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Abstract

A cubic Hermite approximation for two-dimensional boundary integral analysis is presented. The method differs

from previous Hermite interpolation algorithms in that the gradient equations are sparse, significantly reducing the

computational cost, and in that information about the surface normals is incorporated to effect a cubic interpolation

of the geometry. A motivation for the development of this approximation is in the solution of moving boundary prob-

lems, as high accuracy and surface gradients are required for these simulations.
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1. Introduction

Cubic Hermite interpolation for boundary integral

analysis, first introduced by Watson [18], has two pri-

mary attractions. First, it yields a differentiable (C1)

interpolation for the primary surface function, e.g., po-

tential for the Laplace equation, displacement for elas-

ticity. This smoothness can be useful for the treatment

of hypersingular equations, and indeed a primary moti-

vation in [18] was fracture analysis. The second notewor-

thy aspect of the Hermite approach is that the higher

order interpolation is achieved without the addition of

element nodes; in two dimensions for example, the cubic

interpolation is based upon the two-noded element more

commonly employed for the standard linear element.
0045-7949/$ - see front matter Published by Elsevier Ltd.
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Although further development and application of the

Hermite approach has been carried out [2,7,17], and

most notably by Rudolphi, Muci-Küchler and co-work-

ers [9,10,13] (see [8] for additional references), neverthe-

less it is fair to say that Hermite elements have not been

widely adopted. The higher order interpolation is

achieved by incorporating nodal tangential derivatives

into the approximation, and the computational cost of

setting up and solving the additional boundary integral

equations for these derivatives is obviously quite high.

Three-dimensional elasticity, for example, at a minimum

requires two tangential derivative values for each dis-

placement component, resulting in an additional six

equations per node. It is, however, convenient to obtain

the tangential derivatives by first computing the com-

plete gradient, and this requires an even more expensive

nine additional nodal equations.

The motivation for the present work is two-fold.

First, it has recently been demonstrated [6] that bound-

ary integral equations for the surface gradient (and

hence tangential derivatives) can be written quite
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inexpensively. In brief, the usual complete boundary

integration is avoided, it is only necessary to compute

�local� singular integrals to formulate the equations.

The Hermite interpolation still requires the solution of

a larger system of equations, but to a large extent these

fast gradient equations remove the principal drawback

of this method. Thus, the general application of Hermite

elements is much more attractive.

The second impetus for reconsidering this topic is its

potential utility for an important class of applications,

the solution of moving boundary problems. A boundary

integral approach can be attractive for these simula-

tions, as it is clearly easier to remesh the evolving bound-

ary, rather than the entire volume. Moreover, the

primary goal in solving the governing partial differential

equation is the determination of the surface velocity,

which usually depends upon the surface gradient of the

solution. In an integral equation formulation, this gradi-

ent can be obtained (in particular, by using the gradient

algorithm mentioned above) without a numerical differ-

entiation, and can therefore yield an accurate velocity

function.

The Hermite approximation is attractive for a

boundary integral solution of a moving boundary prob-

lem, for a number of reasons. The first is that, as just

noted, the surface gradient is generally required for the

velocity evaluation. Thus, the computational cost of

computing the gradient, the main drawback of the Her-

mite approximation, is therefore no longer a significant

issue. Moreover, as the Hermite method directly couples

the gradient evaluation with the solution of the PDE,

this could provide an advantage in accuracy. Second,

our interest is in using the Level Set method [11,14,15]

to track the evolving geometry, a combination which

has proven to be very effective [3,12,16]. The Hermite

element builds a higher order (and therefore, more accu-

rate) interpolation on a relatively simple element; this

should be convenient for coupling the two calculations,

as the boundary integral calculation is constrained to

work with the nodes provided by the Level Set analysis.

Moreover, as will be discussed further below, the Her-

mite approach can exploit the additional information

available from the Level Set representation of the sur-

face, namely normal vectors, and this too should im-

prove accuracy.

The algorithm presented below therefore differs from

previous methods in two principal ways. The extra equa-

tions required to obtain the needed nodal tangential

derivatives are the �sparse� fast equations presented in

[6]. In [6] the gradient equations were employed to

�post-process� the gradient after the basic boundary inte-

gral equations were solved. A purpose of the present

work is to test the direct coupling of the gradient and

standard boundary integral equations. Moreover [6] dis-

cussed the singular integrations in the gradient equation

in terms of a three-dimensional linear element; herein
the modifications needed for a two-dimensional curved

element will be discussed.

