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SUMMARY

Analytical integrations, in the framework of linear elastic problems modelled by means of boundary
integral equations, have been considered in a previous publication (Int. J. Numer. Methods Eng. 2002;
53(7):1695–1719): the present note aims at extending the subject to linear elastic fracture mechanics.
In such a context, special shape functions have been recently proposed (SIAM J. Appl. Math. 1998; 58:
428–455) in order to increase accuracy in stress intensity factors approximation: the closed form solution
for ‘integrals’ that arise from the boundary element method is a goal of the present work. Exploiting the
analytical integrations, asymptotical analysis around the crack tip are made possible, with the purpose
of formulating a coherent and accurate correlation between approximated stress intensity factors and
crack opening displacements over the crack tip straight special elements. Copyright q 2006 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Modelling linear elastic fracture mechanics (LEFM) problems by means of boundary integral
equations (BIEs) and approximating their solution through boundary element methods (BEM) [1]
is firmly established in the academic community as well as in industry, as the BEM emerged as
the most efficient in simulating crack growth and predicting crack propagation, for being the most
accurate method for the numerical evaluation of stress intensity factors (SIFs). Notwithstanding
the enormous amount of scientific publications on the subject [2], theoretical and numerical
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(a) (b)

Figure 1. Description of the crack: �+
w and �−

w represent ‘deformed’ crack lips as a subset
of the deformed boundary: (a) geometry; and (b) static.

investigations are still an on going research point in view of the importance of LEFM in structural
analysis at any length-scale.

In the present note, small strains and displacements hypothesis is assumed on a polygonal
domain � ⊂ R2, together with an isotropic linear elastic constitutive law in the homogeneous
closed domain �̄. The structural response to the following quasi-static external actions is sought:
tractions p̄(x) on �p ⊂ ��, displacements ū(x) on �u ⊂ �� and domain forces f̄(x) in �.

A locus‡ �w of possible displacement discontinuitiesw(x) is allowed for and defined as follows:
consider (see Figure 1) the two boundaries �+

w ⊂ ��, �−
w ⊂ �� modelling the lips of the crack, a

reference surface �w, and two one-to-one applications u+ : �w →�+
w and u− : �w → �−

w such
that

∀x+ ∈ �+
w ∃ !x∈ �w : u+ = x+ − x ∀x− ∈ �−

w∃!x∈ �w : u− = x− − x

The function ‘relative opening displacement’ w(x) : �w → R2 is defined as follows:§

w(x) def= u+ − u− (1)

On both �+
w ⊂ ��, �−

w ⊂ �� outward normal—say n+ def= n(x+), n− def= n(x−)—are defined by the
path along the boundary itself (see Figure 1). The hypothesis of small displacements and strains
implies n+ =−n− and: ∫

�+
w

f (x) d�x =
∫

�−
w

f (x) d�x =
∫

�w

f (x) d�x

‡For the sake of clarity and in view of the goal of the paper it suffices to consider a unique crack, i.e.
��=�p+�u + �+

w + �−
w . The formulation in the presence of a generic number of cracks can be found, e.g. in

[3].
§By definition (1) w may also model material interpenetration when w · n>0, with n defined by Equation (3). The
problem of unilateral contact is not considered here, the reader is referred to a wide bibliography on the topic, see
e.g. [4].
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∀ f such that integrals take sense. Denoting with p(x,n(x)) the traction at point x across a surface

of normal n(x) and with p+ def= p(x,n+), p− def= p(x,n−) the tractions on the two lips of the crack,
the hypothesis of small displacements has the following implication on the local equilibrium
conditions on �+

w ∪�−
w:

p+ =−p− (2)

Along �w the outward normal can only be assumed by convention. In fact, �w does not separate the
body into two ‘interior’ and an ‘external’ parts, but it is a locus of ‘displacement discontinuities’.
A normal n(x) on �w will be defined consistently with the definition of the relative opening
displacement w. The power due to tractions on �+

w ∪ �−
w ,

�Ẇ =p+ · u̇+ + p− · u̇− =p+ · (u̇+ − u̇−) =p+ · ẇ
naturally lead to define:

p(x) def= p+ n(x) def= n+ x∈ �w (3)

Tractions p and relative opening displacements w may be related by a nonlinear vector function
in case of cohesive traction problems [3]: in the present note though, p at x∈ �w is assumed to
be a given term—eventually zero—denoted with p̄w to model pressurized cracks in the LEFM
framework.

The boundary integral formulation of a LEFM problem stems from Somigliana’s identity [5]:

u(x) +
∫

��
Gup(x − y; l(y))u(y) dy

=
∫

��
Guu(x − y)p(y) dy +

∫
�
Guu(x − y)f̄(y) dy, x∈ � (4)

which is the boundary integral representation (BIR) of displacements in the interior of the domain.
Somigliana’s identity is based on Green’s functions (also called kernels—see [6, Appendix A])
which represent components ui of the displacement vector u in a point x due to: (i) a unit force
concentrated in space (point y) and acting on the unbounded elastic space �∞ in direction j (such
functions are gathered in matrix Guu(x−y)); (ii) a unit relative displacement concentrated in space
(at a point y), crossing a surface with normal l(y) and acting on the unbounded elastic space �∞
(in direction j) (gathered in matrix Gup(x − y)). In view of the small displacement hypothesis, it
holds: ∫

�+
w∪�−

w

Gup(x − y; l(y))u(y) dy=
∫

�w

Gup(x − y; l(y))w(y) dy

∫
�+

w∪�−
w

Guu(x − y)p(y) dy= 0

(5)

It worths to stress that identity (5) represents a mathematical degeneracy, whose consequence is
‘the loss of existence and uniqueness of the solution. It is clear that there exists in the theory of
elasticity a fundamental problem of a lack of a general integral formulation for problems of an
elastic body with degenerate geometry that encloses no area or volume. A single integral equation
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of elasticity derived from Somigliana’s identity is too slim to solve general elastic crack problems.’
(taken from [7]).

To obtain an additional integral equation, the traction operator can be applied to Somigliana’s
identity,¶ thus obtaining the BIR of tractions on a surface of normal n(x) in the interior of the
domain [8]:

p(x,n(x)) +
∫

�p

Gpp(r;n(x); l(y))u(y) dy +
∫

�u

Gpp(r;n(x); l(y))ū(y) dy

+
∫

�w

Gpp(r;n(x); l(y))w(y) dy

=
∫

�u

Gpu(r;n(x))p(y) dy +
∫

�p

Gpu(r;n(x))p̄(y) dy

+
∫

�
Gpu(r;n(x))f̄(y) dy, x∈ � (6)

having denoted with r= x− y. Such a BIR involves Green’s functions (collected in matrices Gpu

and Gpp
‖) which describe components (pi ) of the traction vector p on a surface of normal n(x)

due to: (i) a unit force concentrated in space (point y) and acting on the unbounded elastic space
�∞ in direction j ; (ii) a unit relative displacement concentrated in space (at a point y), crossing
a surface with normal l(y) and acting on the unbounded elastic space �∞ (in direction j).

BIEs for the linear elastic problem can be derived from BIRs (4) and (6) by performing the
boundary limit∗∗ � 
 x→ xo ∈ �. In the limit process, extensively investigated†† singularities of
Green’s functions are triggered off: their singularity-orders are collected in Table I.

Strongly singular kernels Gup and Gpu generate free terms in the limit process, C(x) and D(x)
respectively, that holds 1

2 I for smooth boundaries [10, 15, 16]. It has been shown [17, 18] that also
the hypersingular kernel generates a free term when there is a curvature discontinuity and/or a
discontinuity of the tangent vector to the boundary at a point where at least one adjacent boundary

¶The above introduced kernels are infinitely smooth in their domain, which is the whole space R2 with exception
of the origin (that is x �= y).

‖Kernel Gpp is usually named hypersingular, since it shows a singularity greater than the dimension of the integral
[9].

∗∗For (6) the boundary limit must be taken at a smooth point xo with a well-defined normal vector n(xo) [10].
††By the approach of [11], all singular terms cancel out in the limit process (and without recourse to any a priori
interpretation in the finite part sense). However, there exists an intimate relationship between hypersingular BIEs
and finite part integrals (HFP) in the sense of Hadamard [12]. In [9, 13] among others, it has been proved that a
hypersingular integral can be interpreted as a HFP in the limit as an internal point source approaches the boundary.
In [14], the same conclusion has been obtained by an alternate definition of HFP, without the need for a limiting
process. Making recourse to the distribution theory, in [7] the dual BIEs are obtained by the application of a trace
operator to the representation formulae. In such an approach, the strongly singular and hypersingular integrals can
be expressed by means of discontinuity jumps (also named ‘free terms’) of these integrals on the boundary summed
with the values of the integrals on the boundary existing only in the sense of Cauchy principal value (CPV) or
in the sense of the HFP. By exploiting Green’s functions properties, the commutativity of the two operations of
traction and trace has also been proved, showing the consistency of all different approaches of derivations of the
BIEs.
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Table I. Kernels and their singularities. Here r def= x − y and r = ‖r‖.
Asymptotical behaviour Relevant ‘integrals’

when r→ 0 when x∈ ��

Kernel 2D 3D Denomination of singularity Nature Symbol

Guu O(log(r)) O(r−1) Weak (integrable) Lebesgue
∫

Gup ,Gpu O(r−1) O(r−2) Strong CPV −∫
Gpp O(r−2) O(r−3) Hyper HFP =∫

part is curved. Assuming smooth boundaries, the following BIEs come out:

1

2
u(x)+ −

∫
�p

Gup(r; l(y))u(y) d dy+ −
∫

�u

Gup(r; l(y))ū(y) dy+ −
∫

�w

Gup(r; l(y))w(y) dy

=
∫

�u

Guu(r)p(y) dy +
∫

�p

Guu(r)p̄(y) dy +
∫

�
Guu(r)f̄(y) dy, x∈ �� (7)

1

2
p(x) + =

∫
�p

Gpp(r;n(x); l(y))u(y) dy + =
∫

�u

Gpp(r;n(x); l(y))ū(y) dy

+ =
∫

�w

Gpp(r;n(x); l(y))w(y) dy

= −
∫

�u

Gpu(r;n(x))p(y) dy + −
∫

�p

Gpu(r;n(x))p̄(y) dy

+ −
∫

�
Gpu(r;n(x))f̄(y) dy, x∈ �� (8)

Equation (7) is referred to as ‘displacement equation’, whereas Equation (8) is named ‘traction
equation’. After imposing the fulfillment of Equation (7) on the Dirichlet boundary �u and of
equation (8) on the Neumann boundary �p as well as on the conventional boundary �w, the
following linear boundary integral problem comes out:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
�u

Guu[.]dy − −
∫

�p

Gup[.] dy − −
∫

�w

Gup[.] dy

− −
∫

�u

Gpu[.] dy =
∫

�p

Gpp[.] dy =
∫

�w

Gpp[.] dy

− −
∫

�u

Gpu[.] dy =
∫

�p

Gpp[.] dy =
∫

�w

Gpp[.] dy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
p

u

w

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
fu

fp

fw

⎤
⎥⎥⎦

x∈ �u

x∈ �p

x∈ �w

(9)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (in press)
DOI: 10.1002/nme



A. SALVADORI AND L. J. GRAY

Vectors fi , i = u, p, w, that gather all data (i.e. p̄, p̄w, ū, f̄) follows:

fu(x) := 1

2
ū −

∫
�p

Guu p̄ dy + −
∫

�u

Gupū dy −
∫

�
Guu f̄ dy

fp(x) := −1

2
p̄ + −

∫
�p

Gpu p̄ dy − =
∫

�u

Gppū dy + −
∫

�
Gpu f̄ dy

fw(x) := −p̄w + −
∫

�p

Gpu p̄ dy − =
∫

�u

Gppū dy + −
∫

�
Gpu f̄ dy

Integral problem (9) can be written in the compact form:

L[y]= f (10)

with all terms defined by comparison. Unknown vector y is made of tractions p on the Dirichlet
boundary �u , displacements u on the Neumann boundary �p, relative opening displacements w
along the crack �w. Denote with YL the domain of L and with FL its range. Let bilinear form
AL : YL × YL → R:

AL(a, b)
def=
∫

��
L[ a(y)](x)b(x) d�(x) (11)

It can be proved—starting from the property of reciprocity [8]—that bilinear form AL is
symmetric:

AL(a, b)=AL(b, a) ∀a, b∈ YL

As a consequence, the solution of problem (10) is a critical point of functional

�[y]= 1

2
AL(y, y) −

∫
��

y(x) f (x) d�(x)

extensively written in [19].
Let h>0 be a parameter and let [ph(y),uh(y),wh(y)]T def= yh ∈ YLh be an approximation of the

unknown vector field y, denoting with YLh a family of finite dimensional subspaces of YL such
that

∀y ∈ YL, inf
yh∈YLh

‖y − yh‖→ 0 as h → 0 (12)

Discretization (12) allows to transform integral problem (10) into a set of algebraic equations. Two
main techniques have been successfully developed to this aim: the collocation boundary element
method (CBEM) [5] and the symmetric Galerkin [20] method (SGBEM).

