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SUMMARY

The boundary integral representation of second-order derivatives of the primary function involves second-
order (hypersingular) and third-order (supersingular) derivatives of the Green’s function. By defining these
highly singular integrals as a difference of boundary limits, interior minus exterior, the limiting values
are shown to exist. With a Galerkin formulation, coincident and edge-adjacent supersingular integrals
are separately divergent, but the sum is finite, while the individual hypersingular integrals are finite.
Moreover, the cancellation of the supersingular divergent terms only requires a continuous interpolation of
the surface potential, and there is no continuity requirement on the surface flux. The algorithm is efficient,
the non-singular integrals vanish and the singular integrals are computed entirely analytically, and accurate
values are obtained for smooth surfaces. However, it is shown that a (continuous) linear interpolation is
not appropriate for evaluation at boundary corners. Published in 2006 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The result of a standard boundary integral equation analysis is that the primary function, e.g.
potential in a Laplace problem or displacement in elasticity, and the ‘normal derivative’, surface
flux or surface traction, respectively, are known everywhere on the boundary [1, 2]. In many cases
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SECOND-ORDER DERIVATIVES 1931

however, it is necessary to use this information to obtain, in a post-processing step, all first-order
derivatives on the boundary, e.g. the potential gradient or stress tensor. Adopting, for concreteness,
the language and notation of the two-dimensional Laplace equation ∇2�= 0 for the potential �,
the boundary integral expression for the gradient of � can be written as

∇P�(P) =
∫

�

(
��

�n
(Q)∇PG(P, Q) − �(Q)∇P

�G
�n

(P, Q)

)
d�Q (1)

This equation will be (modified and) defined more carefully in the next section, but for now
we simply note that the evaluation of the hypersingular integral involving two derivatives of the
Green’s function

G(P, Q) = − 1

2�
log(‖Q − P‖) = − 1

2�
log(r) (2)

has been somewhat problematic, especially for collocation approximations [3, 4]. As a consequence,
a variety of methods for gradient evaluation have been proposed, roughly characterized as: (a) direct
evaluation of Equation (1) [5–7]; (b) reformulation of Equation (1) to remove the hypersingularity
[8, 9]; and (c) methods not based on an integral representation [10, 11]. Please see References
[12, 13] for a more complete discussion and additional references to the extensive literature.

The impetus for the work herein is the successful analysis of Equation (1) based upon defining the
integrals as the difference of interior and exterior boundary limits [5, 14] (again, to be defined more
precisely below). An important observation emerging from this work is that, in this interior/exterior
boundary limit scheme, the gradient hypersingular integral in Equation (1) does not exhibit what
might be called typical hypersingular behaviour. In a Galerkin implementation of the ‘standard’
hypersingular integral, namely the normal derivative hypersingular equation with the limit taken
from either the exterior or interior, both coincident and adjacent singular integrals are separately
divergent. However, assuming the potential is continuous (C0) on the boundary, the complete
integral is finite, the divergent terms from the individual element integrals cancel [15, 16] (for
collocation, C1 is required for the existence of the integral [3]). It is this divergent term behaviour
that is not seen in the gradient analysis, all element integrals are finite: potentially divergent terms
are the same on either side of the boundary and simply cancel in the difference of the limits.
Said another way, contrary to the experience with the normal derivative hypersingular integral,
the gradient hypersingular integral exists without any inter-element continuity requirement on the
potential �.

The ‘interior/exterior limit’ gradient algorithm therefore effectively reduces the severity of the
kernel singularities by one order, and the continuity requirements are weakened. Based upon this,
there is good reason to expect that, with a simple C0 interpolation, limit-differenced Galerkin
integrals of third-order derivatives of G(P, Q) could be finite. The main result of this paper is that
this is indeed the case, and that as a consequence, second-order derivatives of � can be computed.
For a smooth surface, aC0 interpolation will suffice for the evaluation of these derivatives. However,
a low-order interpolation will not produce accurate second derivatives at a boundary corner, despite
the fact that the boundary integrals are finite.

Adopting the terminology of Reference [17], the third-order derivative of the Green’s function
will be called supersingular. It is expected that the divergent term behaviour of Galerkin super-
singular integrals will be similar to the (manageable) normal derivative hypersingular: the separate
coincident and adjacent element integrals are divergent, but the sum of all integrals is finite. This
will be established, for simplicity and convenience, taking the two-dimensional Laplace equation
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1932 M. N. J. MOORE, L. J. GRAY AND T. KAPLAN

and a linear interpolation as the setting. The limit techniques apply directly to other Green’s
functions and, based upon the previous gradient analysis in three dimensions, will likely extend
more or less directly for the higher dimension as well.