The second main difference is that the boundary

interpolation in previous algorithms was standard, C0,

(e.g., linear). In this work a cubic C1 boundary approx-

imation is constructed, based upon assumed knowledge

of the normal vector at each node. Finally, and of lesser

significance, a Galerkin approximation is employed

herein, whereas collocation has been used in previous

implementations.
2. Hermite approximation

For simplicity, the two-dimensional algorithm is pre-

sented in the context of the Laplace equation $2/ = 0,

/ = /(x,y). The standard boundary integral equation

for surface potential [1] is considered first, and then the

equation for the potential gradient is discussed. The fast

gradient equation is based upon a boundary limit defini-

tion of the singular integrals, and thus this approach is

employed for the surface potential equation as well. Fur-

ther details concerning this somewhat nonstandard defi-

nition and implementation can be found in [4,5].

2.1. Potential equation

The exterior limit boundary integral equation for sur-

face potential can be written as [4]

PEðP Þ � lim
PE!P

Z
C

/ðQÞ oG
on

ðPE,QÞdQ

�
Z

C
GðPE,QÞ

o/
on

ðQÞdQ ¼ 0, ð2:1Þ

where the Green�s function is

GðP ,QÞ ¼ � 1

2p
logðkQ� PkÞ ¼ � 1

2p
logðrÞ: ð2:2Þ

The �Cauchy Principal Value� (CPV) singular integral
is defined as a limit, PE being exterior points converging

to P. As a consequence, the /(P) term that usually ap-

pears in this equation is missing. This term does appear

with an interior limit definition, and thus an exterior

limit is slightly more convenient. For the gradient equa-

tions discussed below, both limit processes will be in-

voked. Note that the integral involving the Green�s
function is only weakly singular, it is finite with P on

the boundary, and thus a limit process is not needed.

The boundary conditions supply partial data about

the boundary values of the potential and flux, and the

integral equations can be solved to complete this infor-

mation. Following standard practice [1], a finite sys-

tem of linear equations is obtained by approximating

the boundary and the boundary functions. As an exam-

ple, for a simple linear interpolation, the approxi-

mate boundary curve connecting two surface nodes
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Q1 = (x1,y1) and Q2 = (x2,y2) can be defined parametri-

cally as

QðtÞ ¼
X2

j¼1

ðxj,yjÞwl
jðtÞ, ð2:3Þ

where 0 < t < 1 and the shape (basis) functions are

wl
1ðtÞ ¼ 1� t wl

2ðtÞ ¼ t: ð2:4Þ

The corresponding interpolation of the boundary flux is

then

o/
on

ðQðtÞÞ ¼
X2

j¼1

o/
on

ðQjÞwl
jðtÞ, ð2:5Þ

and similarly for the potential.

For the Hermite interpolation, the shape functions

employed to define the boundary and the potential are

cubic instead of linear, and the approximations are C1

continuous at the nodes. To achieve a smooth approxi-

mation of the boundary, it is assumed that the normal is

known at the nodes, for example from a CAD file, or

from the Level Set method in a moving boundary prob-

lem. The interpolation of the given nodal positions and

normals is accomplished by setting

QðtÞ ¼ xðtÞ,yðtÞð Þ

¼
X2

j¼1

ðxj,yjÞwjðtÞ þ
X4

j¼3

ðaj,bjÞwjðtÞ ð2:6Þ

with the shape functions wj(t), 0 < t < 1,

w1ðtÞ ¼ �ð1þ 2tÞð1� tÞ,
w2ðtÞ ¼ �t2ð3� 2tÞ,
w3ðtÞ ¼ �tð1� tÞ2,
w4ðtÞ ¼ �t2ð1� tÞ:

ð2:7Þ

These functions satisfy w1(0) = w2(1) = 1, w0
3ð0Þ ¼

w0
4ð1Þ ¼ 1, and all other values of wj and w0

j at t = 0

and t = 1 are zero ( the prime indicating differentiation

with respect to t). The coefficients (a3,b3) and (a4,b4)

are not uniquely defined, as specifying the unit normal

leaves open the value of the Jacobian at the nodes. Here-

in we have made what appears to be a reasonable choice,

choosing the Jacobian to be the value that it would be

for linear interpolation, jh = kQ2 � Q1k. Thus the addi-

tional coefficients in (2.6) are given by

ðb3,� a3Þ ¼ jhNðQ1Þ,
ðb4,� a4Þ ¼ jhNðQ2Þ,

ð2:8Þ

where N(Qk) is the specified outward unit normal at Qk.

