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Abstract

The effects of elastic constants mismatch on the interaction between a propagating crack and single or multiple
inclusions in brittle matrix materials are investigated using numerical simulations. The simulations employ a quasi-static
crack-growth prediction tool based upon the symmetric-Galerkin boundary element method (SGBEM) for multiregions, a
modified quarter-point crack-tip element, the displacement correlation technique for evaluating stress intensity factors
(SIFs), and the maximum principal stress criterion for crack-growth direction. It is shown that, even with this simple
method for calculating SIF, the crack-growth prediction tool is both highly accurate and computationally effective. This
is evidenced by results for the case of a single inclusion in an infinite plate, where the SGBEM results for the SIFs show
excellent agreement with known analytical solutions. The simulation results for crack growth and stress intensity behaviors
in particulate media are very stable. The crack-tip shielding and amplification behaviors, as seen in similar studies using
other numerical approaches, can be clearly observed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding the fracture properties of materials is vitally important to developing high performance
composites for technological applications. While there has been a great deal of analytical and experimental
exploration done in the area of crack–particle interactions, a literature review shows there are still relatively
limited numerical studies available.

Analytical approaches have been developed for problems concerning cracks inside, outside, penetrating or
lying along the interface of various types of inclusions (e.g., [1–3]). Numerical techniques, including finite
0013-7944/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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element methods (e.g., [4–8]) and boundary element methods (BEM) (e.g., [9–11]), have also been employed to
investigate this type of fracture behavior under static loading conditions. Recently, the dynamic response of
the interaction between a crack and an inclusion using the time-domain BEM has been studied by Lei et al.
[12]. Bush [9] used a dual BEM (DBEM) to investigate the effects of particle size and orientation/location on
crack path behavior and energetics. Both a single and an aggregate of particles were considered. A cursory
analysis on the effects of a Young’s modulus mismatch for a single particle was made. The accuracy of the
numerical method used was validated by comparing simulation results for a tensile specimen without rein-
forcement to available analytical data for the same problem. Knight et al. [10] used DBEM to study the effects
of a material property mismatch in a material with a single particle. The analysis focused on the effects of Pois-
son’s ratio on energetics with only a brief consideration of Young’s modulus effects. The validation was made
by comparing simulation results for a non-reinforced tensile specimen to those of [9]. DBEM was also
employed in the work by Wang et al. [11] to investigate the effects of elastic constant mismatch in a two-phase
composite on crack extension paths.

The key feature of the BEM is that only the boundary of the domain is discretized. As a result, for fracture
analysis, the singular stress field ahead of the crack is not approximated, and moreover, remeshing a propa-
gating crack is easier. It is generally recognized that the BEM is particularly well suited for linear elastic frac-
ture mechanics, as the method is known to provide more accurate results for stress (i.e., [13]) and there is no
need for re-meshing the outer boundary during the modeling of crack propagation. Note that the BEM and
the DBEM employ a collocation approximation at either boundary nodes or internal nodes (internal colloca-
tion). The main disadvantage associated with the sub-domain BEM technique for fracture [14] is the addi-
tional computational effort due to the use of an artificial interface along a crack; the major drawback of
the DBEM is that the relaxation of continuity requirements at element boundaries and junctions will lead
to singularities in the stress field in the vicinity of these points. If multiple, closely spaced crack assemblies
are to be analyzed, this can, in certain cases, lead to numerical difficulties.

A variant of the BEM employing a Galerkin approximation, SGBEM [15,16] has several key advantages in
fracture applications: (a) SGBEM uses the displacement boundary integral equation (BIE) on the boundary
part where displacement is prescribed and traction BIE on the boundary part where traction is known. As the
name implies, this results in a symmetric coefficient matrix, and this remains true for fracture problems pro-
viding that the unknowns on the crack faces are the crack opening displacement (COD); (b) the presence of
both displacement and traction BIE enables fracture problems to be solved without using artificial sub-
domains; (c) unlike collocation, there is no smoothness requirement on the displacement (e.g., [17,18]) in order
to evaluate the hypersingular integral; thus, standard continuous elements can be employed. The Galerkin
approach can therefore easily exploit the highly effective quarter-point quadratic element to accurately capture
the crack tip behavior; and (d) the weighted averaging formulation of Galerkin, by avoiding direct collocation
at corners and junction points, provides a smoother solution in the neighborhood of geometric discontinuities.