Boundary integral equations having kernel functions beyond hypersingular have not been
extensively studied, References [17–20] may in fact be the entire literature on the subject. The
most advanced work is the recent paper by Frangi and Guiggiani [19], which provides a detailed
analysis in the context of Kirchoff plate theory, and confirming numerical evaluations. The work
in Reference [19], as herein, is based upon a direct analysis of the singular integrals, i.e. ex-
plicit calculation of the divergent terms and demonstration of cancellation. However, the limit
process employed therein is reminiscent of (but not the same as) a ‘Cauchy Principal Value’
exclusion zone approach [21, 22], and is therefore significantly different from the boundary lim-
its employed in this paper. Moreover, Reference [19] uses collocation, and thus the continuity
requirement in their analysis for the existence of the supersingular integral is C2. The other
significant difference is computational effort: a complete boundary integration is necessarily em-
ployed, whereas only singular integrals need to be considered for the interior/exterior boundary
limit method.

In addition to the gradient methods mentioned above, it should be noted that a method for
computing all higher order derivatives, without hypersingular or supersingular integrands, was
presented by Schwab andWendland [23]. In this bootstrapping procedure, (n+1)th order derivatives
are computed from nth order by solving a succession of boundary integral problems, all with the
same coefficient matrix (stemming from standard boundary integral kernels); however, new right-
hand side vectors must be computed at each stage, once again necessitating a complete boundary
integration.

Second-order derivatives are known to be useful for plate analyses [19], and for the evaluation
of � at interior points close to the boundary [23]. It is hoped that the ability to accurately compute
these derivatives, without the expense of a complete boundary integration, will lead to their use
in other contexts. One immediate application is the development of a complete cubic Hermite
interpolation. As first proposed by Watson [24], the Hermite element directly incorporates gradient
information into the interpolation of the primary function (e.g. potential �) [25]. However, to
extend this interpolation to the boundary flux, second-order derivatives are obviously necessary.
Moreover, it is hoped that applications that require a non-linear iteration, such as contact problems
[26] or shape optimization [27], can effectively exploit the availability of this higher order derivative
information.

2. BOUNDARY INTEGRAL REPRESENTATIONS

The boundary integral equation for surface potential can be written as either an interior or exterior
boundary limit:

�(P)+ lim
�→ 0−

∫
�

[
�(Q)

�G
�n

(P�, Q) − G(P�, Q)
��

�n
(Q)

]
dQ = 0

lim
�→ 0+

∫
�

[
�(Q)

�G
�n

(P�, Q) − G(P�, Q)
��

�n
(Q)

]
dQ = 0 (3)
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SECOND-ORDER DERIVATIVES 1933

Figure 1. Illustration of the limit procedure at the boundary point P , the difference of
the interior PI and exterior PE limits will be computed.

where G(P, Q) is defined in Equation (2), P is a boundary point and P� = P + �N, N=N(P) the
unit outward normal at P = (xp, yp). Thus, �>0 is an exterior limit and �<0 is interior. With P�
off the boundary, the kernel functions in Equation (3) are not singular and these two equations can
be differentiated by moving the derivative under the integral sign. Taking the difference, interior
minus exterior, Equation (1) can be replaced by [5]

∇P�(P) = lim
�→ 0−

∫
�

(
��

�n
(Q)∇PG(P�, Q) − �(Q)∇P

�G
�n

(P�, Q)

)
d�Q

− lim
�→ 0+

∫
�

(
��

�n
(Q)∇PG(P�, Q) − �(Q)∇P

�G
�n

(P�, Q)

)
d�Q (4)

This process is illustrated in Figure 1, PE and PI , respectively, denoting exterior and interior limit
points approaching the boundary point P . The immediate advantage of this procedure is that as
all non-singular integrals are independent of �, they vanish. Carrying this process one step further,
a general second-order derivative can be written (if the limits exist) as, simplifying the notation,

�2

�X�Y
�(P) =

{
lim

�→ 0− − lim
�→ 0+

}

×
∫

�

(
��

�n
(Q)

�2G
�X�Y

(P�, Q) − �(Q)
�3G

�X�Y�n
(P�, Q)

)
d�Q (5)

where X and Y denote either xp or yp. Formulas for the derivatives of G are easily obtained from
Equation (2), and are relegated to Appendix A.

In the gradient evaluation in References [5, 14] for three and two dimensions, respectively, the
details of the limit analysis for the hypersingular kernel have been presented. Thus the next section
will only consider the supersingular third-order derivative of G. First, however, we set notation by
briefly reviewing the linear element Galerkin approximation.