In the case of �w =∅, displacement equation (7) is the starting point for the numerical ap-
proximation via the CBEM. In modelling fracture mechanics problems with �w �= ∅, identity (5)
represents an insurmountable mathematical difficulty in applying the CBEM making use of the
displacement equation only (see e.g. [21, 22]). Several special techniques have been devised to
overcome this mathematical degeneracy: among others, the special Green’s functions methods
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[23], the zone method [24] and the Dual BEM [25]. Starting from problem (10) CBEM requires
the fulfillment of integral equations

L[yh] = f

onto a selected set of collocation points x∗
i ∈ ��. In this technique ‘integrals’ of the form:∫

�s

Grs(x∗
i − y)�h(y) : d�(y) r = u, s = u, p (13)

must be tackled, denoting with �h(y) scalar shape functions for modelling the components of
approximation yh of the unknown vector fields along ��.

The SGBEM approximation of (10) consists in finding yh ∈ YLh critical point of the functional:

�[yh] = 1

2
AL(yh, yh) −

∫
��

yh(x) f (x) d�(x)

By imposing the stationarity of �[yh] with respect to the set of nodal values, one deals with
integrals of the following form:∫

�r

�k(x)
∫

�s

Grs(x, y)�h(y) d�(y) d�(x), r, s = u, p (14)

where �k(x), �h(y) are scalar test and shape functions that model the components of the unknown
vector fields along the boundary.

In the numerical approximation of LEFM problems, a correct representation of the local stress
and displacement fields in the neighbourhood of the crack tip is essential for accurate evaluation of
SIFs: as they govern initiation, propagation and stability of fractures [26], their determination is of
primary importance. As well known, displacement field u(x) around the crack tip asymptotically
behaves as

√
�, denoting with �=‖x−xT ip‖; consequently, the stress field r(x) shows an asymp-

totic
√

�−1 singularity at the crack tip [27]. Incorporating the asymptotic behaviour
√

� in shape
functions �k(x), �h(y), by means of the ‘quarter point element’ [28, 29], significantly improved
the accuracy of SIFs evaluation: nevertheless, poor precision resulted in SIFs approximation for
several mixed-mode problems. A further improvement of quarter point elements was proposed in
[30], insuring that the interpolated crack opening displacement w(x) satisfied a known constraint,
the asymptotic vanishing of the term that is linear in distance to the crack tip. A ‘modified quarter
point element’ (shortened in MQP), including a �3/2 contribution, has been implemented in [31]
and its evolution (named ‘enhanced quarter point element’) is proposed in Section 3. It concerns
a higher order special crack tip element, based on a set of cubic lagrangian shape functions, with
internal nodes suitably ‘moved’ in order to reproduce the desired asymptotic behaviour

√
� in

shape functions �k(x), �h(y); the asymptotic vanishing of the term that is linear in distance to the
crack tip is also enforced. It is expected, and indeed shown in all numerical examples in Section 7,
that using higher order elements will increase the accuracy of SIFs approximation with respect to
the MQP in the spirit of the usual p-refinement.

The evaluation of (13)–(14) is never a trivial task, because of the involved singularities,
especially for the hypersingular kernel. Several techniques, collectable in three principal groups,
have been proposed for their evaluation: (i) regularization techniques, (ii) numerical integrations,
(iii) analytical integrations. By a regularization procedure, the strongly singular and hypersingular
integrals are analytically manipulated to convert them into, at most, weakly singular integrals,
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which can then be computed throughout different quadrature schemes. Regularization procedures
have been obtained by means of simple solutions [32, 33]; by applying the Stokes theorem [13, 34];
via integration by parts [35]. Numerical methods for the evaluation of the CPV were proposed
first in [36]. There is nowadays an extensive literature on this subject (see, among others [37]).
A huge amount of literature concerns the numerical evaluation of hypersingular integrals: among
others, see [38, 39]. Analytical integrations have been basically performed towards three schemes.
In the first scheme (see e.g. [11, 40]), the source point is fixed, while the boundary around the
source point is temporarily deformed to allow an analytical evaluation of contributions from sin-
gular kernels, and then the limit is taken as the deformed boundary shrinks back to the actual
boundary. In a second approach, see among others [41–43], the source point x is first moved
away from the boundary; integrals are evaluated analytically and a limit process is then performed
to bring the source point back to the boundary. In all the aforementioned papers, analytical in-
tegrations are provided for all singular integrals, while standard quadrature formulae are used
for non-singular integrals. In the third scheme [6, 44], the complete analytical integration has
been provided, directly evaluating HFP and CPV as well as by means of a limit to the boundary
process.

The present note aims at extending analytical integrations proposed in [6] to LEFM. It focuses
on the closed form of the single integration process (13) pertaining to the CBEM, in Section 4,
and proves, in Section 5.1, the integrability of (13) in a Lebesgue sense required by SGBEM in
Equation (14). Discretization is considered by means of straight elements adopting polynomial test
and shape functions of arbitrary degree away of the crack tip, and higher-order modified quarter
point shape functions, detailed in section 3, in the vicinity of the crack tip. All possible singularities
described in Table I are taken into account in Section 4, performing a direct evaluation of CPV
and HFP as well as a limit to the boundary x→ �� of analytical integrations at x∈ �.

The proposed closed form of integral (13): (i) takes advantage of the definition of two maps,
named ϑ and h, analysed in Sections 2.1 and 2.2, respectively; (ii) exploits and algebraic manipu-
lates basic integrals that for the sake of readability are collected in Appendix B; (iii) is the linear
combination of a few basic functions, that are the essence of the asymptotical behaviour of the
solution, by means of suitable matrices collected in Appendix C; (iv) permits, comparing Wester-
gaard’s asymptotic analysis [45] with the asymptotic analysis of traction BIR (6), the formulation
in Section 6 of a displacement correlation formula for the approximation of SIFs which is coherent
with the approximated stress field around the crack tip.

It seems to be worth noting that such a displacement correlation formula can also be derived from
the ‘two-point’ formula approach which though has a different nature, coming out from William’s
asymptotic analysis of the displacement field near the crack tip apart of any discretization process.
Such an equivalence seem to reveal that the two-point formula is privileged in the framework
of LEFM via BIEs with respect to all other SIFs approximation formulas, which are based on
indirect measures of SIFs but do not match the limit to the crack tip of the approximated stress
field. The interest in analytical integrations therefore is not limited to computational efficiency;
nevertheless, ‘measuring’ the computational cost of their implementation can be of interest and
has been performed in Section 4.5.

An object-oriented computer code, that implements the proposed integration schemes, has been
developed and is available for the scientific community. By means of it, numerical analysis for
SIFs approximation have been performed over a set of academical examples and benchmarks in
Section 7. Further publications will be devoted to more extensive analysis of real-life engineering
problems.
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2. TWO MAPPINGS

Analytical integrations of (13) and (14) that will be performed in Section 4 make use of two
mappings ϑ : R2 × R+

0 → R and h : R2 × R+
0 → R that, because of their complexity, worth to be

detailed in a separate section.

2.1. Mapping ϑ(d; �)

Consider interval I� =[−l, l], a local co-ordinate system {0, n} and assume the crack tip at �1 = l
as in Figure 2. Let d be the position vector after a reference change d1 = l − �1, d2 =−�2 from
{0, n} to {Tip,d} as in Figure 2. Consider a parameter � ∈ R+

0 and mapping ϑ� : R2 × R+
0 → R

defined when d2 �= 0 by

ϑ�(d; �) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
arctan

[√
2|d| − (−1)��

√|d| + d1
�
√|d| − d1

]
sgn(d2) if � �= 0

�

2
sgn(d2) if � = 0

(15)

with‡‡ � ∈ {0, 1} and |d| =
√
d21 + d22 . The following properties hold:

ϑ�(d; �) = −
√|d| − d1√

2
sgn(d2)

∫
1

�2 − (−1)�
√
2�

√|d| + d1 + |d| d� (16)

ϑ({d1,−d2}; �) = −ϑ({d1, d2}; �) (17)

Integral (16) is well-defined ∀� when§§ |d| �= 0. In view of property (17), only the behaviour of ϑ�
in half-plane d2>0 will be studied.

For being � ∈ R+
0 , the behaviour of mapping ϑ1 in a neighbourhood of |d| = d1 �= 0 obeys the

following proposition:

lim
d2→0+ ϑ1(d; �)

∣∣∣∣
d1>0

= �

2
∀� (18)

To study mapping ϑ0 onto half-line d2 = 0, d1>0, two separate regions must be taken into
account:¶¶

lim
d2→0+ ϑ0(d; �)

∣∣∣∣
d1>0

=

⎧⎪⎨
⎪⎩

�

2
if [� �= 0 and d1>�2] or [� = 0]

−�

2
if [� �= 0 and 0<d1<�2]

(19)

‡‡Mapping ϑ�, whose geometrical interpretation is an angle hard to be depicted, comes into play in analytical
integrations when �=√

2l and �= 0 (see Figure 2).
§§ I.e. when n differs from the crack tip.
¶¶ If one would extend mapping ϑ0(d;�) accordingly to Equation (19) to half-line d2 = 0, d1>0, a discontinuity
with respect to d-easily seen in Figure 3—would appear at d1 =�2, d2 = 0.
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Figure 2. Local co-ordinate systems {0, n} and {Tip,d}.

Figure 3. A plot of mapping ϑ(d; �) for l = 13, −l<d1<3l, − l

2
<d2<0 and � =√

2l.

It is straightforward proving that on half-line d2 = 0, d1<0:

lim
d2→0+ ϑ�(d; �)

∣∣∣∣
d1<0

=

⎧⎪⎪⎨
⎪⎪⎩
arctan

√|d|
�

if � �= 0

�

2
if � = 0

(20)

Define mapping ϑ : R2 × R+
0 → R for d2 �= 0 as the sum of the two mappings:

ϑ(d; �) =ϑ0(d; �) + ϑ1(d; �) (21)

From Equations (17)–(19) mapping ϑ can be smoothly extended along the segment 0<d1<�2,
d2 = 0 by defining:

ϑ({0<d1<�2, 0}; �) = 0 (22)

Mapping ϑ(d; �)—which is bounded over any subset of R2 × R+
0 —is plotted in Figure 3 exploiting

property (17).
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Figure 4. A plot of mapping h(d; �) for l = 13, −l<d1<3l, 0<d2<
l
2 and � =√

2l.

2.2. Mapping h(d; �)

Consider a parameter � ∈ R+
0 and mapping h� : R2 × R+

0 → R defined by

h�(d; �) = log[�2 − (−1)�
√
2�
√|d| + d1 + |d|] (23)

with �∈ {0, 1}. Mapping h1 is defined in the whole set R2 × R+
0 with exception of its null point

� = |d| = 0. Mapping h0 is not defined in the set

R2 × R+
0 ⊇Q def=

{
d, �|0�� −

√
2d1 − �2�

√
2
√|d| + d1�� +

√
2d1 − �2

}
(24)

which reduces at point d1 = 2l, d2 = 0 for � = √
2l and at the origin |d| = 0 for � = 0 (see Figure 2).

Define mapping h : R2 × R+
0 → R as the sum:

h(d; �) = h1(d; �) − h0(d; �) = log
�2 + √

2�
√|d| + d1 + |d|

�2 − √
2�

√|d| + d1 + |d| (25)

Mapping h inherits the non-definiteness in set Q, but can be C0-extended at � = |d| = 0 by defining

h(0; 0) = 0 (26)

Mapping h(d; �) is plotted in Figure 4 exploiting property h({d1, −d2}; �) = h({d1, d2}; �).

3. ENHANCED QUARTER POINT SHAPE FUNCTIONS

Define test �k(x) and shape functions �h(y) in Equations (13)–(14) as follows. Let �h be a
decomposition of polygonal boundary � with nodes {Ph , h = 1, 2, . . . , Nh}. Denote with Tj the
generic segment‖‖ of �h that does not contain a crack tip and with l its half length; denote with
Ttip the generic segment of �h enclosing a crack tip and with l its half length. Assume a local

‖‖Segment or panel will be used as synonymous.
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Figure 5. Local �̃n(�1(P)) and global �h(y) shape functions.

co-ordinate system {0, n} over any panel∗∗∗ T , such that �2(P) = 0 and �1(P) ∈I� =[−l, l] for
all P ∈ T , as in Figure 2. Assume that the crack tip is located at �1 = l and select over Ttip a local
basis {�̃0, �̃1, �̃2}, which will be extensively written at the end of the present section, by Equation
(35). Choose over Tj a local basis {�̃0, �̃1, . . . , �̃N j

} where �̃ j denotes a polynomial (usually
Lagrangian) of degree N j defined on a subset of {Ph} of N j + 1 nodes in Tj . Collect in set Th
the (two at most) panels sharing vertex Ph (see Figure 5); then �h is defined as:

�h(y(P)) : =
{

�̃n(�1(P)) if T ∈Th

0 if T /∈ Th

P ∈ T (27)

where index 0�n�max{2, N j } selects the unique local basis function on T such that �̃n(�1(Ph))=1.
By construction, �h(y) is continuous over �h , and its support coincides with Th .