In both finite and boundary element modeling of discrete cracks, the standard approach consists of incor-
porating the critical stress singularity and

ffiffi
r
p

displacement behavior at the crack tip by means of the quarter-
point (QP) element [19,20], where r is the distance from the crack tip. Use of this QP element at the crack tip
has significantly improved the accuracy of SIF calculations (e.g., [14,21]). Nevertheless, in either finite or
boundary element analyses, the prediction of KII and KIII has not been nearly as accurate as for KI. Recently,
Gray and Paulino [22] have proved that, for an arbitrary crack geometry, a constraint exists in the series
expansion of the crack opening displacement at the tip. As discussed in [22], the QP element in general fails
to satisfy this constraint, and this has led to the development of an improved modified quarter-point (MQP)
element [23]. It was demonstrated in [23] that the accuracy of the computed SIFs using a simple method, such
as the Displacement Correlation Technique (DCT), can be significantly improved by incorporating this MQP
element into the SGBEM. This implies that SIF-based criteria for crack growth direction, such as the maxi-
mum principal stress criterion (MPSC) [24], can be utilized in conjunction with the SGBEM for multiregions,
the MQP crack-tip element, and the DCT to create an effective prediction tool for quasi-static crack-growth in
particulate media.

The objectives of this paper are to demonstrate the performance of the aforementioned crack-growth pre-
diction tool through numerical validation tests, and to study of effects of elastic constants mismatch on the
interaction between a propagating crack and a single inclusion or multiple inclusions in a brittle matrix.
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2. SGBEM-based crack-growth prediction tool

2.1. SGBEM

This section provides a very brief review of boundary integral equations for elasticity, their approximation
via the symmetric-Galerkin procedure, and the application to fracture. The reader is asked to consult the cited
references for further details.

The boundary integral equation (BIE) without body forces for linear elasticity is given by Rizzo [25]. For a
source point P interior to the domain, this equation takes the form
ukðP Þ �
Z

Cb

UkjðP ;QÞtjðQÞ � T kjðP ;QÞujðQÞ
� �

dQ ¼ 0; ð1Þ
where Q is a field point, tj and uj are traction and displacement vectors, Ukj and Tkj are the Kelvin kernel ten-
sors, Cb denotes the boundary of the domain, and dQ is an infinitesimal boundary length (for 2-D) or bound-
ary area (for 3-D cases). It can be shown that the limit of the integral in Eq. (1) as P! Cb exists. From now
on, for P 2 Cb, the BIE, and the singular integrals, are understood in this limiting sense.

For P is off the boundary, the kernel functions are not singular and it is permissible to differentiate Eq. (1)
with respect to P, yielding the hypersingular BIE (HBIE) for displacement gradient. Substitution of this gra-
dient into Hooke’s law gives the HBIE for boundary stresses
rk‘ðP Þ �
Z

Cb

Dkj‘ðP ;QÞtjðQÞ � Skj‘ðP ;QÞujðQÞ
� �

dQ ¼ 0: ð2Þ
Expressions for the kernel tensors Ukj,Tkj, Dkj‘ and Skj‘ can be found in [15].
The Galerkin boundary integral formulation is obtained by taking the shape functions wm employed in

approximating the boundary tractions and displacements as weighting functions for Eqs. (1) and (2). Thus,
Z
Cb

wmðP ÞukðP ÞdP �
Z

Cb

wmðP Þ
Z

Cb

½U kjðP ;QÞtjðQÞ � T kjðP ;QÞujðQÞ�dQ dP ¼ 0; ð3ÞZ
Cb

wmðP Þrk‘ðPÞdP �
Z

Cb

wmðP Þ
Z

Cb

½Dkj‘ðP ;QÞtjðQÞ � Skj‘ðP ;QÞujðQÞ�dQ dP ¼ 0: ð4Þ
A symmetric coefficient matrix, and hence a symmetric-Galerkin approximation, is obtained by employing
Eq. (3) on the boundary Cb(u) where displacements ubv are prescribed, and by using Eq. (4) on the boundary
Cb(t) with prescribed tractions tbv. Note that Cb = Cb(u) + Cb(t).