Note that if Q1 is a node on a smooth part of the bound-

ary, then

Q0ðQ Þ ¼ ða ,b Þ ð2:9Þ
1 3 3
for either of the two elements containing Q1. Thus the

interpolation provides a unique unit tangent at each

node.

To approximate the potential, note that

d

dt
/ðtÞ ¼ d

dt
/ðxðtÞ,yðtÞÞ ¼ o/

ox
x0ðtÞ þ o/

oy
y0ðtÞ ð2:10Þ

and thus from Eqs. (2.6) and (2.8)

d/
dt

ðQ1Þ ¼ a3
o/
ox

ðQ1Þ þ b3
o/
oy

ðQ1Þ,

d/
dt

ðQ2Þ ¼ a4
o/
ox

ðQ2Þ þ b4
o/
oy

ðQ2Þ:
ð2:11Þ

The approximation for the surface potential is then

given by

/ðQðtÞÞ ¼
X2

j¼1

/ðQjÞwjðQÞ þ
X4

j¼3

d/
dt

ðQj�2ÞwjðQÞ:

ð2:12Þ

As noted above, {aj,bj} depend only on the node

(through the normal vector), not the particular element

being considered, and the same will be true for the val-

ues of the gradient. Thus, the Hermite interpolation pro-

duces a unique tangential derivative of / at the nodes.

The needed values of $/(Qj) to complete this approxi-

mation are of course unknown, and the additional equa-

tions constructed to determine them will be discussed

below.

In a complete Hermite formulation, the approxima-

tion of the surface flux would follow along the same lines

as the potential. However, this would require nodal val-

ues for the gradient of the flux, i.e., second order deriv-

atives of /. The boundary integral expressions for these

derivatives would involve third order derivatives of the

Green�s function, one degree beyond hypersingular,

and this clearly poses significant problems for the singu-

lar integration. The possibility of constructing a com-

plete Hermite algorithm will be discussed further in

Section 5, but for this initial work, the approximation

for the surface flux will utilize the simple linear shape

functions wl, Eq. (2.5).

2.2. Gradient equations

As discussed in detail (for three dimensions) in [6], a

fast algorithm for evaluating the gradient of the poten-

tial is obtained by exploiting the boundary limit formu-

lation of the integral equations. The interior limit

equation corresponding to Eq. (2.1) is
P IðPÞ � /ðP Þ þ lim
PI!P

Z
C

/ðQÞ oG
on

ðP I ,QÞdQ

�
Z

C
GðPI ,QÞ

o/
on

ðQÞdQ ¼ 0, ð2:13Þ
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where now PI are interior points converging to P. The

CPV integral is discontinuous crossing the boundary,

and this ensures that the interior and exterior limit pro-

cesses eventually result in the same equation for surface

potential. Differentiating with respect to P, the two limit

equations for the gradient (with respect to P) take the

form

rPIðP Þ � r/ðP Þ þ lim
PI!P

Z
C

/ðQÞr oG
on

ðP I ,QÞ
�

�rGðP I ,QÞ
o/
on

ðQÞ
�
dQ ¼ 0,

rPEðP Þ � lim
PE!P

Z
C

/ðQÞr oG
on

ðPE,QÞ
�

�rGðPE,QÞ
o/
on

ðQÞ
�
dQ ¼ 0: ð2:14Þ

Unlike for the potential equations these are distinct

equations, and it is convenient to take the difference

GðP Þ � rPIðP Þ � rPEðP Þ

¼ r/ðP Þ þ lim
P I!P

� lim
PE!P

� �

�
Z

C
/ðQÞr oG

on
ðP ,QÞ � rGðP ,QÞ o/

on
ðQÞ

� �
dQ

¼ 0: ð2:15Þ

The advantage of this form is that only the integra-

tions that are discontinuous crossing the boundary sur-

vive the difference of the limits. In particular, all

nonsingular integrations vanish, and thus compared to

the complete boundary integration required for the po-

tential equation, the construction of these equations is

quite inexpensive. Before discussing the evaluation of

the singular integrals that do contribute, the Galerkin

form of Eqs. (2.1) and (2.15) will first be discussed.