2.1. Galerkin approximation

The simplest possible continuous interpolation in two dimensions is linear. A boundary element is
defined by two nodes Q j = (x j , y j ), j = 1, 2, and the linear interpolation of the boundary is then

Q(t) = (x(t), y(t))=
2∑
j=1

(x j , y j )� j (t) (6)
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with shape functions � j (t), t ∈ [0, 1],
�1(t) = 1 − t

�2(t) = t (7)

The corresponding interpolation of the surface potential is

�(Q(t))=
2∑
j=1

�(Q j )� j (t) (8)

and similarly for the flux.
In addition to defining the boundary and function interpolations, the shape functions are also

employed as the weight functions in the Galerkin formulation. Dropping the dependence on � and
the boundary limits (henceforth understood), the Galerkin form of Equation (5) is

∫
�

�k(P)
�2

�X�Y
�(P) d�P

=
∫

�
�k(P)

∫
�

(
��

�n
(Q)

�2G
�X�Y

(P, Q) − �(Q)
�3G

�X�Y�n
(P, Q)

)
d�Q d�P (9)

where the weight function �k(P) is comprised of the two shape functions that are non-zero at a
particular node Pk . As in References [16, 28], this equation results in a system of linear equations
for the derivative values everywhere on the boundary. The coefficient matrix, originating from the
integral on the left is quite simple: the matrix elements are comprised of integrals of pairs of shape
functions, resulting in a sparse, symmetric positive definite system. This matrix is the same as
that for the gradient calculation, and thus also the same for all three second-order derivatives. As
only the right-hand side changes, only one LU factorization is required. For large-scale problems
however, an iterative solver exploiting the sparsity and positive definiteness would likely be more
effective.

Note that even at a boundary corner, the Galerkin weight function is comprised of two shape
functions, i.e. the weight function spans both sides of the corner. Unlike the flux, the derivatives
are (assumed to be) continuous functions on the domain, and thus for derivative evaluation, the
Galerkin corner treatment discussed in Reference [29] is not required.

Nevertheless, boundary corners are generally more difficult than smooth surface points, and
not surprisingly this is also the case for second derivative evaluation. Note that if continuity were
required for evaluating the hypersingular integral in the above equation, then calculating second-
order derivatives at boundary corners would be impossible: the flux is inherently discontinuous
at a boundary corner due to the change in normal vector. As noted above, within a Galerkin
approximation, this flux integral exists without any inter-element continuity constraint and is
therefore not a problem. On the other hand, the supersingular integral will prove to be difficult at
a corner. Even though the boundary limit will exist, it will be demonstrated below that a linear
interpolation cannot produce an accurate corner solution.

In the discretization of Equation (9), the boundary integrations are carried out as a sum over
elements, and thus an integration is required for every pair of elements {EP , EQ}. However, if

Published in 2006 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:1930–1947
DOI: 10.1002/nme
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the difference of the limits is taken, only singular terms can contribute to the integral, reducing
considerably the computational work. It is therefore only necessary to integrate over coincident
(EP = EQ) or adjacent pairs (EP and EQ share a node). The next section considers these two
cases separately.

3. LIMIT ANALYSIS

As discussed above, it is expected that the limit-difference behaviour of the supersingular inte-
gral is analogous to a (one-sided limit) hypersingular integral. Thus, the coincident and adjacent
singular integrals will be found to be separately divergent, but the complete integral will be fi-
nite. The primary difference is that the divergent term for the one-sided hypersingular integral
is of the form log(�2), whereas here, not surprisingly, it will turn out to be one step further
down, �−1.

For purposes of discussion, it suffices to examine the second derivative with respect to xP , as
the two remaining cases are handled identically. The coincident integral, although more singular,
is actually the easier of the two and is examined first.

3.1. Coincident integration

Replacing the potential by its approximation in terms of shape functions, the coincident,
EP=EQ=E , integrals to be evaluated are then

�(Q j )

∫
E

�k(P)

∫
E

� j (Q)
�3G(P, Q)

�x2p�n
dQ dP (10)

The kernel function is

�3G(P, Q)

�x2p�n
= − 1

2�

(
−6nx R1 − 2ny R2

r4
+ 8R2

1(n · R)

r6

)
(11)

where R= Q − P , r =‖R‖, n(Q)= (nx , ny) the unit outward normal at Q. The parameter for the
Q integration will be denoted by s ∈ [0, 1], and t the corresponding parameter for P . The element
E = [P1, P2] is defined by the two nodes P1 = (x1, y1) and P2 = (x2, y2), with s = 0 corresponding
to P1.