A solution procedure that employs a collocation approach enforces the integral Eqs. (1,2) at discrete source
points whereas with Galerkin these equations are satisfied in an averaged sense. The additional boundary inte-
gration is the key to obtaining a symmetric coefficient matrix, as this ensures that the source point P and field
point Q are treated in the same manner in evaluating the kernel tensors Ukj, Tkj, Dkj‘ and Skj‘. After discret-
ization, the resulting equation system can be written as
H 11 H 12

H 21 H 22

� �
ubv

u

� �
¼

G11 G12

G21 G22

� �
t

tbv

� �
: ð5Þ
Here, the first and second rows represent, respectively, the BIE written on (Cb(u)) and the HBIE on (Cb(t)). Fur-
ther, u and t denote unknown displacement and traction vectors. Rearranging Eq. (5) into the form
[A]{x} = {b}, and multiplying the HBIE by �1, one obtains
�G11 H 12

G21 �H 22

� �
t

u

� �
¼
�H 11ubv þ G12tbv

H 21ubv � G22tbv

� �
ð6Þ
The symmetry of the coefficient matrix, G11 ¼ GT
11, H 22 ¼ H T

22 and H 12 ¼ GT
21 now follows from the symme-

try properties of the kernel tensors.
The above SGBEM formulations need to be extended to deal with multiregion problems involved in par-

ticulate materials. The technique is based on the assumption of a perfect bonding between inclusions and the
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matrix which results in the displacement continuity and equilibrium conditions across the interfaces. More
details of the multiregion SGBEM can be found in, e.g., [26–28].

2.2. SGBEM fracture analysis

Consider a finite domain or body, B, of general shape as shown in Fig. 1. The body is shown to include a
crack surface denoted as Cc on which only tractions are prescribed. Initially, the crack is composed of two
coincident surfaces according to Cc ¼ Cþc þ C�c where Cþc and C�c denote the upper and lower crack surfaces,
respectively. As a result, the outward normals to the crack surfaces, nþc and n�c , are oriented oppositely so that
n�c ¼ �nþc . If the displacements uþc and u�c are replaced by the COD Duc ¼ uþc � u�c , and the tractions tþc and t�c
by the sum of tractions Rtc ¼ tþc þ t�c (Rtc = 0 as the crack surfaces are assumed to be symmetrically loaded),
the BIE and HBIE written for an interior point P then take the following forms:
ukðP Þ ¼
Z

Cb

UkjðP ;QÞtjðQÞ � T kjðP ;QÞujðQÞ
� �

dQ�
Z

Cþc

T kjðP ;QÞDujðQÞdQ; ð7Þ

rk‘ðP Þ ¼
Z

Cb

Dkj‘ðP ;QÞtjðQÞ � Skj‘ðP ;QÞujðQÞ
� �

dQ�
Z

Cþc

Skj‘ðP ;QÞDujðQÞdQ: ð8Þ
It can be shown that a symmetric coefficient matrix results from this choice of Du as variables on Cþc . Fol-
lowing the Galerkin approximation, the limit of Eqs. (7) and (8) is taken as P! Cb(u) and Cb(t), respectively.
At this point, it is convenient to convert the stress Eq. (8) into a traction equation through Cauchy’s relation
tk(P) = r‘k(P) n‘(P), with n‘(P) being the outward normal at P. After discretizing, the system resulting from
Eqs. (7) and (8) is
½Gbb�ftbg ¼ ½H bb�fubg þ ½H bc�fDucg; ð9Þ

where b and c denote the outer boundary and upper crack surface, respectively.

As traction boundary conditions are prescribed on the crack, only Eq. (8) is written for source points on
Cþc . Again, following the Galerkin approximation, the limit of Eq. (8) as P!Cc, the conversion of Eq. (8) into
a traction equation, and discretization, the result is
½Gcb�ftbg � ½Gcc�ftþc g ¼ ½H cb�fubg þ ½H cc�fDucg: ð10Þ

Combining Eqs. (9) and (10), the system of equations can be written as
H bb Hbc

H cb Hcc

� �
ub

Duc

� �
¼

Gbb 0

Gcb Gcc

� �
tb

�tþc

� �
; ð11Þ
where it can be proved that the coefficient matrix on the left hand side of Eq. (11) is symmetric.