2.3. Galerkin approximation

In a Galerkin approximation, the integral equations

are enforced in a weak sense, multiplying the integral

equations by weighting functions and integrating with

respect to P. Usually the weight functions are associated

with a node and comprised of the basic shape functions.

Specifically, the Galerkin form of Eq. (2.1) isZ
C

ŵkðP ÞPEðP ÞdP ¼ 0, ð2:16Þ

where the weight function ŵkðP Þ consists of all shape

functions wl(P) that are nonzero at Pk. Thus, ŵkðP Þ con-
sists of wj, j = 1,2 and has limited support, being non-

zero only on the elements containing Pk.

For the gradient equations, there is some discretion

in the choice of the weight function. One could reason-

ably decide to make use of the two shape functions, w3

and w4, that were not employed for the potential equa-
tion. However, herein we have elected to use the same

weight functions ŵkðP Þ as for the potential equationZ
C

ŵkðPÞGðP ÞdP ¼ 0: ð2:17Þ
3. Singular integration

As noted above, the evaluation of Eq. (2.15) only re-

quires examining the singular integrals, all nonsingular

terms vanish in the difference of the limits. The most sin-

gular term in the Galerkin form of this equation is the

coincident hypersingular integral

X2

j¼1

/ðQjÞ lim
PI!P

� lim
PE!P

� � Z
EP

wkðtÞjpðtÞ

�
Z
EQ

wjðsÞr
oG
on

ðP ,QÞjqðsÞdsdt, ð3:1Þ

where EP = EQ = E is a particular boundary element,

jp(t) and jq(s) the Jacobians for the parametric represen-

tations, and t and s are the parameters for the P and Q

integrations, respectively. The evaluation of this integral

is considered in this section; the adjacent singular inte-

gral, when EP and EQ share a node, is simpler and fol-

lows the discussion below and in [4]. In addition, it

suffices to consider the x component of the gradient,

for which the integral kernel is

o

oxP

oG
on

¼ � 1

2p
o

oxP

n � R
r2

¼ 1

2p
nx
r2

� 2
Rxðn � RÞ

r4

� �
, ð3:2Þ

where n = n(Q) = (nx,ny) and R(t, s) = (Rx(t, s),Ry(t, s)) =

Q(s) � P(t).

To implement the interior limit analysis, the point P

is shifted off the boundary, P(t) � �N where N = N(P) is

the unit outward normal at P(t). The change for the

exterior limit is simply that P is P(t) + �N. As the singu-

larity is at s = t it is convenient to change variables from

s to u = s � t, and the distance function r2 = kRk2 takes
the form

r2 ¼ �2 þ ða2 þ b�Þu2 þ � � � þ a6u6, ð3:3Þ

where the coefficients am are functions of the element

nodal coordinates Qj = (xj,yj), j = 1,2. The higher or-

der coefficients are also functions of � but the limiting

value of the integral is unaffected by setting � = 0. Un-

like for the linear element analysis, there is an �
dependence in the u2 term that must be taken into ac-

count, b again a function of the node coordinates. The

goal is to integrate u analytically, which is clearly not

possible with this sixth degree polynomial in the

denominator. This is remedied through the expansions

[4]



Table 1

L2 errors for problems interior and exterior to the unit disk

Elements Interior Dirichlet Exterior Neumann

25 2.6285 (�2) 3.1941 (�3)

50 6.2872 (�3) 7.6903 (�4)

100 9.9486 (�4) 1.8992 (�4)

150 4.4088 (�4) 8.3560 (�5)

200 2.4774 (�4) 4.6880 (�5)

250 1.5845 (�4) 2.9957 (�5)
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1

r2
 1

r̂2
� bu2�

r̂4
,

1

r4
 1

r̂4
� 2

cu3 � bu2�

r̂6
,

ð3:4Þ

where r̂2 ¼ �2 þ a2u2. Another simplifying aspect of Eq.