Consider the uniform partition P of interval Is
def= [−1, 1] defined by means of points Pi =

−1 + 2i
3 with i = 0, 1, 2, 3. Assume over P as shape function basis !

def= {	 j , j = 0, 1, 2, 3} with
the four lagrangian cubic polynomials 	 j (s), such that s ∈Is and 	 j (Pi ) = �i j . In the spirit of
[28] and of [29], define the crack tip (at � = l) geometry by means of mapping �(s) over Is :

�(s)= l{−	0(s) + �	1(s) + 
	2(s) + 	3(s)}, −1<�<
<1 (28)

with respect to a local co-ordinate system as in Figure 6. Parameters � and 
 must be selected

such that inverse mapping s(�) exists over I�
def= [−l, l] and be represented as

s(�) = a + b
√
l − � + o(l − �) (29)

It is straightforward proving that � = 1
9 and 
 = 7

9 is the unique pair that satisfies requirements
(28) and (29), for being

s(�) = 1 −
√
2

l

√
l − � (30)

∗∗∗T stands for Tj as well as for Ttip.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (in press)
DOI: 10.1002/nme



ANALYTICAL INTEGRATIONS AND SIFs COMPUTATION

(a) (b)

Figure 6. (a) Lagrangian shape functions over Is ; and (b) modified quarter point shape functions over I�.

In view of result (30), the approximation of opening and sliding along the crack w at the crack

tip can be achieved through shape functions basis U
def= {� j (�) = 	 j (s(�))} with � ∈I�, as usual

for isoparametric elements, which have the following form:

� j (�) =
3∑

i=0
ai j (l − �)i/2, a0 j �= 0 if and only if j = 3 (31)

The constraint w(l) = 0 at the crack tip forces the approximation of w to read:

w(�) =
2∑
j=0

w j� j (�) (32)

Result (31) induces to approximation (32) the theoretical asymptotic square root behaviour. It
has recently been shown [30] that the linear coefficient of the asymptotic expansion of opening
and sliding w at the crack tip vanishes. Compatibility with respect to this outcome produces an
unsatisfied constraint for approximation (32):

2∑
j=0

a2 jw j = 0 (33)

A possible way to enforce constraint (33) is approximating crack opening and sliding w by means

of shape functions basis Ũ
def= {�̃ j (�) = 	̃ j (s(�))} with � ∈I� such that:

a2 j = 0 ∀ j (34)

and s(�) defined by (29). Constraint (34) is compatible with a polynomial shape function basis !̃
of degree increased by one with respect to !: consider partition P and fourth-order polynomial

m(s) such that m(Pi ) = 0. Assume !̃
def= {	̃ j (s) = 	 j (s) + � jm(s), j = 0, 1, 2, 3} with � j ∈ R,

s ∈Is . Note that 	̃ j (Pi ) = �i j . Shape functions �̃ j (�) = 	̃ j (s(�)) are defined by means of s(�)

as in (29): coefficient � j can be uniquely evaluated in order to satisfy constraint (34) for any
�̃ j (�). Incompatibility of constraints (34) and mapping (30) causes the loss of any iso-parametric

formulation, in the sense that � j �= 0 so that functions 	̃ j and 	 j can never coincide.
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In conclusion, approximation of opening and sliding along the crack w at the crack tip reads:

w(�) =
2∑
j=0

w j �̃ j (�), �̃ j (�) =
4∑

i=0
ai j (l − �)i/2

a0 j �= 0 if and only if j = 3, a2 j = 0 ∀ j

(35)

with � ∈I�. Basis Ũ is depicted in Figure 6(b) and printed in Appendix A.

4. ANALYTICAL INTEGRATIONS FOR CBEM AND BIRs

4.1. Problem formulation

In their vectorial forms, integral (13) as well as the inner integral††† in (14) take the form:

Frs(x)
def=
∫

�s

Grs(r)�h(y) d�y1 =
∫
Th

Grs(r) �h(y) d�y1 = ∑
T∈Th

Frs(x, T )

having defined with 1 the identity matrix,

Frs(x, T )
def=
∫
T
Grs(r)�̃n(�1) d�11 (36)

and r= x − y(�1). When T = Tj integral (36) can be analytically solved according to [6]. When
T = Ttip split �̃n(�1) defined in Equation (35) in the sum:

�̃n(�1) = �̃
√
n (�1) + a4n(l − �1)

2, n = 0, 1, 2 (37)

where:

�̃
√
n (�1) = ∑

i=1,3
ain(l − �1)

i/2, n = 0, 1, 2 (38)

Integral (36) splits as well in the sum of two factors: the latter can be analytically solved according
to [6], the former:

Frs(x, Ttip) =
∫
Ttip

Grs(r) �̃
√
n (�1) d�11 (39)

can be tackled as follows.
Consider local reference {0, n} over T = Ttip and denote, with abuse of notation, with �1 = �1(y),

�2 = �2(y)= 0, �1 = �1(x), �2 = �2(x) (Figure 7).
Noting that √

l − �1 =√d1 + r1, (l − �1)
3/2 = (d1 + r1)

√
d1 + r1

Equation (38) can be written as

�̃
√
n (�1) = rT

1Xan
√
d1 + r1, n = 0, 1, 2 (40)

†††For the sake of brevity, here and in the following term ‘integral’ refers to CPV and HFP as well.
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ξ2

ξ1

ξ 1

η 1

η
2 = r

2

r 1
=η 1

−ξ 1
 

d 1

d

ry

x

d 2

·

·

·

0

Figure 7. Notation.

where

rT
1 =[1, r1], X=

[
1 d1

0 1

]
, an =

[
a1n

a3n

]
(41)

By a trivial variable change, Equation (36) becomes:

Frs(x, Ttip) =
∫ �1+l

�1−l
Grs(r)

⎡
⎣rT

1 0

0 rT
1

⎤
⎦√d1 + r1 dr1

∣∣∣∣∣∣
r2 = x2

[
Xan 0

0 Xan

]
(42)

In conclusion, to perform the inner integral over panel Ttip one only needs to evaluate the following
one:

Krs(x, Ttip) =
∫ �1+l

�1−l
Grs(r)

⎡
⎣rT

1 0

0 rT
1

⎤
⎦√d1 + r1 dr1

∣∣∣∣∣∣
r2=x2

(43)

which depends on the kernel Grs and on the position of the point x with respect to panel Ttip.
Kernels Gup(x − y, l(y)) and Gpp(x − y,n(x), l(y)) are singular with respect to y depending on
the position of x with respect to Ttip. Items x /∈ T̄tip—that leads to a Lebesgue integral—and
x∈ Ttip—that leads to a finite part of Hadamard—will be accordingly separately analysed.

4.2. Lebesgue integrals

By substituting expressions of kernels Grs—see [6, Appendix A]—into integral (43), algebraic
manipulations lead to the following basic integrals, with k ∈ N:∫ �1+l

�1−l

r k1
r2
√
d1 + r1 dr1,

∫ �1+l

�1−l

r k1
r4
√
d1 + r1 dr1,

∫ �1+l

�1−l

r k1
r6
√
d1 + r1 dr1
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They have been analytically solved—results are collected in Appendix B—when x /∈ T̄tip. Taking
apart all common terms, setting d={d1, d2}, d1 = l−�1, d2 =−�2, and � = √

d1 + r1 , the following
compact expressions are the outcome for integrals (43), having defined �1 = �1(x) and �2 = �2(x)
according to Figure 7:

Kup(x, Ttip) = 1

16�

1

1 − �

[
h(d; �)Lup(d) + ϑ(d; �)Aup(d) + �

r2
Sup(d; r1)

+ �Pup(d; r1)
]r1=�1+l

r1=�1−l
(44)

Kpp(x, Ttip) = G

16�

1

1 − �

[
h(d; �)Lpp(d) + ϑ(d; �)App(d) + �

r2
Spp(d; r1)

+ �

r4
Hpp(d; r1) + �Ppp(d; r1)

]r1=�1+l

r1=�1−l
(45)

where Lrp, Arp, Prp, Srp, Hpp with r = u, p are suitable matrices that are collected in Appendix C
with reference to shape functions (38).

4.2.1. Particular cases: strong singularity analysis. As a particular instance of Lebesgue inte-
gral, assume x /∈ Ttip, with �2 = 0 (see Figure 8). The expression of strongly singular kernel Gup
simplifies as

Gup(r, l(y))= − 1

4�

1 − 2�

1 − �

[
0 1

−1 0

]
1

r1
(46)

Integral (43) simplifies as well:

Kup(x, Ttip) = − 1

4�

1 − 2�

1 − �

[
0 1

−1 0

]∫ �1+l

�1−l

√
d1 + r1
r1

[
rT
1 0

0 rT
1

]
dr1

Figure 8. x�∈Ttip, but �2 = 0.
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and for shape functions (38)—for which rT
1 =[1, r1]—it is straightforward to obtain:

Kup(x, Ttip) = − 1

4�

1 − 2�

1 − �

⎡
⎣ 0 rT

up(x)

−rT
up(x) 0

⎤
⎦ (47)

where

rT
up(x)=

[
2

(
� −√d1 arctanh

(
�√
d1

))
,
2�3

3

]r1 = �1+l

r1=�1−l

having set d1 = l − �1, � =√
d1 + r1 with functions

√· : R → C and arctanh(·) : C → C.
Result (47) can be deduced by the—more general—limit to the boundary approach, by means

of the limit:

Kup(x, Ttip) = lim
z→ x /∈Ttip

Kup(z, Ttip) (48)

depicted in Figure 9. Set d={d1, d2}, d1 = l − �1, d2 = −�2, � = √
d1 + r1 , �1 = �1(z), and

�2 = �2(z). According to Equation (44),

Kup(z, Ttip) = h(d;√
2l)Lup(d) + [ϑ(d;√

2l) − � sgn(d2)]Aup(d)+√
2lPup(d; �1 + l)

16�(1 − �)
(49)

Assume d1<0—as in Figure 9: with reference to Appendix B, limd2→0 a(d) = 0 and limd2→0 b(d)=
−sgn(d2)

√|d| have the following implications on Kup(z, Ttip)—see also Equations (20)
and (25):

lim
d2→0

h(d;√
2l)

∣∣∣∣
d1<0

= 0

Figure 9. Limit to the boundary.
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lim
d2→0

ϑ(d; √
2l)

∣∣∣∣
d1<0

= 2 sgn(d2) arctan

(√|d|√
2l

)

lim
d2→0

Aup(d)

∣∣∣∣
d1<0

= 4 (1 − 2�)sgn(d2)
√|d|

[{0, 0} {−1, 0}
{1, 0} {0, 0}

]

lim
d2→0

Pup(d; �1 + l)

∣∣∣∣
d1<0

= 8(1 − 2�)

⎡
⎢⎢⎢⎣

{0, 0}
{
−1,−�2

3

}
{
1,

�2

3

}
{0, 0}

⎤
⎥⎥⎥⎦

It comes out therefore from Equation (49):

Kup(x, Ttip)| �1>l
�2 = 0

= (1 − 2�)

4�(1 − �)

{[
2 arctan

(√|d|√
2l

)
− �

]√|d|

+ 2
√
2l
}
⎡
⎢⎢⎢⎣

{0, 0}
{
−1,−�2

3

}
{
1,

�2

3

}
{0, 0}

⎤
⎥⎥⎥⎦ (50)

Assume d1>2l>0: with reference to Appendix B, limd2→0 a(d) = √|d| and limd2→0 b(d)= 0 have
the following implications on Kup(z, Ttip)—see also Equations (18), (19) and (25):

lim
d2→0

h(d;√
2l)

∣∣∣∣
d1>0

= 2 log

√|d| + √
2l∣∣∣√|d| − √
2l
∣∣∣

lim
d2→0

ϑ(d;√
2l)

∣∣∣∣
d1>2l

= � sgn(d2)

lim
d2→0

Aup(d)

∣∣∣∣
d1>0

= 8 (1 − �)
√|d|

[{1, 0} {0, 0}
{0, 0} {1, 0}

]

lim
d2→0

Lup(d; �1 + l)

∣∣∣∣
d1>0

= −2(1 − 2�)
√|d|

[{0, 0} {−1, 0}
{1, 0} {0, 0}

]

lim
d2→0

Pup(d; �1 + l)

∣∣∣∣
d1>0

= 8 (1 − 2�)

⎡
⎢⎢⎢⎣

{0, 0}
{
−1, −�2

3

}
{
1,

�2

3

}
{0, 0}

⎤
⎥⎥⎥⎦

(51)
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It comes out therefore from Equation (49):

Kup(x, Ttip)| �1<−l
�2 = 0

= (1 − 2�)

4� (1 − �)

{
−√|d| log

√|d| + √
2l√|d| − √
2l

+ 2
√
2l

}⎡⎢⎢⎢⎣
{0, 0}

{
−1,−�2

3

}
{
1,

�2

3

}
{0, 0}

⎤
⎥⎥⎥⎦
(52)