2.3. Modified quarter-point element

It has been proven that, irrespective of the crack problem geometry or boundary conditions, the series
expansion for the COD Duk, k = 1,2 in the neighborhood of the tip is [22] (for related work see Refs. [29–31]),
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Fig. 1. A body B containing a fracture.
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Dukðr; hÞ ¼ bkðhÞr
1
2 þ dkðhÞr

3
2 þ O r

5
2

	 

; ð12Þ
where r,h are the distance to, and the direction emanating from, the tip, respectively.
The 2-D QP element is based upon the three-equidistant-noded quadratic element. For n 2 [0, 1], the shape

functions for this element are given by
w1ðnÞ ¼ ð1� nÞð1� 2nÞ;
w2ðnÞ ¼ 4nð1� nÞ;
w3ðnÞ ¼ nð2n� 1Þ:

ð13Þ
Since Du = 0 at the crack tip, which is assumed to be at n = 0 (Fig. 2) the geometry and COD representa-
tions of the crack tip element are
CðnÞ ¼
X3

j¼1

xjwjðnÞ; yjwjðnÞ
� �

; ð14Þ

DukðnÞ ¼
X3

j¼2

DuðjÞ1 wjðnÞ;DuðjÞ2 wjðnÞ
	 


; ð15Þ
where (xj,yj) are the coordinates of the three nodes defining the crack tip element, and DuðjÞk the nodal values of
the COD.

By moving the mid-node coordinates (x2,y2) three-fourths of the way towards the tip (see Fig. 2), the
parameter n becomes

ffiffiffiffiffiffiffi
r=L

p
, with L being the distance from (x1,y1) to (x3,y3) [19,20]. As a consequence,

the leading order term in DuðjÞk at n = 0, which is n, is the correct square root of distance. Note however, that
the next term, which is n2, is r/L. According to Eq. (12), this term should vanish, and the modification pre-
sented in Ref. [23] accomplishes the cancellation of this n2 term. The resulting shape functions for the
MQP element are
ŵ2ðnÞ ¼ �
8

3
ðn3 � nÞ;

ŵ3ðnÞ ¼
1

3
ð4n3 � nÞ;

ð16Þ
which should be used in Eq. (15) instead of wj(n). It can be observed that the modified shape functions Eq. (16)
still satisfy the Kronecker delta property ŵiðnjÞ ¼ dij. This new approximation is only applied to the COD, as we
keep the representation of the crack tip geometry as in Eq. (14). This ensures that the property n �

ffiffi
r
p

remains.

2.4. Stress intensity factors by the DCT

There are several approaches for numerically evaluating SIFs. Among these approaches, the DCT based
upon the COD in the vicinity of the crack tip is one of the simplest methods. For the MQP element, the
DCT-based SIFs are given by [23]
KI ¼
G

3ðjþ 1Þ

ffiffiffiffiffiffi
2p
L

r
8Duð2Þ2 � Duð3Þ2

	 

;

KII ¼
G

3ðjþ 1Þ

ffiffiffiffiffiffi
2p
L

r
8Duð2Þ1 � Duð3Þ1

	 

;

ð17Þ
Crack tip L/4

L

ξ=0 ξ=1/2 ξ=1

Fig. 2. Crack tip element.
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where Dui is the COD in the coordinate system associated with the crack tip under consideration, G is the
shear modulus, m is Poisson’s ratio, and
j ¼ 3� 4m ðplane strainÞ; j ¼ 3� m
1þ m

ðplane stressÞ: ð18Þ
As SIFs are directly given in terms of the nodal values of the COD at the crack tip, and the MQP element
enhances the accuracy of the nodal CODs, this enhances accuracy of the obtained SIFs.

2.5. Maximum principal stress criterion

There are several criteria for predicting crack growth direction (e.g., [24,32]). The MPSC proposed by Erdo-
gan and Sih [24], which is a commonly used criterion, is adopted herein. According to this criterion, the crack
growth direction is normal to the maximum principal stress rh. In other words, along the crack growth direc-
tion hc, rh is maximum and the shear stress rrh = 0, which leads to
KI sin hc þ KIIð3 cos hc � 1Þ ¼ 0: ð19Þ