As the singularity is at s = t , the first step in the Q integration is a change of variables,
u = s − t , the singularity now located at u = 0. The distance function is then a simple quadratic
polynomial

1

r2
= 1

�2 + a2u2
(12)

where a2 = a2x +a2y , ax = x2−x1, ay = y2−y1. Thus, there is no problem in the analytic integration,
with respect to {u, t}, of these simple rational functions. (The tedious integration and limit analysis
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1936 M. N. J. MOORE, L. J. GRAY AND T. KAPLAN

Figure 2. For the outer P integration over an element E1 there are three singular integrals,
the coincident and two adjacent. The divergences in the integrals are associated with

the endpoints and will cancel.

can be easily automated using a symbolic computation program.) The results are perhaps a bit
surprising, there is no finite contribution from this coincident integral Equation (10), only the
divergent terms remain,

SXX
11 = −�(P1)

1

�

a2y − a2x
�a2

SXX
22 = −�(P2)

1

�

a2y − a2x
�a2

(13)

The subscripts here refer to the indices k, j associated with the P and Q shape functions,
and all other terms not shown are zero. The superscript XX indicates that these are the re-
sults for the second derivative with respect to X . The corresponding formulas for the other two
derivatives are:

SXY
11 = 2�(P1)

1

�

ayax
�a2

SXY
22 = 2�(P2)

1

�

ayax
�a2

SYY
11 = �(P1)

1

�

a2y − a2x
�a2

SYY
22 = �(P2)

1

�

a2y − a2x
�a2

(14)

Thus, as expected, there is a divergent term associated with each endpoint of the element, and
these will cancel with the corresponding adjacent integrations on either side. This is illustrated
schematically in Figure 2: the Galerkin coincident integral over the element E1 produces divergent
terms (associated with its endpoints) that will be shown to cancel with the adjacent-singular
integrals over the pairs [E1, E0] and [E1, E2].

For the flux integral in Equation (9), a complete analytic integration is easily carried out,
resulting in no divergent terms (analogous to the hypersingular integral in gradient evaluation),
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and finite quantities

IXX
12 = −axay

a2
, IXX

21 = axay
a2

IXY
12 = a2x − a2y

2a2
, IXY

21 = a2y − a2x
2a2

IYY
12 = axay

a2
, IYY

21 = − axay
a2

(15)

all diagonal contributions k = j being zero.

3.2. Adjacent integration

As just noted, there are two cases to consider, one in which the Q element EQ precedes EP , as
defined by the boundary orientation, and EQ following EP . There is however little difference in
the way the calculations are handled, and thus it suffices to consider the inner Q integration to be
over the preceding element EQ = [P0, P1], P0 = (x0, y0), EP = [P1, P2] as above. At the shared
node P1 we expect to find a divergent term multiplying �(P1) that cancels with Equation (13); of
course this cancellation would not occur if the interpolation of � were not continuous at P1. The
same analysis will apply when EP precedes EQ , the divergence now multiplied by �(P2).

The integral to be evaluated is

�(Q j )

∫
EP

�k(P)

∫
EQ

� j (Q)
�3G(P�, Q)

�x2p�n
dQ dP (16)

and again the difference of interior and exterior boundary limits is understood. The divergent term
will come from k = 1 and j = 2, the shape functions that are non-zero at P1; all other combinations
of shape functions introduce an additional zero in the integrand at the singular point P1, and this
is sufficient for the integrals to have finite limits.

As in the previous section, Q is parameterized by s ∈ [0, 1] and P by t ∈ [0, 1]. The singularity
is therefore located at (s, t) = (1, 0), and a change of variables w = 1 − s is employed to move
the singularity to (w, t) = (0, 0), and the (w, t) domain remaining the unit square. As in
Reference [15], it is now convenient to introduce polar co-ordinates

w = � cos(�)

t = � sin(�)
(17)

so that the integral in Equation (16), omitting for now the �(Q j ) factor, can be expressed as∫ 1

0
jp�k(t)

∫ 1

0
jq� j (s)

�3G
�x2p�n

(t, s, �) ds dt =
∫ �/4

0

∫ sec(�)

0
Fk j (�, �, �)� d� d�

+
∫ �/2

�/4

∫ csc(�)

0
Fk j (�, �, �)� d� d� (18)

Here jp and jq are the (constant) jacobians for the two elements, the distance function is now

r2 = �2 + 2b�� + c2�2 (19)
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and

c2 = c2x + c2y

cx = (x0 − x1) cos(�) + (x1 − x2) sin(�)

cy = (y0 − y1) cos(�) + (y1 − y2) sin(�)

b = cx Nx + cyNy

(20)

In the last equation, N= (Nx , Ny) is the (constant) unit normal on EP .
The integration with respect to � produces functions Fk j (�) that are finite and non-singular

at �= 0, plus a divergent term for k = 1, j = 2 of the form Fs
12(�)/�. These functions of � are

rather lengthy expressions which need not be given here. It is of course necessary to show that
the divergent term cancels with that found in Equation (13), but first we complete the discussion
of the finite terms from the adjacent integral by showing that they can be integrated analytically
with respect to �.