Equations (47), (50) and (52) are equivalent.
With the notable exception of Equation (51), limit process (48) applies also for 2l>d1>0, that

is‡‡‡ x∈ Ttip. For being:

lim
d2→0

ϑ(d;√
2l)

∣∣∣∣
0<d1<2l

= 0

it comes out from Equation (49) for the case x∈ Ttip not considered in Equation (47):

Kup(x, Ttip)| −l<�1<l
�2 = 0

= (1 − 2�)

4�(1 − �)

{
−√|d| log

√|d| + √
2l√|d| − √
2l

+ 2
√
2l

}⎡⎢⎢⎢⎣
{0, 0}

{
−1, −�2

3

}
{
1,

�2

3

}
{0, 0}

⎤
⎥⎥⎥⎦

−1

2
sgn(d2)

√|d|
[{1, 0} {0, 0}

{0, 0} {1, 0}

]
(53)

4.2.2. Particular cases: hyper singularity analysis. As a particular instance of Lebesgue
integral, assume x /∈ Ttip, with �2 = 0 (see Figure 8). The hyper singular kernel takes the fol-
lowing expression:

Gpp(r, l(y))= G

2�

1

1 − �

[
n2 n1

n1 n2

]
1

r21
(54)

Integral (43) simplifies as well:

Kpp(x, Ttip) = G

2�

1

1 − �

[
n2 n1

n1 n2

]∫ �1+l

�1−l

√
d1 + r1
r21

⎡
⎣rT

1 0

0 rT
1

⎤
⎦ dr1

and for shape functions (38)—for which rT
1 =[1, r1]—it is straightforward to obtain:

Kpp(x, Ttip) = G

2�

1

1 − �

[
n2 n1

n1 n2

]⎡⎣rT
pp(x) 0

0 rT
pp(x)

⎤
⎦ (55)

‡‡‡In this case integral (43) does not exists (in fact, it must be considered in its nature of Cauchy’s principal value
as it will be seen in Section 4.3).
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where

rT
pp(x)=

[
−

√
d1
d1

arctanh

(
�√
d1

)
− �

r1
, −2

√
d1 arctanh

(
�√
d1

)
+ 2�

]r1=�1+l

r1=�1−l

having set d1 = l − �1, � =√
d1 + r1 with functions

√· : R → C and arctanh(·) : C → C.
Outcome (55) can be deduced and depicted in R making recourse to the—more general—limit

to the boundary approach, by means of the limit:

Kpp(x, Ttip) = lim
z→x /∈Ttip

Kpp(z, Ttip) (56)

Set d= {d1, d2}, d1 = l − �1, d2 =−�2, � = √
d1 + r1, �1 = �1(z), and �2 = �2(z). According to

Equation (45),

Kpp(z, Ttip) = G

16�(1 − �)

{
h(d;√

2l)Lpp(d) + [ϑ(d; √
2l) − � sgn(d2)]App(d)

+
√
2l

(�1 + l)2
Spp(d; �1 + l)+

√
2l

(�1 + l)4
Hpp(d; �1 + l)

+ √
2lPpp(d; �1 + l)

}
(57)

Assume d1<0—as in Figure 9: with reference to Appendix B, limd2→0 a(d) = 0 and limd2→0 b(d)=
−sgn(d2)

√|d| have the following implications on Kpp(z, Ttip)—see also Equations (20) and (25):

lim
d2→0

h(d;√
2l)

∣∣∣∣
d1<0

= 0

lim
d2→0

ϑ(d;√
2l)

∣∣∣∣
d1<0

= 2 sgn(d2) arctan

(√|d|√
2l

)

lim
d2→0

App(d)

∣∣∣∣
d1<0

= −2 sgn(d2)

√|d|
|d|

[ {2n2, −4n2|d|} {2n1, −4 n1| d|}
{2n1, −4 n1|d|} {2n2, −4 n2|d|}

]

lim
d2→0

Hpp(d; �1 + l)

∣∣∣∣
d1<0

= 0

lim
d2→0

Spp(d; �1 + l)

∣∣∣∣
d1<0

= −8(�1 + l)

[{ n2, 0} { n1, 0}
{ n1, 0} { n2, 0}

]

lim
d2→0

Ppp(d; �1 + l)

∣∣∣∣
d1<0

= 16

[{0, n2} {0, n1}
{0, n1} {0, n2}

]
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It comes out therefore from Equation (57):

Kpp(x, Ttip)| �1>l
�2 = 0

= G

16�(1 − �)

⎡
⎣n2 n1

n1 n2

⎤
⎦

×
⎧⎨
⎩−2

[
2 arctan

√|d|√
2l

− �

] √|d|
|d|

⎡
⎣{2, −4|d|} {0, 0}

{0, 0} {2, −4 |d|}

⎤
⎦

− 8

√
2l

�1 + l

⎡
⎣{ 1, 0} { 0, 0}

{ 0, 0} { 1, 0}

⎤
⎦+ 16

√
2l

⎡
⎣{ 0, 1} { 0, 0}

{ 0, 0} { 0, 1}

⎤
⎦
⎫⎬
⎭ (58)

Assume d1>2l>0: with reference to Appendix B, limd2→0 a(d) = √|d| and limd2→0 b(d)= 0 have
the following implications on Kpp(z, Ttip)—see also Equations (18), (19), and (25):

lim
d2→0

h(d;√
2l)

∣∣∣∣
d1>0

= 2 log

√|d| + √
2l

|√|d| − √
2l|

lim
d2→0

ϑ(d; √
2l)

∣∣∣∣
d1>2l

= � sgn(d2)

lim
d2→0

App(d)

∣∣∣∣
d1>0

= −8n1
√|d|

⎡
⎢⎢⎣
{

1

|d| , 2
}

{0, 0}

{0, 0} {0, 0}

⎤
⎥⎥⎦

lim
d2→0

Lpp(d; �1 + l)

∣∣∣∣
d1>0

= −2
√|d|

⎡
⎢⎢⎢⎢⎣

{
n2
|d| , 2n2

} {
n1
|d| , 2n1

}
{
n1
|d| , 2n1

} {
n2
|d| , 2n2

}
⎤
⎥⎥⎥⎥⎦

lim
d2→0

Hpp(d; �1 + l)

∣∣∣∣
d1>0

= 0

lim
d2→0

Spp(d; �1 + l)

∣∣∣∣
d1>0

= −8(�1 + l)

⎡
⎣{ n2, 0} { n1, 0}

{ n1, 0} { n2, 0}

⎤
⎦

lim
d2→0

Ppp(d; �1 + l)

∣∣∣∣
d1>0

= 16

⎡
⎣{0, n2} {0, n1}

{0, n1} {0, n2}

⎤
⎦

(59)
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It comes out therefore from Equation (49):

Kpp(x, Ttip)| �1<−l
�2 = 0

= G

16�(1 − �)

[
n2 n1

n1 n2

]

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−4
√|d| log

√|d| + √
2l∣∣∣√|d| − √
2l
∣∣∣

⎡
⎢⎢⎢⎣
{

1

|d| , 2
}

{0, 0}

{0, 0}
{

1

|d| , 2
}
⎤
⎥⎥⎥⎦

− 8

√
2l

�1 + l

[{ 1, 0} { 0, 0}
{ 0, 0} { 1, 0}

]
+ 16

√
2l

[{ 0, 1} { 0, 0}
{ 0, 0} { 0, 1}

]⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(60)

Equations (55), (58) and (60) are equivalent.
With the notable exception of Equation (59), limit process (56) applies also for 2l>d1>0, that

is§§§ x∈ Ttip. For being:

lim
d2→0

ϑ(d;√
2l)

∣∣∣∣
0<d1<2l

= 0

it comes out from Equation (57) for the case x∈ Ttip not considered in Equation (55):

Kpp(x, Ttip)| −l<�1<l
�2 = 0

= G

16�(1 − �)

[
n2 n1

n1 n2

]

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−4
√|d| log

√|d| + √
2l∣∣∣√|d| − √
2l
∣∣∣

⎡
⎢⎢⎢⎣
{

1

|d| , 2
}

{0, 0}

{0, 0}
{

1

|d| , 2
}
⎤
⎥⎥⎥⎦

− 8

√
2l

�1 + l

[{ 1, 0} { 0, 0}
{ 0, 0} { 1, 0}

]
+ 16

√
2l

[{ 0, 1} { 0, 0}
{ 0, 0} { 0, 1}

]⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ Gn1
2(1 − �)

sgn(d2)

⎛
⎜⎝√|d|

⎡
⎢⎣
{

1

|d| , 2
}

{0, 0}

{0, 0} {0, 0}

⎤
⎥⎦
⎞
⎟⎠ (61)

§§§ In this case integral (43) does not exists (in fact, it must be considered in its nature of Hadamard’s finite part as
it will be seen in Section 4.4).
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4.3. Cauchy principal value

Definition
The CPV [46] of the (usually) divergent integral

∫ +∞
−∞ (
(t)/t) dt is the finite quantity

−
∫ +∞

−∞

(t)

t
dt := lim

�→0+

(∫ −�

−∞

(t)

t
dt +

∫ +∞

�


(t)

t
dt

)

When x∈ Ttip—i.e. −l<�1<l—‘integral’ (43) is not defined in a Lebesgue sense. In view of
identity (46) and of definition of rT

1 , it holds in fact:

Kup(x, Ttip) = − 1

4�

1 − 2�

1 − �

[
0 1

−1 0

]∫ �1+l

�1−l

√
d1 + r1
r1

⎡
⎣[1, r1] 0

0 [1, r1]

⎤
⎦ dr1

and function
√
d1 + r1/r1 is not integrable over any interval comprising r1 = 0. It seems to be of

interest to investigate the CPV

−Kup(x, Ttip)
def= − 1

4�

1 − 2�

1 − �

[
0 1

−1 0

]
−
∫ �1+l

�1−l

√
d1 + r1
r1

[[1, r1] 0

0 [1, r1]

]
dr1

that holds:

−
∫ �1+l

�1−l

√
d1 + r1
r1

dr1 = lim
�→0+

(∫ −�

�1−l

√
d1 + r1
r1

dr1 +
∫ �1+l

�

√
d1 + r1
r1

dr1

)

= lim
�→0+

([
2

(
� −√d1arctanh

(
�√
d1

))]r1=−�

r1=�1−l

+
[
2

(
� −√d1 arctanh

(
�√
d1

))]r1=�1+l

r1=�

)

=
[
2

(
� −√d1arctanh

(
�√
d1

))]r1=�1+l

r1=�1−l

− lim
�→0+

[
2

(
� −√d1 arctanh

(
�√
d1

))]r1=�

r1=−�

=
[
2

(
� −√d1arctanh

(
�√
d1

))]r1=�1+l

r1=�1−l
+ O(�)
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In view of outcome (53) it turns out that

lim
z→x∈Ttip

Kup(z, Ttip) = −Kup(x, Ttip) − 1

2
sgn(d2)

√
l − �1

[{1, 0} {0, 0}
{0, 0} {1, 0}

]
(62)

Result (62) was expected in view of its nature of discrete counterpart of the free-term for smooth
boundaries. It holds in fact:

lim
z→x∈Ttip

Fup(z, Ttip) = lim
z→x∈Ttip

Kup(z, Ttip)

[
Xan 0

0 Xan

]

= −Kup(x, Ttip)

[
Xan 0

0 Xan

]
− 1

2
sgn(d2)

√
l − �1

×
[{1, 0} {0, 0}

{0, 0} {1, 0}

][
Xan 0

0 Xan

]

= −Fup(x, Ttip) − 1

2
sgn(d2)�̃

√
n (�1)1 (63)

with Fup defined by Equation (42), −Fup defined by comparison with −Kup, �̃
√
n (�1) defined in

Equation (38), and with 1 denoting the identity matrix.
There is a sound mechanical meaning in the last identity: in view of the factor sgn(d2), limit (62)

takes two different values depending on the direction of the limit process with respect to the normal
at Ttip. Accordingly, Fup(x, Ttip) as a function of x shows a discontinuity when (and only when)
x∈ Ttip. Since Fup represents the displacement field at point x, a discontinuity across Ttip, i.e. a
displacement jump between the two lips of the crack, models crack opening.

4.4. Hadamard’s finite part

Definition 1
Let �→ I (�) denote a complex-valued function which is continuous in (0, �0) and assume that

I (�) = I0 + I1 log(�) +
m∑
j=2

I j �
1− j + o(1); � → 0

where I j ∈ C. Then I0 is called the finite part of I (�). In dealing with integrals, the finite part I0
of a (usually) divergent integral

∫ +∞
−∞ 
(t) dt is denoted by the symbol =∫ +∞

−∞ 
(t) dt .