(2.15) is that the remainder terms from Eq. (3.4) can

be ignored: they produce integrals that are continuous

crossing the boundary, and thus disappear in the differ-

ence of the limits.

With the Jacobians included, the numerators in Eq.

(3.2) are polynomial in u, and thus substituting Eq.

(3.4) into Eq. (3.2), the integrations with respect to u

can be evaluated analytically. The important result of

this integration is that it is seen that the limit �! 0 ex-

ists. This is in contrast to the standard hypersingular

equation for surface flux, where the coincident and adja-

cent singular integrals are not separately finite [4]. Final-

ly, the integration with respect to u results in a well

behave function of t that can be safely evaluated

numerically.
4. Test calculations

The Hermite Laplace algorithm has been tested on

two simple problems, an interior and an exterior prob-

lem with the boundary being the unit circle. For the

problem posed inside the unit disk, Dirichlet data

/ðx,yÞ ¼ x2 � y2 ð4:1Þ

is specified, and thus the exact solution for the boundary

flux is 2(x2 � y2). The Neumann data for the exterior

problem

o/
on

ðx,yÞ ¼ x ð4:2Þ

is the flux on the unit circle that corresponds to the

potential

/ðx,yÞ ¼ x
x2 þ y2

¼ o

ox
logðrÞ, ð4:3Þ

which is harmonic in any domain not containing the ori-

gin. The exact solution for the potential on the circle is

therefore simply /(x,y) = x.

Table 1 lists the L2 errors in the computed flux (inte-

rior problem) and the computed potential (exterior

problem) as a function of the number of elements dis-

cretizing the circle. In both cases, the convergence is

roughly quadratic. This is somewhat disappointing, as

this is no better than a linear approximation, but not

surprising. The interpolation of the flux is still only lin-

ear, and the convergence is controlled by this least accu-

rate aspect of the calculation.

The fact that the exterior solution is more accurate is

also to be expected. In this calculation the flux interpo-
lation only contributes to the right hand side, whereas

the coefficient matrix for the system of equations is con-

structed using the cubic interpolation. The reverse is true

for the Dirichlet problem, and it is clearly more impor-

tant to have the higher order interpolation involved in

the coefficient matrix.
5. Conclusions

This initial work has demonstrated that the sparse

gradient boundary integral equations can be employed

to construct a Hermite interpolation of the basic func-

tion, e.g., potential. This significantly reduces the com-

putational cost of this cubic interpolation, and should

make this approximation more attractive for general

application. For moving boundary problems, there is

the added advantage of exploiting knowledge of the sur-

face normals to obtain a smooth interpolation of the

boundary.

However, for this approach to be effective, further

development is required. The results for two simple test

problems indicate that the linear interpolation of the

flux controls the rate of convergence of the algorithm.

Quadratic, the convergence rate for a linear approxima-

tion, is the best that can be expected. A complete Her-

mite interpolation, staying within the nodal framework

employed herein, would require nodal values of the gra-

dient of the flux,

ro/
oN

ðPÞ

¼� lim
P I!P

Z
C

/ðQÞr o
2G

oNon
ðP ,QÞ�roG

oN
ðP ,QÞo/

on
ðQÞ

� �
dQ:

ð5:1Þ

Even with a Galerkin approximation, computing the

integral involving three derivatives of the Green�s func-
tion, appears to be hopeless. However, in the form of

the difference of interior and exterior limits,

r o/
oN

ðP Þ ¼ � lim
PI!P

� lim
PE!P

� �

�
Z

C
/ðQÞr o2G

oNon
�r oG

oN

o/
on

ðQÞ
� �

dQ:

ð5:2Þ
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This calculation may be possible. As noted in Section 3,

the behavior of the hypersingular integral in the limit

difference gradient equation, Eq. (2.15), is not hypersin-

gular, in the sense that the coincident integral is finite.

Thus, in effect, the worst singularity in Eq. (5.2) may

turn out to be no worse than a manageable hypersingu-

lar—the coincident and adjacent integrals are not finite,

but the sum of the integrals is finite [5]. This is currently

being investigated.

Finally, for applications it will obviously be necessary

to extend these methods to three dimensions. While the

evaluation of the gradient is not a problem, the defini-

tion of an element that incorporates the normal vector

information is not obvious. This too is currently under

investigation.
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