The functionsFk j (�) are not singular, and could be integrated numerically. Although the analytic
integration is sought primarily to reduce computation time, it will also replace fairly complicated
expressions with simple ones and possibly improve accuracy. Moreover, for the corner discussion
in Section 4, it will be useful to eliminate this numerical quadrature as a possible source of error.
As the contributions from the upper limits on the � integration in Equation (18) disappear in the
limit �→ 0, the � integral is of the form

∫ �/2

0
Fk j (�) d� =�(Q j )

∫ �/2

0

pk j (cos(�), sin(�))

c6(c2 − b2)3/2
d� (21)

where pk j is a polynomial and c and b are given in Equation (20). The analytic evaluation of this
integral may be technically possible: a substitution of q = tan(�) results in an integral over [0, ∞]
of a function that is rational, except for the 3

2 power in the denominator. Nevertheless, even if
feasible, this approach would lead to a lengthy expression, and thus it is better to first simplify the
integrand.

The first step is to note that a translation of the co-ordinate system, namely moving P1 to the
origin, does not affect the value of the derivatives. Thus, it can be assumed that x1 = y1 = 0, the
remaining co-ordinates being shifted appropriately. Next, the co-ordinate system is rotated so that
EP becomes aligned with the positive x-axis, i.e. y2 = 0, x2>0, Nx = 0, Ny = − 1. With (x2, y2)
being the shifted co-ordinates of P2, the rotation angle � can be defined via

cos(�) = x2
x22 + y22

sin(�) = y2
x22 + y22

(22)

as only these quantities are required in the calculation. Unlike the translation, the rotation obviously
does have an effect, the second-order derivatives being computed are now with respect to this new
co-ordinate system. However, this is easy to account for through simple change of variables
formulas for the derivatives.
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In this new co-ordinate system Equation (21) simplifies significantly, in that the term to the 3
2

power in the denominator goes away. For example, with the change of variables q = tan(�), the
integrand for the most singular term, k = 1, j = 2, becomes

− x2(q + 1)(x2q − x0)5(x0q3x32 − 3x2q(y20 + x20)(x2q − x0) + y40 − x40)

(x20 + y20 − 2x0x2q + x22q
2)3((qx2 − x0)2)5/2

(23)

If x0<0, as would be the case for a smooth surface, then this simplifies further to

− x2(q + 1)(x0q3x32 − 3x2q(y20 + x20)(x2q − x0) + y40 − x40)

(x20 + y20 − 2x0x2q + x22q
2)3

(24)

and integrating q produces the simple result

�(Q2)

∫ �/2

0
F�

12(�) d� = (x20 − x0 x2 + y20)

2x2(x20 + y20)
�(Q2) (25)

If P1 is a boundary corner with interior angle less than �/2, or a re-entrant corner with angle
greater than 3�/2, then x0 will be positive. Thus (x2q − x0) will be negative for 0<q�x0/x2, and
this produces a change of sign in the integrand over this interval. The modifications required in
this case are obvious.

For the reverse pair [P, Q], EP =[P0, P1], EQ = [P1, P2], the co-ordinate transformation will
once again place the origin at the common point P1. In this case however, it is convenient to rotate
EP to the negative x-axis (x0<0), the rotation angle defined by

cos(�) = − x0
x20 + y20

sin(�) = − y0
x20 + y20

(26)

these being the co-ordinates of P0 after the translation of P1 to the origin. All calculations can
then proceed as for [Q, P].

3.3. Cancellation

As in Reference [16], the cancellation of the �−1 divergent terms follows from a direct calculation
of

1

�

∫ �/2

0
Fs

12(�) d� (27)

and comparison with Equation (13). The general expression for this integral for arbitrary {P0,
P1, P2} is, as with the finite term, quite lengthy. However, the change of co-ordinate system
employed above can be invoked once again, and the integral is then manageable. In this case
however, there is no need to transform the results back to the original co-ordinate system, it is
sufficient to show that integrals are finite in the transformed system. The details are straightforward,
and consequently omitted.
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To conclude this section, we note that the above co-ordinate transformation, vital for the analytic
integration and the proof of cancellation, is applicable in three dimensions, and likely to be equally
useful. The corresponding situation in three dimensions is the edge-adjacent case, wherein EP
and EQ share a common edge. Analogous to the above, it is possible to transform (the linear) EP
to the {x, y} plane, with the common edge forming part of the positive x-axis. It is anticipated
that this will sufficiently simplify the three-dimensional expressions that the necessary analytic
integrations can be carried out.

4. TEST CALCULATIONS

The numerical results in this section will confirm that second-order derivatives can be accurately
computed with a C0 interpolation, but only for a smooth surface. The test calculations will also
demonstrate that the failure at a boundary corner is due to the linear interpolation of the potential
in the supersingular integral.