When x∈ Ttip—i.e. −l<�1<l—‘integral’ (43) is not defined in a Lebesgue sense. In view of
identity (54) and of definition of rT

1 , it holds in fact:

Kpp(x, Ttip) = G

2�

1

1 − �

[
n2 n1

n1 n2

] ∫ �1+l

�1−l

√
d1 + r1
r21

⎡
⎣[1, r1] 0

0 [1, r1]

⎤
⎦ dr1
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and function
√
d1 + r1/r21 is not integrable over any interval comprising r1 = 0. It seems to be of

interest to investigate the finite part of Hadamard:

=Kpp(x, Ttip)
def= G

2�

1

1 − �

[
n2 n1

n1 n2

]
=
∫ �1+l

�1−l

√
d1 + r1
r21

[[1, r1] 0

0 [1, r1]

]
dr1

Results obtained in Section 4.3 can be exploited to solve =∫ �1+l
�1−l (

√
d1 + r1/r1) dr1. The remaining

term holds:

lim
�→0+

(∫ −�

�1−l

√
d1 + r1
r21

dr1 +
∫ �1+l

�

√
d1 + r1
r21

dr1

)

= lim
�→0+

([
− �

r1
−

√
d1
d1

arctanh
�√
d1

]r1=−�

r1=�1−l
+
[
− �

r1
−

√
d1
d1

arctanh
�√
d1

]r1=�1+l

r1=�

)

=
[
− �

r1
−

√
d1
d1

arctanh
�√
d1

]r1=�1+l

r1=�1−l
− lim

�→0+

[
− �

r1
−

√
d1
d1

arctanh
�√
d1

]r1=�

r1=−�

=
[
− �

r1
−

√
d1
d1

arctanh
�√
d1

]r1=�1+l

r1=�1−l
− 2

√
d1

�
+ O(�)

By definition,

=
∫ �1+l

�1−l

√
d1 + r1
r21

dr1 =
[
− �

r1
−

√
d1
d1

arctanh
�√
d1

]r1=�1+l

r1=�1−l

In view of outcome (61) it turns out that

lim
z→x∈Ttip

Kpp(z, Ttip) = =Kpp(x, Ttip) + Gn1
2(1 − �)

sgn(d2)
√|d|

⎡
⎢⎣
{

1

|d| , 2
}

{0, 0}

{0, 0} {0, 0}

⎤
⎥⎦ (64)

The same path of reasoning of Section 4.3 permits to infer a sound mechanical meaning to
identity (64): in view of the factor sgn(d2), limit (64) takes two different values depending on the
direction of the limit process with respect to the normal ntip(x) at Ttip. Accordingly, Fpp(x, Ttip)
as a function of x shows a discontinuity when (and only when) x∈ Ttip. Since Fpp represents the
traction field at point x across a surface of normal n(x), a discontinuity across Ttip may arise if
and only if n1 �= 0, that is, if n(x) differs from the normal ntip(x) at Ttip.

In other words, the term:

Dpp(x, Ttip)
def= Gn1

2(1 − �)
sgn(d2)

⎛
⎜⎝√|d|

⎡
⎢⎣
{

1

|d| , 2
}

{0, 0}

{0, 0} {0, 0}

⎤
⎥⎦
⎞
⎟⎠ (65)
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plays the role of a free-term coming out the hypersingular kernel in the traction equation. It is
evident that Dpp depends on the selected direction n(x) at point x∈ Ttip: when it is taken as
the outward normal at x, that is n(x) = e2, then Dpp vanishes and the free term in the traction
equation is solely due to the strongly singular kernel. On the contrary, when the traction is sought
with respect to a direction n(x) which differs from the normal at x, then the hypersingular kernel
contributes to the free term even on smooth boundaries. Contributions by the hypersingular kernel
have been observed in literature in [47, 17] for the hypersingular BIE for displacement derivatives
and in [10, 18] in the framework of potential theory, when the boundary curvature and the tangent
vector to the boundary are not smooth. Free term (65) has a very different nature: a wide discussion
on such a contribution will be the subject of a further publication.

Outcomes (63) and (64) particularizes to shape functions (38) a well-known result of distribu-
tion theory [48], namely the application of the trace operator to the representation formulae of
elasticity.¶¶¶ Following [7], the strongly singular and hypersingular integrals can be expressed by
means of discontinuity jumps (also named ‘free terms’) of these integrals on the boundary summed
with the values of the integrals on the boundary existing only in the sense of CPV or in the sense
of Hadamard’s finite part. By exploiting Green’s functions properties, the commutativity of the two
operations of traction and trace was proved [7], thus showing the consistency of several different
approaches of derivations of the BIEs [9, 13, 14, 17].

4.5. On the computational cost of analytical integrations

The interest in analytical integrations is not limited to computational efficiency; nevertheless,
‘measuring’ the computational cost of their implementation can be of use. A key point to this aim
is envisaging a unit of measurement independent on the computing machine, on the implemented
code, on the programming language and also on the compiler: a very hard task to cope with. In
this note, the computational cost �(Grs) of analytical integrations (43) has been measured‖‖‖ by
the number of evaluations of kernel Grs :

�(Grs) = Krs(x, Ttip) elapsed time

Grs elapsed time
(66)

Results are collected in Table II. Measure (66) can be significantly related with the number of
nodes nQ(x) of the quadrature rule Qrs(x, Ttip) eventually used to approximate integral (43), under
the assumption that all computational time relies on kernels evaluation. Obviously, comparisons
must be made with respect to a target accuracy

	(x)=
∥∥∥∥Qrs(x, Ttip) − Krs(x, Ttip)

Krs(x, Ttip)

∥∥∥∥
whose amount and whose dependency on the field point x are intimately related to the notion of
�-admissibility in fast integral operators; a discussion on this topic is far beyond the purpose of the
present note, in which a fixed accuracy 	 = 10−8 has been selected. In Figures 10–13 the number of
nodes nGauss(x) required to reach accuracy 	 for a Gauss quadrature rule is mapped with reference

¶¶¶Somigliana’s and traction identities.
‖‖‖Such a measure should not depend on the hardware, but merely on the implementation of kernel and analytical

integrations.
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Table II. A measure of the computational cost of the proposed
analytical integrations.

Guu Gup Gpu Gpp

�(Grs) 10.68 15.79 17.78 9.69

Figure 10. Number of nodes nGauss(x) required to reach accuracy 	 for a Gauss
quadrature rule about kernel Guu . With reference to Table II the surrounding field

is roughly an ellipse with semi-axis a = 1.75, b= 1.5.

Figure 11. Number of nodes nGauss(x) required to reach accuracy 	 for a Gauss
quadrature rule about kernel Gup . With reference to Table II the surrounding field

is roughly an ellipse with semi-axis a = 1.5, b= 1.

to the field point x for all four kernels, at three magnifications around the origin. The panel Ttip
of integral (43) is assumed to coincide with segment [−1, 1] corresponding to a unit half-length l.
With reference to Table II, Figures 10–13 highlights three different regions around the panel, a far
field, a near field, and a surrounding field. In terms of efficiency, seems devisable the application
of fast integral operators in the far field, of numerical quadrature rules in the near-field, and of
analytical integrations in the surrounding field. The present analysis stimulated additional work to
set up the geometry of the involved regions, even taking into account the several quadrature rules
available in the literature: this will be the subject of further study and publications.
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Figure 12. Number of nodes nGauss(x) required to reach accuracy 	 for a Gauss
quadrature rule about kernel Gpu . With reference to Table II the surrounding field

is roughly an ellipse with semi-axis a = 1.3, b= 0.8.

Figure 13. Number of nodes nGauss(x) required to reach accuracy 	 for a Gauss quadrature rule about
kernel Gpp . With reference to Table II the surrounding field is roughly a circle of radius r = 2.

5. ANALYTICAL INTEGRATIONS FOR THE GALERKIN SCHEME

5.1. Outer integration singularity analysis

In view of the singular behaviour of function Kpp(x, Ttip) with respect to variable x in outcome
(45), it may be questionable if integrals (14) for SGBEM are of Lebesgue kind even for the
hypersingular kernel in the presence of the modified quarter point shape functions (Equation (35)),
here rewritten for the sake of clarity:

�̃ j (�) =
4∑

i=1
ai j (l − �)i/2, j = 0, 1, 2, a2 j = 0 ∀ j (67)

With the same notation of Section 4.1, define:

Fpp(x,�h)
def= =
∫

�w

Gpp(x − y,n(x), l(y))�h(y) d�(y)1 (68)
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The following proposition holds:

Proposition 5.1
Define shape functions �k(x) and �h(y) as in Equations (27) and (67). Integral∫

�w

�k(x)1 Fpp(x,�h) d�(x) (69)

is of Lebesgue-kind.

Proof
Exploiting a result of [6, paragraph 4, p. 1707], the proposition is proved if and only if the singular
term in the outer integral for x∈ Ttip and n(x) = e2 reads:

− G

2�

1

1 − �

∫
Ttip

�k(x)
1

x1 + l
dx11 (70)

when the inner integral is made over Ttip. By shape functions definition (27), the complete form
of the inner hypersingular integral—see also Equation (36)—reads:∫

�w

Gpp(r,n(x), l(y))�h(y) d�(y) = ∑
T∈Th

∫
T
Gpp(r,n(x), l(y(�1)))�̃ j (�1) d�1

and the term relevant to T = Ttip, from Equation (37), splits in the sum:∫
Ttip

Gpp(x − y(�1),n(x), l(y(�1)))�̃
√
0 (�1) d�1

+
∫
Ttip

Gpp(x − y(�1),n(x), l(y(�1)))a40(l − �1)
2 d�1 (71)

Assuming x∈ Ttip and n(x)= e2, the first integral in (71) was carried out in Equation (55) and
here reprinted for clarity:

G

2�

1

1 − �
rT
pp(x)Xa01 (72)

where:

rT
pp(x) =

[
−

√
d1
d1

arctanh

(
�√
d1

)
− �

r1
, −2

√
d1arctanh

(
�√
d1

)
+ 2�

]r1=�1+l

r1=�1−l

X=
[
1 d1

0 1

]
, a0 =

[
a10

a30

] (73)

having set d1 = l − �1, � =√
d1 + r1 with functions

√· : R → C and arctanh(·) : C → C. Under
the same assumption, the second integral in (71) was carried out in [6], Equation (22), and has
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the same expression of Equation (72) with:

rT
pp(x) =

[
− 1

r1
; log |r1|; r1

]r1=�1+l

r1=�1−l
, X=

⎡
⎢⎢⎣
0 0 d21

0 0 2d1

0 0 1

⎤
⎥⎥⎦ , a0 =

⎡
⎢⎢⎣

0

0

a40

⎤
⎥⎥⎦ (74)

From definitions (73), (74) it comes out that all terms in (72) are Lebesgue integrable with respect
to �1, except:

rT
pp(x)(e1 ⊗ e1)Xa0

Noting that in Equation (73):

rT
pp(x)e1 = −

√
d1
d1

arctanh

(
�√
d1

)
− �

r1

∣∣∣∣
r1=�1+l

r1=�1−l
∼ −

√
2l

�1 + l
+ o

(
1

�1 + l

)
for �1 + l → 0

eT
1Xa0 = 1√

l − �1
�̃

√
0 (�1) ∼ 1√

2l
�̃

√
0 (−l) + o

(
1

�1 + l

)
for �1 + l → 0

and in Equation (74):

rT
pp(x)e1 = − 1

r1

∣∣∣∣
r1=�1+l

r1=�1−l
∼ − 1

�1 + l
+ o

(
1

�1 + l

)
for �1 + l → 0

eT
1Xa0 = a40(l − �1)

2 ∼ 4l2a40 for �1 + l → 0

it comes out that the term in (72) non-Lebesgue integrable with respect to �1 is the following:

G

2�

rT
pp(x)(e1 ⊗ e1)Xa0

1 − �
1 =− G

2�

1

1 − �

1

�1 + l
[�̃

√
0 (−l) + 4l2a40]1 = − G

2�

1

1 − �

�̃0(−l)

�1 + l
1

which, by comparison with (70), proves the theorem.

