not be correct, and thus clearly there is no point in converging with very
high accuracy. The value of ǫ employed for these initial solutions can therefore start off relatively
large and then decrease each outer iteration. This extra leeway in the algorithm will be exploited
in the results presented below.

4. Test Calculations.

4.1. Two-dimensional. The first set of test calculations employs the two-dimensional Hermite
algorithm described in [8] for the Laplace equation. In addition, the initial calculations have Dirichlet
boundary conditions posed on the unit disk x2 + y2 = 1 and the ellipse x2 + 4y2 = 1, the known
boundary potential being φ = x2 − y2. Uniform meshes with N nodes are employed for the disk,
whereas the elements for the ellipse were defined in terms of a constant central, and are therefore
non-uniform. The two-level algorithm will be compared with a direct application of the iterative
solver to the full Hermite matrix, and in both cases the tolerance for the residual was ǫ = 10−10.
However, as noted above, it is not necessary or desirable to solve Eq. (3.2) and Eq. (3.3) to this
level of accuracy throughout; in these tests we have set the tolerance for the inner solutions to be
ǫ = 10−m, where m is either the outer iteration number or 10, whichever is smaller.

Table 4.1

Computational cost (in units of N
2) and residuals for iterative solution methods, ǫ = 10−10. The domain is the

unit disk.

Full Matrix Two-Level
N CI Residual CI Residual

100 219 6.96 (-11) 60 6.31 (-12)
200 483 4.67 (-11) 75 6.52 (-12)
300 387 3.62 (-11) 84 2.37 (-11)
400 555 3.98 (-11) 100 5.58 (-12)
500 459 3.93 (-11) 100 1.22 (-12)
600 555 3.34 (-11) 107 7.37 (-12)
800 771 3.16 (-11) 93 1.60 (-11)

Tables 4.1 and 4.2 list the computational work CI – again, ignoring all sparase matrix operations –
and the residuals for solving the Dirichlet problem. The costs are given in terms of N2, and thus
CI for the full matrix method is three times the number of iterations required to obtain a converged
solution. For the two-level scheme, CI consists of the total number of matrix-vector multiplies
involving A11, plus five times the number of outer iterations. This conribution is due to the 2N2

needed per outer iteration to re-compute the right hand side in Eq. (3.2), plus 3N2 to compute the
global residual.

With a few exceptions, either iterative scheme involves much less work than the (3N)3/3 required
by direct factorization. However, the ‘divide and conquer’ approach of the two-level algorithm is
clearly significantly faster than working with the entire matrix. The success of this approach stems
from the fact that, at least in these tests, very few outer iterations are required to reach convergence.
Table 4.3 lists the number of outer iterations required for the problem on the unit disk, along with
the total number of matrix-vector multiplications required to solve the two systems in Eq. (3.3).

The very small number of outer iterations is clearly key to the efficiency of the algorithm, and this is
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Table 4.2

Computational cost (in units of N2) and residuals for iterative solution methods, ǫ = 10−10. The domain is an
ellipse.

Full Matrix Two-Level
N CI Residual CI Residual

100 1100 3.33 (-11) 163 6.31 (-11)
150 990 4.45 (-11) 118 2.19 (-11)
200 894 2.38 (-11) 134 4.15 (-12)
300 1100 2.64 (-11) 174 1.97 (-12)
600 1518 4.48 (-11) 82 5.38 (-11)

Table 4.3

Outer iterations and iterations required to solve the gradient equations for the problem posed on the unit disk,
ǫ = 10−10.

N Outer A22 A33

100 3 27 51
200 3 27 43
300 3 27 43
400 3 27 43
500 3 27 35
600 3 27 35
800 3 27 51

likely due to weak coupling with the gradient equations: initially solving A11 by itself must get very
close to the correct x1. What is also noteworthy about these numbers is that they are, compared to
the iterations required to solve Eq. (3.2), largely independent of the mesh. In fact, for the ellipse
tests these numbers are constants, the values corresponding to a row in Table 4.3 being 3, 27 and 43.
The good conditioning of A22 and A33 certainly plays a role here, and again justifies the splitting of
the A matrix. Moreover, it also indicates that the challenge of further expediting the linear algebra
by developing a good pre-conditioner (note that no pre-conditioning has been employed) can focus
solely on the A11 matrix.

The two iterative procedures have also been applied to a Neumann problem posed on the unit disk.
The differences compared to the Dirichlet problem are in the first block row A1k and column Ak1

matrices, the integrals that comprise these matrices now originating from the integrals of the Green’s
function in Eq. (2.1), rather than its normal derivative. The results are shown in Table 4.4, and
again indicate that the two-level algorithm is quite effective.

4.2. Three-dimensional Axisymmetric. The new iterative algorithm was also tested using
the Hermite approximation for three-dimensional axisymmetric problems [9]; this reference dis-
cusses a linear element implementation, but the extension to Hermite is relatively straightforward.
Although these calculations are still essentially two-dimensional, they involve different Green’s func-
tion kernels and, moreover, these kernels have different behavior, depending upon whether the source
is near the symmetry axis or not [1, 6, 2].
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Fig. 4.1. Error in the computed flux (for the last iterate) near the symmetry axis for the axisymmetric sphere
problem.