In the following examples, the boundary value problems are first solved using the (exterior
limit) boundary integral equation for surface potential,

0=
∫

�

(
��

�n
(Q)G(P, Q) − �(Q)

�G
�n

(P, Q)

)
d�Q (28)

The solution of this equation, accomplished using a Galerkin approximation and a linear interpo-
lation, completes the knowledge of the boundary potential and flux. These functions are then input
into the algorithm described above for evaluating the second derivatives.

4.1. Smooth surface

The first tests are Dirichlet problems on the unit disk, the boundary discretized with M uniform
elements, M taking on various values. Three different boundary conditions were tested, �= x2−y2,
for which the unknown flux is exactly approximated by the linear interpolation, and �= x3−3xy2

and �= x4 − 6x2y2 + y4, for which the flux and second derivatives vary more strongly with the
co-ordinates. In these latter two cases therefore, the input into second derivative algorithm will be
less accurate. The pointwise L2 errors[

1

N

N∑
j=1

( fc(n j ) − fx (n j ))
2

]1/2
(29)

fc and fx the computed and exact values at the nodes n j , are listed in Tables I–III, respectively.
For comparison purposes, theL2 errors in the initial boundary integral solution for the surface flux
are also given. Due to the symmetry, and from the Laplace equation �yy = −�xx (the subscripts
denoting partial derivative), the errors for the derivative �yy have to be identical to �xx , so these
numbers are omitted. In all cases, the convergence of the derivative values is roughly quadratic
in M (equivalently, the mesh size), with, as expected, the results being successively less accurate
as the order of the polynomial boundary data increases. The quadratic convergence is indicated in
Table I by also listing the value of

� = log(ek/ek+1)

log(Nk/Nk+1)
(30)
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Table I. L2 errors in the computed second derivatives for the
Dirichlet problem � = x2 − y2 on the unit circle.

Elements ��/�n �xx �xy �

50 8.735E-04 2.945E-02 2.897E-02 —
100 2.257E-04 7.172E-03 7.049E-03 1.95
150 1.014E-04 3.171E-03 3.117E-03 1.97
200 5.730E-05 1.781E-03 1.750E-03 1.98
250 3.678E-05 1.139E-03 1.119E-03 1.99
500 9.259E-06 2.958E-04 2.850E-04 1.99

Table II. L2 errors in the computed second derivatives for the
Dirichlet problem � = x3 − 3xy2 on the unit circle.

Elements ��/�n �xx �xy

50 1.157E-03 1.099E-01 1.099E-01
100 3.190E-04 2.645E-02 2.645E-02
150 1.462E-04 1.167E-02 1.167E-02
200 8.346E-05 6.546E-03 6.546E-03
250 5.389E-05 4.184E-03 4.184E-03
500 1.372E-05 1.050E-03 1.053E-03

Table III. L2 errors in the computed second derivatives for
the Dirichlet problem � = x4 − 6x2y2 + y4 on the unit circle.

Elements ��/�n �xx �xy

50 1.289E-03 2.919E-01 2.919E-01
100 3.895E-04 6.933E-02 6.933E-02
150 1.838E-04 3.051E-02 3.051E-02
200 1.065E-04 1.710E-02 1.710E-02
250 6.938E-05 1.092E-02 1.092E-02
500 1.798E-05 2.727E-03 2.707E-03

where Nk and ek are, respectively, the number of elements and the errors. For quadratic convergence
this number should be approximately equal to 2.

The second point to note is that while accurate second derivatives are obtained, and the con-
vergence is quadratic, these values are markedly less accurate than the initial flux solution, or the
post-processed gradient. As the flux is a first derivative, it is not surprising that the gradient can
be calculated without loss of accuracy, and it is also to be expected that there would be a loss of
accuracy in going to second derivatives.

It is worthwhile checking that accurate solutions do not depend upon the uniform grids employed
in the above tests. Table IV therefore presents the errors for the quartic boundary conditions applied
on the boundary of the ellipse x2 + 4y2 = 1. In this case the nodal points on the boundary were
defined by equal increments in the central angle, thereby creating a coarser mesh near x = ± 1.
The results are roughly comparable to the corresponding values for the disk, Table III. Figure 3
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Table IV. L2 errors in the computed second derivatives for
the Dirichlet problem � = x4 − 6x2y2 + y4 on the ellipse

x2 + 4y2 = 1. The mesh is non-uniform.