As outlined in [6, paragraph 4], as well as in Proposition 5.1, Lebesgue nature of integral (69)
is due to the mutual cancellation of all singularities within ‘inner integral’ (68). With the notation
of (27) and (67), the proof of proposition (5.1) also proves the following corollary:

Proposition 5.2
The following chain of identities holds:∫

�w

�k(x)1Fpp(x,�h) d�(x)

=
∫

�w

�k(x)1
∑

Th∈Th

=
∫
Th
Gpp(x − y(�),n(x), l(y(�)))�̃n(�)1 d� d�(x)
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= ∑
Th∈Th

=
∫

�w

�k(x)1 =
∫
Th
Gpp(x − y(�),n(x), l(y(�)))�̃n(�)1 d� d�(x)

= ∑
Tk∈Tk

∑
Th∈Th

1 =
∫
Tk

�̃m(�) =
∫
Th
Gpp(x(�) − y(�),n(x(�)), l(y(�)))�̃n(�) d� d�1 (75)

5.2. Analytical integration on two equal panels

Consider the factor of integral (75) over crack tip panel Tk = Th = Ttip, equipped with definition (35)
of shape functions at Ttip, namely:

=
∫
Ttip

�̃m(�) =
∫
Ttip

Gpp(r,n(x(�)), l(y(�)))�̃n(�) d� d� (76)

The inner integral in (76) splits accordingly with (37) in the sum:

=
∫ l

−l
Gpp(r,n(x(�)), e2)�̃

√
n (�) d� + =

∫ l

−l
Gpp(r,n(x(�)), e2)a4n(l − �)2 d� (77)

where l is half the length of crack tip panel Ttip. For being x∈ Ttip too, −l���l and n(x)= e2,
the first integral in (77) becomes alike the one carried out in Equation (61), reprinted here:

=
∫ l

−l
Gpp(r, e2, e2)�̃

√
n (�) d�

∣∣∣∣
x∈Ttip

= G

16�(1 − �)
×
{

−4
√|d| log

√|d| + √
2l

|√|d| − √
2l|
{

1

|d| , 2
}

+ 16
√
2l{0, 1} − 8

√
2l

� + l
{ 1, 0}

}
Xan1 (78)

denoting with d1 = l − � and vector d such that 0�|d| = d1�2l. Matrix X and vector an have been
defined by formula (41):

Xan =
[
a1n + d1a3n

a3n

]

As already shown in the proof of Proposition 5.1, the last factor in double brackets in identity (78)
produces a non-integrable singularity for the outer integral, which reads:

−8

√
2l

� + l
{1, 0}Xan|�= −l = −8

√
2l

� + l
(a1n + 2la3n)

Noting that

{1, 0}Xan − {1, 0}Xan|�=−l = −a3n(� + l)
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it comes out straightforwardly:

=
∫ l

−l
�̃m(�) =

∫ l

−l
Gpp(r, e2, e2)�̃

√
n (�) d� d�

= G

16�(1−�)
=
∫ 2l

0
�̃m(d1)

{
−4
√
d1 log

√
2l+√

d1√
2l−√

d1

(
a1n
d1

+3a3n

)
+24

√
2la3n

}
dd11 (79)

The second integral in (77) was carried out in [6], Equation (22):

=
∫ l

−l
Gpp(r, e2, e2)a4n(l − �)2 d� = G

2�

a4n
1 − �

{
−d21
r1

+ 2d1 log |r1| + r1

}r1=�+l

r1=�−l

1 (80)

The first factor in double brackets in identity (80) produces a non-integrable singularity for the
outer integral, which reads:

− G

2�

a4n
1 − �

(2l)2

� + l
1

Noting that

d21 − (2l)2 = (� − 3l)(� + l)

it comes out straightforwardly:

=
∫ l

−l
�̃m(�) =

∫ l

−l
Gpp(r, e2, e2)a4n(l − �)2 d� d�

= Ga4n
2�(1 − �)

=
∫ l

−l
�̃m(�)

{
2(l − �) log

l + �

l − �
+ 4l

}
d�1 (81)

In view of splitting (77), integral (76) is the sum of (79) and (81): it reads

=
∫
Ttip

�̃m(�) =
∫
Ttip

Gpp(r,n(x(�)), l(y(�)))�̃n(�) d� d� = Gl

105�(1 − �)

6∑
i=0

�i/2l
i/21 (82)

where � j are coefficients that merely depend upon shape functions �̃m , �̃n as defined in (67) and
read as follows:

�0 = −105 a1m a1n

�1/2 = 0

�1 = −140 a1n a3m

�3/2 = 21
√
2[8a1ma4n(−1 + log 4) − a1na4m(3 + log 16)]

�2 = −140a3ma3n

�5/2 = 10
√
2[9a3n(1 − 4 log 2)a4m + 8a3ma4n(−5 + log 64)]

�3 = −210a4ma4n

(83)
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6. ASYMPTOTICAL ANALYSIS AND SIF EVALUATION

Further to the numerical approximation of problem (10), several methods [49] allow for the evalua-
tion of SIFs, deducing them from related quantities (J or M-integrals [25, 50]) or from asymptotic
relationships that hold for the exact solution (one or two point displacement correlation techniques
[51], traction correlation technique [52]). By exploiting analytical integrations of Section 4, a direct
and coherent approximation of SIFs can be obtained by the asymptotic analysis of representation
formula (6) by means of the evaluated numerical approximation yh . By neglecting volume forces,
BIR (6) becomes:

ph(x,n(x)) +
∫

�p

Gpp(r;n(x); l(y))uh(y)dy +
∫

�u

Gpp(r;n(x); l(y))ū(y) dy

+
∫

�w

Gpp(r;n(x); l(y))wh(y) dy=
∫

�u

Gpu(r;n(x))ph(y) dy

+
∫

�p

Gpu(r;n(x))p̄(y) dy, x∈ � (84)

If the field point x is assumed to coincide with the crack tip, contributions of integrals over �u
and of �p are finite quantities that, in view of the singularity of the stress field, plays a minor
role; the same statement applies to all boundary elements on �w not enclosing the crack tip.
Accordingly, a ball B�

tip of radius � centred at the crack tip can be considered such that for all

points x∈B�
tip:

ph(x,n(x)) +
∫
Ttip

Gpp(r;n(x); l(y))wh(y) dy= O(1), x∈B�
tip (85)

Owing to Equations (35) and (37), the approximation for ph(x,n(x)) reads:

ph(x,n(x)) = −
2∑
j=0

∫ l

−l
Gpp(x − y(�);n(x); l(y(�)))�̃

√
j (�) d�w j

−
2∑
j=0

∫ l

−l
Gpp(x − y(�);n(x); l(y(�)))[a4 j (l − �)2] d�w j + O(1), x∈B�

tip

(86)

In view of outcomes published in [6], the second integral in Equation (86) vanishes when � → 0;
from Equation (40), with notation of Figure 7 and normal l(y(�))= −e2 by definition of normal
at a crack—see Figure 1, it comes out:

ph(x,n(x)) = −
2∑
j=0

∫ 2l−d1

−d1
Gpp(r;n(x);−e2)rT

1

√
d1+r1 dr1

∣∣∣
r2=−d2

×Xa jw j+O(1), x∈B�
tip (87)
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Figure 14. Polar co-ordinate system.

By a polar reference change d1 = � cosϑ, d2 = � sinϑ–see Figure 14—and in view of identity (45),
integral (87) can be written in the form:

ph(x,n(x))= k(ϑ)√
�

+ O(1), x∈B�
tip (88)

which seems to be a relevant property of integral operator
∫
�w

Gpp(r;n(x); l(y)) · dy and can be
stated as follows:

Proposition 6.1
Denote with e1 ={1, 0} the usual unit vector. Define g= {�1, �2}, ϑ = arctan �2/(�1−l), n= {�1, 0}.
Define the ball B�

tip as the set:

B�
tip ={g∈ R2 s.t. ‖g− le1‖<�}

It exists a vector valued function k : R → R2 such that ∀�>0, ∃�>0 s.t. ∀g∈B�
tip:∣∣∣∣√‖g− le1‖

∫ l

−l
Gpp(g− n;n(g),−e2)

√
l − �1 d�1 − k(ϑ)

∣∣∣∣<�

Proposition 6.1 motivates the use of
√

�-type shape functions (as quarter point and their enhance-
ments) in the context of BIEs, insuring the capability of the approximated traction field ph(x,n(x))
to reproduce the asymptotic behaviour of the exact solution around the crack tip∗∗∗∗ inside the
domain �∩B�

tip.

∗∗∗∗Differently from the finite element scheme, in BIEs the shape functions are merely defined along the boundary
�� and can model the approximated field in the domain � only through the application of operator L of
Equation (10).
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Proposition 6.2
It comes out†††† at ϑ = �:

ph({�, �},n({�, �}))= G

4 (1 − �)

[
n2 n1

n1 n2

]
1√
�

√
2

11
√
l

(
w0 − 27

4
w1 + 27w2

)
(89)

Equation (89) seems to be of practical interest. It is well known from Westergaard’s asymptotic
analysis [45] that for x in front of the crack tip, i.e. at ϑ = � with notation of Figure 14, the SIF
vector holds:

K=
[
KI

KII

]
= lim

�→0

√
2��p({�, �}, e1)

Equation (89) furnishes a direct approximation Kh of the SIF vector, being:

Kh = G

4 (1 − �)

[
0 1

1 0

]
2
√

�

11
√
l

(
w0 − 27

4
w1 + 27w2

)
(90)

Formula (90) is coherent with the approximation yh , in the sense that it gives the value of
SIFs corresponding to the approximated stress field in domain �. Other approaches for SIFs
approximation—e.g. the J -integral [50] or the one point formula [4]—do not possess this property.
An approach similar to formula (90) has been pursued in the literature, approximating SIFs via
a least squares fitting of stress tensors numerically evaluated at a cloud of points close to the
crack tip.

Formula (90) can be obtained also by a different approach. Stemming from the identity [31]:

K= G

4(1 − �)
lim
�→0

√
2�

�

[
0 1

1 0

]
w(�, ϑ = 0) (91)

assume for w(�,ϑ = 0) approximation (35) with �̃ j (�) as in Appendix A. It is straightforward
proving that

G

4 (1 − �)
lim
�→0

√
2�

�

[
0 1

1 0

]
2∑
j=0

w j �̃ j (�)

= G

4(1 − �)

[
0 1

1 0

]
2
√

�

11
√
l

(
w0 − 27

4
w1 + 27w2

)
(92)

that is, Equation (90). The equivalence of the two approaches seems to be significant:
Equation (90) is the outcome of an asymptotic analysis of the stress field after the discretization
whereas Equation (91) comes out fromWilliam’s asymptotic analysis of the displacement field near
the crack tip apart of any discretization process. The equivalence property is inherited from the use

††††For the 2D plane stress case, � must be replaced by �∗ = �/(1 + �).
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of an exact BIR formula and of the analytical integrations and is therefore a property of the BEM
(it does not apply for different computational techniques) in the presence of analytical integrations.

The latter approach is well known [31] to derive the so-called ‘two-point formula’ once applied
to the standard quarter point (QP) element. As the QP shape functions are a special case of (35),
the stated equivalence seem to reveal that the two-point formula is privileged with respect to all
other SIFs approximation formulas in the framework of LEFM via BIEs.

7. NUMERICAL APPROXIMATIONS OF SIFS

Muskhelishvili’s problem: Consider an homogeneous, isotropic linear elastic material occupying
an unbounded domain �= R2. Consider a line crack of length 2, whose midpoint coincides with
the origin of the co-ordinate system {x1, x2}, slanted by angle � from x1 axis as in Figure 15.
Assuming that the crack is pressurized by a traction p̄w(x)=− p̄w (e2 · n(x))e2, the plane stress
solution is given in closed form, see e.g. [53]. SIFs hold:

KI = p̄w

√
� cos2(�), KII = p̄w

√
� cos(�) sin(�) (93)

and are independent on the material constitutive parameters. Muskhelishvili’s problem has been
approximated via the hypersingular collocation BEM by means of 3 uniform meshes (named mesh
1, 2, 3), of panel length 1= l1 = 2l2 = 4l3.

The relative error in the approximations of SIFs are collected in Table III for the hypersingular
collocation approach, by placing collocation point at the Gauss nodes on the element. The first
line (q) refers to quadratic elements without making recourse to any special element at the crack
tip. The remaining three sets of analysis concern of quadratic elements using standard quarter
point crack tip (sQP), modified QP (mQP) as in [31], enhanced QP (eQP) as in Section 3. Quite
unexpectedly, the accuracy shows to be independent on the direction (KI or KII) as well as on the
slanted angle �.

The relative error in the approximations of SIFs for the Galerkin scheme are collected in
Table IV. Again, the accuracy shows to be independent on the direction (KI or KII) as well as on
the slanted angle �.

Edge crack: Consider a square plate of width h with a single edge crack of length a, as in
Figure 16. The plate is subjected to the action of a uniform unit traction, applied symmetrically

Figure 15. Muskhelishvili’s problem.
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Table III. Accuracy (in %) of SIFs approximation of Muskhelishvili’s problem for the collocation approach:
the accuracy for KI and KII is equal.

Boundary elements along the crack

Type SIF formula 2 4 8 2 4 8 2 4 8

q one pt 40.87 21.95 14.37 40.87 21.95 14.37 40.87 21.95 14.37
sQP one pt 1.98 0.17 0.12 1.98 0.17 0.12 1.98 0.17 0.12

two pts 29.89 12.68 5.68 29.89 12.68 5.68 29.89 12.68 5.68
mQP one pt 4.85 2.86 1.51 4.85 2.86 1.51 4.85 2.86 1.51

two pts 2.95 0.56 0.08 2.95 0.56 0.08 2.95 0.56 0.08
eQP one pt 3.56 1.45 0.64 3.56 1.45 0.64 3.56 1.45 0.64

(90) 1.40 0.11 0.08 1.40 0.11 0.08 1.40 0.11 0.08

�= 0 �= �
6 �= �

3

Slanted angle �

Table IV. Accuracy (in %) of SIFs approximation of Muskhelishvili’s problem for the Galerkin approach:
the accuracy for KI and KII is equal.