Table 4.4

Computational cost (in units of N2) and residuals for iterative solution methods, ǫ = 10−10. The problem is a
circle with Neumann boundary data.

Full Matrix Two-Level
N CI Residual CI Residual

100 75 3.74 (-13) 42 3.73 (-11)
200 51 6.88 (-11) 42 2.94 (-12)
300 75 1.09 (-11) 42 6.51 (-12)
400 75 4.59 (-14) 28 6.09 (-11)
500 75 3.22 (-12) 28 2.42 (-11)
600 51 2.16 (-11) 28 5.77 (-11)
800 75 3.87 (-12) 28 1.43 (-11)

Table 4.5

Computational cost (in units of N2) and L2 errors for the new iterative algorithm, ǫ = 5×10−7, the Full Matrix
failed to converge. The problem is a sphere with Dirichlet boundary data.

L2 Error
N CI φn φr φz

100 813 7.22 (-4) 2.18 (-4) 2.51 (-4)
200 1514 2.04 (-4) 4.46 (-4) 1.48 (-4)
400 1220 1.27 (-4) 1.90 (-4) 1.17 (-4)
600 1213 2.41 (-4) 2.92 (-4) 2.40 (-4)

The first test is for a sphere, with Dirichlet boundary conditions φ = x2+y2−2z2, or in axisymmetric
notation, φ = r2 −2z2. The two-dimensional boundary is therefore the arc r2 +z2 = 1, r ≥ 0. Quite
surprisingly for this very simple geometry, the straightforward application of the iterative solver, with
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the residual tolerance set at 5×10−7, failed to converge. The problem appears to be connected to the
symmetry axis: Fig. 4.1 plots the solution vector (flux and gradient) obtained after the maximum
allowed 5000 iterations, and it appears reasonable except near the endpoints of the domain, located
at the symmetry axis. Presumably the trial solutions produced by the iterative solver have converged
everywhere else but fluctuate near the axis. It is quite possible that this behavior is a consequence
of having choosen the Galerkin weight function to be zero at the axis, see [9].

Table 4.6

Computational cost (in units of N2) and L2 errors for the two algorithms, ǫ = 5×10−7. The problem is a torus
with Dirichlet boundary data.

CI L2 Error
N Full Matrix Two Level φn φr φz

100 246 79 2.94 (-3) 4.65 (-4) 9.29 (-4)
200 198 42 7.34 (-4) 1.16 (-4) 2.32 (-4)
600 198 42 8.13 (-5) 1.35 (-5) 2.59 (-5)

By contrast, the two-level algorithm does manage to converge. However, as indicated by the large
number of iterations and the fluctuations in the L2 errors, Table 4.5, this algorithm is struggling.
An inspection of the iterates again indicated that the difficulties are confined to the region near
the symmetry axis, and thus both algorithms were run for the same Dirichlet problem on a torus
(inner radius 1 and outer radius 3); the boundary is therefore a circle having no contact with the
symmetry axis. The results are shown in Table 4.6. Both algorithms now perform very well, and
as with previous tests, the new method requires significantly less work. The L2 errors for the two
methods were nearly identical, and thus only those for the two level algorithm are shown.

5. Conclusions. The sparse gradient equations developed previously in [10] reduced to a rea-
sonable level the prohibitive cost of constructing and storing the Hermite system matrix. It has now
been shown that the time required to solve this system can be reduced by exploiting the structure of
this system. Based upon tests for the two-dimensional and three-dimensional axisymmetric Laplace
equation, the two-level iterative algorithm described herein appears to be significantly more efficient
than a iterative solution of the complete Hermite system.

It is expected that this new algorithm will permit, and be even more effective for, the application
of the Hermite approximation in other situations. In three dimensions, the Hermite system can
obviously become quite large, especially for a vector problem. In this case there are three component
functions, each requiring its own gradient calculation.

The Hermite system can also become much larger in another manner. Note that as in other imple-
mentations [4, 13, 14], we have only employed the Hermite approximation to the boundary potential;
a linear interpolation has been employed for the flux. The reason is that applying Hermite to the
normal derivative function requires the ability to compute second order derivatives of the potential.
However, it has been recently shown that the techniques employed for the gradient, most impor-
tantly the generation of sparse equations, can be extended to these higher order derivatives [12].
Constructing a Hermite interpolation for the flux therefore becomes a possibility, but the complete
matrix system will be huge: in two dimensions there are three second order derivatives, and six in
three dimensions. The new algorithm will hopefully reduce the associated linear algebra costs to the
point that this complete Hermite algorithm would be feasible.
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Finally, note that this formulation and solution of the Hermite system is compatible with fast
methods for the solution of the boundary integral equation, Eq. (2.1). With a fast method, e.g.

Fast Multipole [11] or FFT approaches [15], the first row A1k is not fully assembled, and the required
matrix vector multiplications can be carried out with O(N) operations rather than N2. In this case,
the number of iterations is then roughly a rough measure of the computational cost, and the two-level
algorithm still appears to perform better.
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