Elements ��/�n �xx �xy

60 6.296E-03 2.650E-01 2.705E-01
100 2.279E-03 8.869E-02 9.017E-02
150 1.016E-03 3.854E-02 3.914E-02
200 5.721E-04 2.151E-02 2.183E-02
300 2.546E-04 9.505E-03 9.642E-03
600 6.377E-05 2.413E-03 2.411E-03

0 1.57 3.14
Angle

-0.005

0

0.005

E
rr

or

XX
XY
YY

Figure 3. Nodal errors for the three second derivatives on the ellipse, � = x4−6x2y2+y4.

plots the pointwise error as a function of angle around the top half of the ellipse, discretized with
600 nodes, the end points being the areas of poorest approximation.

In the above tests, the coefficient function of the more difficult kernel, the supersingular, was
known exactly from the boundary conditions. It is therefore necessary to examine the errors when
the potential function input to the derivative calculation is obtained from the boundary integral
solution, and therefore contains errors. Thus, as a final example, error results are presented in
Table V for a Neumann problem on an infinite domain, the exterior of ellipse employed above.
Again for comparison, the L2 errors for the computed potential are also given. The Neumann data

��

�n
= nx

y2 − x2

(x2 + y2)2
− ny

2xy

(x2 + y2)2
(31)

is the flux obtained from the potential function �= x/(x2 + y2), which is the derivative of the
Green’s function with respect to xQ , and the source point located at the origin. The exact derivative
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Table V. L2 errors in the computed second derivatives for the
exterior Neumann problem on the ellipse x2 + 4y2 = 1.

Elements � �xx �xy

60 1.189E-03 1.848E-01 8.019E-02
100 4.271E-04 6.670E-02 2.982E-02
150 1.896E-04 2.964E-02 1.337E-02
200 1.065E-04 1.667E-02 7.539E-03
300 4.731E-05 7.409E-03 3.358E-03
600 1.182E-05 1.859E-03 8.720E-04

solution is

�2

�2x
� = 2x3 − 6xy2

(x2 + y2)3

�2

�x�y
� = 6x2y − 2y3

(x2 + y2)3

(32)

and �yy =−�xx . Despite the errors in the potential, the accuracy is consistent with previous
Dirichlet calculations, and the convergence is again roughly quadratic.

4.2. Corners

The results in the previous section indicate that the limit analysis is correct, and that a C0 linear
interpolation provides accurate second-order derivatives, at least on a smooth surface. The same
algorithm, however, applied to the unit square (lower left corner at the origin), produced highly
unsatisfactory results near the boundary corners. (Away from the corners the derivatives are quite
accurate, the error being less than 1.0E − 5 or 1.0E − 11 depending upon the side of the square).
For this geometry, two different boundary conditions at the corners were examined, the first having
mixed boundary data, �= x2 − y2 on the horizontal sides of the square, and the corresponding
fluxes 0 and 2 on x = 0 and 1. In the second, Dirichlet data with this quadratic function was
employed. In each case, two different uniform meshes were employed, one with a element length
of h = 0.0204, and the second h = 0.0101. Tables VI and VII list the errors near the corner
(0, 0), the results at the other three corners were similar. The errors for the Dirichlet problem were
identical on either side of the corner, and thus only one side is given.

Although the second derivative errors are sensitive to the errors in the boundary integral solution
at the corner (as can be seen by comparing the two tables), the failure is not due to this initial
solution: even when the input to the second derivative calculation was the exact solution (instead
of the boundary integral solution), the large errors remained. Note that for these two problems,
no error is introduced by the linear interpolation of the geometry or surface flux, and all integrals
are computed analytically. Moreover, the coefficient matrix for solving for the derivatives is well
conditioned, and thus any error introduced by the linear algebra is insignificant. Thus, eliminating
the error from the boundary integral solution leaves solely the linear interpolation of the quadratic
potential as the source of error. Note too that the error remains consistent (as a function of mesh
size) as the mesh is refined, indicating that this is in fact the answer that the linear interpolation
of the potential can provide.
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Table VI. Errors in the second derivatives near the corner (0, 0) for the mixed
problem with exact solution �= x2 − y2 on the unit square.

h = 0.0204 h = 0.0101

Node �xx �xy �xx �xy

(0, 4h) 0.096 0.002 0.096 0.002
(0, 3h) −0.278 −0.008 −0.278 −0.008
(0, 2h) 0.760 0.029 0.760 0.029
(0, h) −1.746 −0.109 −1.746 −0.109
(0, 0) 2.587 0.407 2.587 0.407
(h, 0) −0.693 −0.254 −0.693 −0.254
(2h, 0) 0.186 0.098 0.186 0.098
(3h, 0) −0.050 −0.029 −0.050 −0.029
(4h, 0) 0.013 0.012 0.013 0.012

Table VII. Errors in the second derivatives near the corner (0, 0) for the
Dirichlet problem � = x2 − y2 on the unit square.