Boundary elements along the crack

Type SIF formula 2 4 8 2 4 8 2 4 8

q one pt 37.34 18.41 11.22 37.34 18.41 11.22 37.34 18.41 11.22
sQP one pt 6.43 3.17 1.60 6.43 3.17 1.60 6.43 3.17 1.60

two pts 14.39 6.55 3.01 14.39 6.55 3.01 14.39 6.55 3.01
mQP one pt 6.12 3.12 1.58 6.12 3.12 1.58 6.12 3.12 1.58

two pts 1.44 0.28 0.02 1.44 0.28 0.02 1.44 0.28 0.02
eQP one pt 2.87 1.38 0.68 2.87 1.38 0.68 2.87 1.38 0.68

(90) 0.40 0.01 0.04 0.40 0.01 0.04 0.40 0.01 0.04

�= 0 �= �
6 �= �

3

Slanted angle �

Figure 16. Square plate with a single edge crack.
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Table V. Edge crack KI approximation.

�

a

h
QP 0.5 1 2 4 Reference [4]

0.25 s — 4.112 4.130 4.134 —
e — 4.155 4.153 4.154

0.5 s 8.327 9.445 10.050 10.350 10.670
e 10.634 10.669 10.675 10.677

0.75 s 23.27 28.99 32.53 34.51 —
e 38.12 36.91 36.77 36.77

0.9375 s — −47.9 395.289 612.82 —
e — 1990.8 1135.5 1072.57

The quarter point (QP) column indicates standard (s) versus enhanced (e). Results of the analysis
at a/h = 0.5 can be compared with KI = 10.670 from Table 1 at p. 129 in Reference [4]. Results
of the last-row analysis, a/h = 0.9375 can be compared with a KI = 1017.3 reference solution
obtained by a non-uniform mesh refined around the crack tip.

(a) (b)

Figure 17. Rectangular plate with a single edge slant crack: (a) the geometry and the unit applied loads;
and (b) the discretization, refined at corners and at the crack tip.

at the ends in the direction perpendicular to the crack. The value of KI is evaluated for several
a/h ratios and several uniform meshes, of panel length l = h/(8�) with � = 1

4 ,
1
2 , 1, 2. Results are

collected in Table V and are obtained by the Galerkin scheme using the two-point formula for the
standard quarter point and formula (90) for the enhanced quarter point elements. KI values can be
compared with results of Table I at p. 129 in Reference [4].

Edge slant crack: Consider a rectangular plate of height h and width 0.4h—as in Figure 17(a)—
with a single left-edge crack of length 0.2h starting at a distance 0.4h from the bottom side.
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Table VI. Edge slant crack KI and KII approximation.

CBEM SGBEM

� KI KII
E J

1 − �2
	 (%) KI KII

E J

1 − �2
	 (%)

−85 0.91148 −0.25965 0.87689 2.43 0.49110 −0.57818 0.57619 0.13
−80 0.97428 −0.88712 1.73052 0.33 0.89290 −0.94395 1.68664 0.10
−75 1.39453 −1.28552 3.58633 0.31 1.37308 −1.29769 3.56522 0.12
−70 1.96079 −1.63886 6.51154 0.29 1.95396 −1.64048 6.50173 0.11
−65 2.64237 −1.96244 10.8034 0.28 2.63892 −1.96169 10.8004 0.11
−60 3.42499 −2.25187 16.758 0.26 3.42238 −2.25057 16.761 0.10
−55 4.29874 −2.50052 24.672 0.24 4.29634 −2.49915 24.6822 0.09
−50 5.25636 −2.70205 34.8522 0.22 5.25402 −2.70074 34.872 0.08
−45 6.29066 −2.84712 47.5807 0.21 6.28944 −2.84695 47.6328 0.06
−40 7.39407 −2.92576 63.1154 0.19 7.3934 −2.92559 63.1934 0.04
−35 8.54805 −2.92125 81.4691 0.16 8.54808 −2.92101 81.5814 0.03
−30 9.72156 −2.81718 102.3 0.14 9.7226 −2.81681 102.458 0.01
−25 10.8692 −2.60052 124.752 0.12 10.8716 −2.60001 124.972 0.02
−20 11.9335 −2.26567 147.394 0.10 11.9379 −2.26504 147.692 0.03
−15 12.8509 −1.81721 168.305 0.08 12.8575 −1.81649 168.697 0.05
−10 13.5593 −1.27077 185.332 0.07 13.5682 −1.26998 185.818 0.06
−5 14.0068 −0.65203 196.479 0.07 14.0175 −0.651137 197.038 0.06

0 14.165 — 200.71 0.03 14.17 — 200.93 0.07
5 14.0025 0.66597 196.345 0.09 14.0127 0.66695 196.895 0.05

10 13.5483 1.29129 185.028 0.11 13.5563 1.29204 185.495 0.03
15 12.8283 1.84865 167.757 0.13 12.8336 1.84902 168.121 0.00
20 11.8916 2.31182 146.507 0.17 11.8944 2.31174 146.772 0.03
25 10.7979 2.66342 123.431 0.21 10.7988 2.66295 123.616 0.07
30 9.61014 2.8956 100.487 0.25 9.60977 2.89485 100.614 0.11
35 8.388 3.00937 79.1822 0.29 8.38691 3.00849 79.2693 0.15
40 7.18317 3.01309 60.4746 0.33 7.18174 3.01218 60.5347 0.19
45 6.03657 2.92039 44.8031 0.37 6.03496 2.91951 44.8436 0.22
50 4.97723 2.74852 32.1985 0.40 4.97554 2.74717 32.2222 0.25
55 4.02294 2.51425 22.4107 0.42 4.02129 2.51298 22.4255 0.27
60 3.18219 2.23522 15.0565 0.44 3.18033 2.23411 15.0637 0.28
65 2.45567 1.92639 9.69788 0.45 2.45287 1.92589 9.69849 0.28
70 1.83939 1.59888 5.91309 0.45 1.8331 1.60077 5.9066 0.27
75 1.33142 1.2549 3.33219 0.46 1.31047 1.26734 3.31499 0.26
80 0.95081 0.87131 1.65426 0.54 0.86993 0.92847 1.61535 0.22
85 0.90716 0.25560 0.86398 2.81 0.48685 0.57424 0.56700 0.04

The crack is slanted by angle �: analysis have been carried out for � in the range [−80◦, 80◦].
The plate is subjected to the action of a uniform unit traction, applied symmetrically at the two
horizontal sides in the direction orthogonal to the boundary.

Analysis have been performed by means of two set of discretizations: for angle |�|�45◦, a panel
length of 0.05h has been considered to produce a uniform mesh of quadratic BEs on the boundary
and along the crack. The mesh has been refined in vicinity of the corners as well as of the crack
tip (see Figure 17(b)), where the enhanced quarter point crack tip element has been placed. For
angle |�|>45◦ the mesh on the left side of the plate has been refined, by doubling the number of
elements.
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Analysis have been preformed for the hypersingular collocation as well as for the symmetric
Galerkin schemes: results are collected in Table VI, in terms of KI, KII and the J -integral
E J/(1 − �2). In view of the relation

E J

1 − �2
= K 2

I + K 2
II

the number

	 =

∣∣∣∣∣J − (1 − �2)
K 2
I + K 2

II

E

∣∣∣∣∣
J

can be assumed as a measure of accuracy of the numerical approximation of KI, KII and is also
presented in Table VI. Figure 18 plot KI and KII against the slanted angle �.

A propagating, pressurized centre crack: Consider a square plate of side h—as in Figure 19—
with a single horizontal central crack of initial length h/24. No loads are prescribed along the
exterior boundary ��; the crack propagates under the effect of a normal pressure � acting on the
interval −h/48�x1�h/48, independent on the actual crack length. The target of the simulation
is the approximation of the critical load-factor �c and the critical crack length that correspond
to �c.

Discretization has been performed by means of a quasi-uniform quadratic mesh with panel
length of h/80 along �� and of h/120 along the crack. Results, referring to the Galerkin scheme,
are plotted in Figure 19. Load factor � at any given crack length is evaluated such that KI = KIc:
accordingly, the condition of onset of propagation is kept in the load process; values of ratio �
over KIc are plotted on the vertical axis. The critical load factor, after which a crack advance
implies a load decrement (the unstable crack growth region), is reached at �c � 1.9KIc corre-
sponding to a critical crack length of about 0.35h. It is worth here noting that the unstable
crack growth can be simulated because as ‘control parameter’ has been assumed the actual crack
length, which is monotonically increasing. In a general case this approach reveals unsatisfactory
and different strategies are recommended for evaluating the safety factor of a cracked structural
component.

8. CONCLUDING REMARKS

An accurate evaluation of the structural response of a cracked body to external actions seems to be
important to assess safety against failure due to fracture propagation. Notwithstanding unavoidable
nonlinear dissipative phenomena—due to plastic deformations around crack tip, or to cohesive
forces in the process zone—LEFM is still of primary importance, especially when the size may infer
brittleness to a cracked body. In computational LEFM a major task consists in the approximation
of SIFs, as they govern propagation and stability of fractures: several methods and ad hoc shape
functions have been proposed in order to increase accuracy in SIFs evaluation. The present note
concerned LEFM problems modelled by means of BIEs (10): analytical integrations have been
presented—both as a limit of a Lebesgue integral and directly in a CPV and Hadamard’s finite
parts sense—in Section 4 for BIR formulae as well as for the collocation scheme. With reference
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Figure 18. Rectangular plate with a single edge slant crack: SIF approximation.

to the Galerkin method it has been proved in Section 5.1 that the bilinear form for BIEs (Equation
(11)) has a Lebesgue nature even in the presence of shape functions (35) that incorporate the
square-root behaviour of crack opening displacement.

In definition (35) the crack tip has been assumed to be located at the right-end of an ele-
ment, that is at � = l; the same assumption has been considered into the rest of the note. It is
straightforward extending the basic results to the case of crack tip at the left-end side at � = − l.
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(a) (b)

Figure 19. Square plate with a single propagating central crack: (a) geometry;
and (b) load versus crack length behaviour.

Figure 20. Notation for crack tip at �= −l.

Identity (35) becomes:

w(�) =
2∑
j=0

w j �̃ j (�), �̃ j (�) =
4∑

i=0
ai j (l + �)i/2

a0 j �= 0 if and only if j = 3, a2 j = 0 ∀ j

(94)

see Appendix A. By defining r def= n− g and d1 = l + �1 as in Figure 20, it holds:√
l + �1 =√d1 + r1, (l + �1)

3/2 = (d1 + r1)
√
d1 + r1
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and Equation (40) still applies. By a trivial variable change, Equation (42) becomes:

Frs(x, Ttip) =
∫ −(�1−l)

−(�1+l)
Grs(−r)

⎡
⎣rT

1 0

0 rT
1

⎤
⎦√d1 + r1 dr1

∣∣∣∣∣∣
r2=x2

[
Xan 0

0 Xan

]
(95)

and by noting thatGup(−r)=−Gup(r) andGpp(−r)=Gpp(r) identities (44) and (45) still applies
by suitably changing the integration interval for r1. All obtained results extends straightforwardly.

Exploiting analytical integrations (45), an asymptotical analysis of the approximated stress field
around the crack tip has been carried out. Starting from representation formula (6) for the stress
field, formula (90) for the approximation of SIFs came out taking the limit to the crack tip of the
approximated stress field. In this sense it can be stated that formula (90) is ‘coherent with the
approximated stress field’, property that does not hold for all formulae for SIFs approximation
(typically the J -integral or the ‘one point formula’).

From the computational side, analytical integrations seems to be of interest for their easy
implementation and for their efficiency, especially in the surrounding zone emerged in Section 4.5.
An object-oriented computer code, that implements the proposed integration schemes, has been
developed and is available for the scientific community upon request. By means of it, numerical
analysis for SIFs approximation have been performed over a set of academical examples and
benchmarks. Further publications will be devoted to analysis of real-life engineering problems,
with the aim of assessing the safety factors of structural brittle components.

The obtained results stimulate further work. It has been shown even in 3D that the interpolated
crack opening displacement w(x) must comply with the asymptotic vanishing of the term that is
linear in distance to the crack tip. Special shape functions must be devised to this aim. Extension
of the proposed analysis to 3D may be useful in addressing the complicated problem of accurate
and efficient computational strategies for 3D SIFs evaluation.

The accuracy obtained in SIFs approximation seems to have promising falls in the context
of Crack propagation, because several criterions proposed in the literature are based on the
approximation of SIFs. Together with contact algorithms to simulate crack closure effects, the
propagation of brittle fractures in structural elements seems to be an affordable task especially for
fatigue crack growth, which may take advantages of recently published variational approaches for
crack initiation in hyperelastic bodies.

In more theoretical scenarios, the challenge in understanding fracture lies in the fact that several
length scales are connected and all may contribute to fracture energy. Using the proposal accurate
SIFs approximations as a numerical tool for multi-scale simulation of fracture from macroscopic
to atomistic scale seems yet to produce very promising results, as from initial numerical analysis.