h = 0.0204 h = 0.0101

Node �xx �xy �xx �xy

(0, 0) 4.056 −0.000 4.056 0.000
(0, h) −1.087 −0.963 −1.087 −0.963
(0, 2h) 0.291 0.276 0.291 0.276
(0, 3h) −0.078 −0.146 −0.078 −0.146
(0, 4h) 0.021 0.033 0.021 0.033
(0, 5h) −0.006 −0.025 −0.006 −0.025

Additional numerical evidence that the problem is in the linear interpolation can be obtained
by once again solving a problem on the unit square, only this time with the boundary conditions
� = x + y or �= xy. In both cases, the linear interpolation of potential on the sides of the square
is exact, and the corner second derivatives (namely zero) were indeed quite accurate. Further
confirmation is seen by solving the second problem �= xy on the right triangle having vertices
(0, 0), (1, 0) and (0, 1). The potential function on the hypotenuse is now no longer linear, and the
derivative values at (1, 0) and (0, 1) were once again highly inaccurate.

This is a somewhat unusual state of affairs, in that the second derivative integral equation is
mathematically well defined, and yet refining the grid will not improve the corner solution. The
errors are clearly confined to the same number of nodes near the corner, independent of the mesh
size h, and thus to a smaller area. This however is of little consolation if one needs accurate corner
derivative values.

Nevertheless, this result is not too surprising: there is a limited amount of information that can be
gleaned from the coincident and adjacent singular integrals, and thus the ability to calculate higher
order derivatives must stop somewhere. For a C0 interpolation, this stopping point is evidently
corner values of second-order derivatives.

Note that the corresponding linear element gradient analysis does not have difficulties at boundary
corners [14]. The potential in this case multiplies the hypersingular kernel, and the contributions

Published in 2006 by John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:1930–1947
DOI: 10.1002/nme



SECOND-ORDER DERIVATIVES 1945

to the gradient from this integral must therefore only depend upon the values for the potential. It is
apparent however that the supersingular kernel is dependent upon the derivative of the potential at
the singular point. A hand waving argument to this effect is that if one were to integrate by parts
[30–32], the supersingular integral would become hypersingular, multiplied by the derivative of �.
Thus, while employing a higher order continuous interpolation (e.g. quadratic) may aid the corner
solution, it seems more reasonable that computing accurate second-order derivatives at non-smooth
boundary points will require a C1 interpolation.

5. CONCLUSIONS

Despite the presence of ‘supersingular’ kernel functions, third-order derivatives of the Green’s
function, second-order derivatives of the boundary potential can be computed directly from the
boundary integral representation. This direct limit method should extend directly to other two-
dimensional formulations, e.g. elasticity. Regarding extensions to three dimensions, it is expected
that the limit analysis will follow along similar lines: the coincident and adjacent edge integrals
will be divergent, of the form �−1, while the complete integral will be finite. However, what
remains to be investigated is how much of the four dimensional parameter space integral can be
evaluated analytically. In addition, the supersingular integral may now be sufficiently singular that
the adjacent vertex singular integrals, which vanish for gradient evaluation, need to be considered.

A key aspect of the limit analysis is that the existence of the integrals (through cancellation of the
divergent terms) requires only a C0 interpolation of the potential, as compared to C2 in previous
work [19]. Nevertheless, accurate corner values cannot be obtained with a linear interpolation,
and a C1 interpolation is likely necessary for a valid corner evaluation. It is also likely that a C1

interpolation will also improve the accuracy at smooth boundary points, putting it on par with that
of the initial boundary integral solution.

With the limit differenced gradient algorithm, aC1 interpolation in two dimensions is not difficult
to arrange, a cubic Hermite approximation can be easily constructed [14, 25]. The evaluation of
second-order derivatives using this approximation is currently being pursued, as is the extension to
three dimensions. Note that this process, namely incorporating computed gradient values into the
approximation so as to permit the evaluation of second-order derivatives, is in a way reminiscent
of the bootstrapping procedure in Reference [23].

It is hoped that the ability to calculate higher order derivatives, relatively simply and accurately,
will prove useful for applications such as shape optimization, contact analysis, and moving boundary
problems.

APPENDIX A

�2G
�X�X

= − 1

2�

[
1

r2
− 2

(qX − pX)2

r4

]
(A1)

�2G
�X�Y

= − 1

2�

[
−2

(qX − pX)(qY − pY)

r4

]
(A2)
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�3G
�X�X�n

= − 1

2�

[
−6

nX(qX − pX)

r4
− 2

nX(qY − pY)

r4
+ 8

n · R(qX − pX)2

r6

]
(A3)

�3G
�X�Y�n

= − 1

2�

[
−2

n · R
r4

+ 8
n · R(qX − pX)(qY − pY)

r6

]
(A4)
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