APPENDIX A: MODIFIED QUARTER POINT SHAPE FUNCTIONS

Approximation of opening and sliding w at the crack tip reads (see Equation (35)):

w(�) =
2∑
j=0

w j �̃ j (�), �̃ j (�) =
4∑

i=0
ai j (l − �)i/2

a0 j �= 0 if and only if j = 3, a2 j = 0 ∀ j
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with � ∈ [−l, l]. Shape functions �̃ j (�) read in extenso:

�̃0(�) =
√
2

11
√
l

√
l − � − 63

√
2

88l3/2
(l − �)3/2 + 81

88l2
(l − �)2

�̃1(�) = −27
√
2

44
√
l

√
l − � + 351

√
2

88l3/2
(l − �)3/2 − 81

22l2
(l − �)2

�̃2(�) = 27
√
2

11
√
l

√
l − � − 513

√
2

88l3/2
(l − �)3/2 + 405

88l2
(l − �)2

�̃3(�) = 1 − 85
√
2

44
√
l

√
l − � + 225

√
2

88l3/2
(l − �)3/2 − 81

44l2
(l − �)2

If the crack tip is located at � =−l, shape functions, now denoted with �̃ j (�) read:

�̃0(�) = �̃3(−�)

�̃1(�) = �̃2(−�)

�̃2(�) = �̃1(−�)

�̃3(�) = �̃0(−�)

APPENDIX B: LEBESGUE INTEGRALS

The following identities, that can be proved by induction when r2 �= 0, are the keynote of the inner
integration. Here, M2[k] stands for the remainder of the (integer) division k ÷ 2.

∫ x1+l j

x1−l j
r k1 log(r

2) dr1

∣∣∣∣∣
r2=x2

=
[
log(r21 + x22)

(
rk+1
1

k + 1
+ M2[k](−1)k−1/2xk+1

2

)

+ arctan

(
r1
x2

)(
(1 − M2[k]) 2

k − 1
(−1)k/2xk+1

2

)

+ r1
k∑

n=0
M2[k+1−n] 2

(k+1)(n+1)
(−1)((k−n)/2+1)rn1 x

k−n
2

]r1=x1+l j

r1=x1−l j

(B1)
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∫ x1+l j

x1−l j

r k1
r2

dr1

∣∣∣∣∣
r2=x2

=
[
log(r21 + x22)(M2[k](−1)k−1/2xk−1

2 )

+ arctan

(
r1
x2

)
((1 − M2[k])(−1)k/2xk−1

2 )

×
k∑

n=1

M2[k − n]
n

(−1)((k−n+1)/2+1)rn1 x
k−n−1
2

]r1=x1+l j

r1=x1−l j

(B2)

∫ x1+l j

x1−l j

r k1
r4

dr1

∣∣∣∣∣
r2=x2

=
[
1

2
log(r21 + x22)

(
−k − 1

2
M2[k](−1)k−1/2xk−3

2

)

+ 1

2
arctan

(
r1
x2

)(
(k − 1)(M2[k] − 1)(−1)k/2xk−3

2

)

+ 1

2

1

r2
xk−2
2 (−M2[k](−1)k−1/2x2 + (1 − M2[k])(−1)k/2r1)

+
k−2∑
n=1

M2[k − n]k − n − 1

2n
(−1)k−n+1/2rn1 x

k−n−3
2

]r1=x1+l j

r1=x1−l j

(B3)

∫ x1+l j

x1−l j

r k1
r6

dr1

∣∣∣∣∣
r2=x2

=
[
1

4
log(r21 + x22)

(
k − 3

2

k − 1

2
M2[k](−1)k−1/2xk−5

2

)

+ 1

4
arctan

(
r1
x2

)(
k − 3

2
(k − 1)(1 − M2[k])(−1)k/2xk−5

2

)

+ 1

4

1

r4
xk−2
2 (−M2[k](−1)k−1/2x2 + (1 − M2[k])(−1)k/2r1)

+ 1

4

1

r2
xk−4
2

(
M2[k](−1)k−1/2(k − 1)x2

− (1 − M2[k])(−1)k/2
2k − 3

2
r1

)

+ 1

8

k−4∑
n=1

M2[k − n]k − n − 1

n
(k − n − 3)

× (−1)(k−n−1)/2rn1 x
k−n−5
2

]r1=x1+l j

r1=x1−l j

(B4)
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APPENDIX C: TABLES

In this appendix, tables Lpp, App, Ppp, Lup, Aup, and Pup for shape functions (38) are collected,
denoting with: r1 as in Equations (44)–(45), d={d1, d2}, d1 = l−�1, � = √

d1 + r1 , and d2 =−�2
having defined �1 = �1(x) and �2 = �2(x) according to Figure 7. Define moreover functions a :
R2 → R and b : R2 → R as follows:

a(d) =
√|d| + d1√

2
, b(d)= −sgn(d2)

√|d| − d1√
2

(C1)

C.1. Strongly singular kernel Gup

Lup[1, 1] =
{
3d2
|d| a(d)+2b(d)

(
−1+2�+ d1

|d|
)

, −5d22

|d| b(d)−d2(−4d1+2|d|(−1+2�))

|d| a(d)

}

Lup[1, 2] =
{
2a(d)(1 − 2�) − b(d)

d2
|d| ,−

3d22

|d| a(d) − 2d2(d1 + |d|(−1 + 2�))

|d| b(d)

}

Lup[2, 1] =
{
2a(d)(−1 + 2�) − b(d)

d2
|d| , −

3d22

|d| a(d) − 2d2(d1 + |d|(1 − 2�))

|d| b(d)

}

Lup[2, 2] =
{
a(d)

d2
|d| + 2b(d)

(
−1 + 2� + d1

|d|
)

,
d22

|d| b(d) + a(d)d2(2 − 4�)

}

Aup[1, 1] =
{

−b(d)
6d2
|d| +4a(d)

(d1+(1−2�)|d|)
|d| , −10d22

|d| a(d)−2d2(4d1+2|d|(−1+2�))

|d| b(d)

}

Aup[1, 2] =
{
b(d)(4 − 8�) − 2a(d)

d2
|d| ,

6d22

|d| b(d) + 2d2(−2d1 + 2|d|(−1 + 2�))

|d| a(d)

}

Aup[2, 1] =
{
b(d)(−4 + 8�) − 2a(d)

d2
|d| ,

6d22

|d| b(d) − 4d2(d1 + |d|(−1 + 2�))

|d| a(d)

}

Aup[2, 2] =
{

−2b(d)
d2
|d| + 4a(d)

(d1 + (1 − 2�)|d|)
|d| ,

2d22

|d| a(d) + 2b(d)d2(2 − 4�)

}

Sup[1, 1] = {4r1d2,−4d2
3}

Sup[1, 2] = {−4 d22 ,−4r1 d
2
2 }

Sup[2, 1] = {−4 d22 ,−4r1 d
2
2 }

Sup[2, 2] = {−4r1d2, 4d2
3}
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Pup[1, 1] = {0, 4d2(−6 + 4�)}
Pup[1, 2] = {8(−1 + 2�), 4

3 (2(d1 + r1)(2� − 1))}

Pup[2, 1] = {8(1 − 2�), 4
3 (−2(d1 + r1)(2� − 1))}

Pup[2, 2] = {0, 4d2(−2 + 4�)}
C.2. Hypersingular kernel

Lpp[1, 1] =
{
−a(d)

|d|3 [−d1d2n1+2d1
2n2(−1+4�)+d2

2n2(−3+8�)]

− b(d)

d2|d|3 [−4 d1
2 (−d2n1 + |d|n2(1 − 2�)) + 4d1

3n2(−1 + 2�)

+ d1d2
2n2(−3 + 8�) + d2

2(3d2n1 + 4|d|n2(−1 + 2�))],
b(d)

|d|3 [−8d31n1 + 2d21d2n2(3 + 4�) − 9d1d
2
2n1 + n2(5 + 8�)d32 ]

+ a(d)

|d|3 [−8d31n2� − 16d21d2n1 − d1d
2
2n2(1 + 8�) − 15n1d

3
2 + 4n2(−1 + 2�)|d|3]

}

Lpp[1, 2] =
{
a(d)

|d|3 [2d12n1 + 3d2
2n1 − d1d2n2]

− b(d)

d2|d|3 [−4d1
3n1 − 3d1d2

2n1 − 4d1
2|d|n1 − d2

2(4|d|n1 − d2n2)],

b(d)

|d|3 d2[6d
2
1n1+d1d2n2+5n1d

2
2 ]+

a(d)

|d|3 [−d1d
2
2n1+4d21d2n2+3d32n2−4n1|d|3]

}

Lpp[2, 1] =Lpp[1, 2]

Lpp[2, 2] =
{
a(d)

|d|3 [−(d1d2n1) + d2
2n2(9 − 8�) + 2d1

2n2(5 − 4�)]

− b(d)

d2|d|3 [−(d2
2(−d2n1 + 4|d|n2(3 − 2�))) + 4d1

3n2(−3 + 2�)

+ 4d1
2|d|n2(−3 + 2�) + d1d2

2n2(−13 + 8�)],

− b(d)

|d|3 d2[2d
2
1n2(5 − 4�) − d1n1d2 + n2(9 − 8�)d22 ]

+ a(d)

|d|3 [8d31n2(1 − �) + 4d21n1d2 + d1n2(9 − 8�)d22 + 3n1d
3
2 − 4n2(3 − 2�)|d|3]

}
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Spp[1, 1] =
{
4(−(d1d2(−(d2n2) + n1r1)) + d22(−7d2n1 − 3n2r1) + d12(−6d2n1 − 2n2r1))

|d|2 ,

− 4d2
8d12(−d2n2 + n1r1) + 9d22(−d2n2 + n1r1) − d1d2(d2n1 + n2r1)

|d|2
}

Spp[1, 2] =
{

−4(2d12(−(d2n2) + n1r1) + 3d22(−(d2n2) + n1r1) − d1d2(d2n1 + n2r1))

|d|2 ,

− 4d2
−d1d2(−d2n2 + n1r1) + d22(−9d2n1 − 5n2r1) + d12(−8d2n1 − 4n2r1)

|d|2
}

Spp[2, 1] = Spp[1, 2]

Spp[2, 2] =
{

−4(−(d1d2(−(d2n2) + n1r1)) + d22(−3d2n1 + n2r1) + 2d12(−(d2n1) + n2r1))

|d|2 ,

4d2
4d12(−d2n2 + n1r1) + 5d22(−d2n2 + n1r1) − d1d2(d2n1 + n2r1)

|d|2
}

Hpp[1, 1] = {16d22(d2n1 + n2r1), 16d2
3(−d2n2 + n1r1)}

Hpp[1, 2] = {16d22(−d2n2 + n1r1), 16d2
3(−d2n1 − n2r1)}

Hpp[2, 1] =Hpp[1, 2]

Hpp[2, 2] = {−16d2
2(d2n1 + n2r1),−16d2

3(−d2n2 + n1r1)}

App[1, 1] =
{
2
b(d)

|d|3 [−(d1d2n1) + 2d1
2n2(−1 + 4�) + d2

2n2(−3 + 8�)]

+ 2
a(d)

d2|d|3 [d1d22n2(3 − 8�) + d1
3n2(4 − 8�)

+ 4d1
2(−(d2n1) + |d|n2(−1 + 2�)) + d2

2(−3d2n1 + 4|d|n2(−1 + 2�))],

− 2
a(d)

|d|3 [8d31n1 − 2d21d2n2(3 + 4�) + 9d1n1d
2
2 − n2(5 + 8�)d32 ]

− 2
b(d)

|d|3 [−8d31n2� − 16d21n1d2 − d1n2(1 + 8�)d22 − 15n1d
3
2 + 4n2(1 − 2�)|d|3]

}
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App[1, 2] =
{
−2

b(d)

|d|3 [2d12n1 + 3d2
2n1 − d1d2n2]

− a(d)

d2|d|3 [−8d1
3n1 − 6d1d2

2n1 + 8d1
2|d|n1 + 8d2

2|d|n1 + 2d2
3n2],

−2
a(d)

|d|3 d2[−6d21n1 − d1n2d2 − 5n1d
2
2 ]

+ 2
b(d)

|d|3 [−4d21n2d2 + d1n1d
2
2 − 3n2d

3
2 − 4n1|d|3]

}

App[2, 1] =App[1, 2]

App[2, 2] =
{
−2

b(d)

|d|3 [−(d1d2n1) + d2
2n2(9 − 8�) + 2d1

2n2(5 − 4�)]

+ 2
a(d)

d2|d|3 [d1d22n2(13 − 8�) + 4d1
3n2(3 − 2�)

+ 4d1
2|d|n2(−3 + 2�) + d2

2(−(d2n1) + 4|d|n2(−3 + 2�))],

− 2
a(d)

|d|3 d2[2d
2
1n2(5 − 4�) − d1n1d2 + n2(9 − 8�)d22 ]

+ 2
b(d)

|d|3 [8d31n2(−1 + �) − 4d21n1d2 + d1n2(−9 + 8�)d22

− 3n1d
3
2 − 4n2(3 − 2�)|d|3]

}

Ppp[1, 1] = {0, 16 n2}
Ppp[1, 2] = {0, 16 n1}
Ppp[2, 1] = Ppp[1, 2]
Ppp[2, 2] = {0, 16 n2}
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