It follows that,
hc ¼ 2 tan�1 KI

4KII

� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KI

KII


 �2

þ 8

s0
@

1
A and � p < hc < p: ð20Þ
In this work, a quasi-static crack-growth prediction tool based upon the SGBEM for multiregions, the
MQP crack-tip element, the DCT and the MPSC are combined to simulate the interaction between a crack
and various types of inclusions embedded within polymer matrix composites. By incorporating the MQP
shape functions (16) into a SGBEM code, accurate CODs Du at the quarter-point and end nodes of any
crack-tip element may be obtained (see Eq. (11)). The SIFs at the crack tip of interest will then be evaluated
by substituting the related CODs in the DCT formulas Eq. (17). If KI P KIc, the crack will propagate. In this
case, the growth direction hc of the crack tip in question is determined by Eq. (20) which is a function of KI and
KII. A new crack tip (quarter-point) element of length Da is added in that direction and on top of the previous
crack tip element (which now becomes a regular element) during a growth simulation. Consequently, reme-
shing a propagating crack is straightforward as the previous element discretization remains unchanged. At
issue is the determination of Da which has no formal constraint in quasi-static loading conditions. Smaller
Da, although leading to more time-consuming simulations, are expected to result in more accurate and stable
simulations.

3. Simulation results and discussion

In this section we first validate the multiregion SGBEM code (with the MQP element) by comparing results
to those produced by an analytical method; the test case consists of a single inclusion in an infinite medium.
This code is then used to explore the role material constant mismatches play in crack growth-inclusion inter-
actions. Simulations are run to examine crack growth behaviors and the mode-I SIF in a composite beam.
The simulations consider cases of both a single and multiple inclusions. Here, the inclusion(s) are modeled
as perfectly bonded to the surrounding matrix material, and both the inclusion(s) and the matrix are treated
as isotropic, linear elastic materials under plane strain assumptions. Crack propagation takes place solely in
the matrix material.

3.1. Crack–inclusion interaction in an infinite plate under tension

Hwu et al. [3] have developed a robust analytical model that can be used to investigate crack–particle inter-
actions for several different types of problems. The case of an isotropic circular inclusion in an infinite isotro-
pic medium under a uniaxial remote stress r is the problem of interest for this validation. The problem is
illustrated in Fig. 3 where the inclusion radius is denoted by rv. The coordinates (xo,yo) of the midpoint O
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Fig. 3. Crack–inclusion interaction in an infinite plate under tension.
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of the crack are measured with respect to the center of the inclusion, which has been arbitrarily given the coor-
dinates of (0, 0). The crack length 2av, exaggerated for clarity, is taken to be equivalent in length to the particle
radius rv (2av/rv = 1). Poisson’s ratio and Young’s modulus are respectively denoted by, mp and Ep for the
particle, and mm and Em for the matrix (plate). The values for the Young’s moduli and Poisson’s ratios,
Ep/ Em = 22.148148, mp = 0.3, and mm = 0.35, are chosen to be consistent with Ref. [3].

In the verification model, the crack is initially positioned a distance xo/rv = 0.5, yo/rv = 1.5. Twenty-eight
elements are used to mesh the particle boundary. The crack tip closest to the particle is denoted by A, while
the opposite crack tip is denoted B (corresponding to �L and +L of Ref. [3]). In subsequent simulations, the
crack is moved away from the particle with its midpoint repositioned at different coordinates, using the same
reference scheme for positioning described earlier. The coordinates for the crack midpoint O are given in col-
umn 1 of Tables 1 and 2 . Simulations are run at each set of coordinates to find the normalized SIFs K 0I and
K 0II, which are defined as
Table
Norma

xo

rv
;
y
r




(0.5,1.
(0.5,1.
(0.5,2)
(0.5,3)
(0.5,4)

Table
Norma

xo

rv
;
y
r




(0.5,1.
(0.5,1.
(0.5,2)
(0.5,3)
(0.5,4)
K 0 ¼ K
r
ffiffiffiffiffiffiffi
pav
p ; ð21Þ
at both ends of the crack. Tables 1 and 2 give our results compared to those of the analytical results from
Ref. [3].
1
lized stress intensity factors at crack tip A (K 0 ¼ K=ðr ffiffiffiffiffiffiffi

pav
p Þ)

o

v

�
K 0IA K 0IIA

SGBEM Hwu et al. [3] SGBEM Hwu et al. [3]

5) 0.614 0.613 0.055 0.061
75) 0.752 0.750 �0.043 �0.041

0.835 0.834 �0.062 �0.062
0.956 0.956 �0.034 �0.035
0.982 0.982 �0.016 �0.016

2
lized stress intensity factors at crack tip B (K 0 ¼ K=ðr ffiffiffiffiffiffiffi

pav
p Þ)

o

v

�
K 0IB K 0IIB

SGBEM Hwu et al. [3] SGBEM Hwu et al. [3]

5) 0.818 0.817 �0.067 �0.067
75) 0.878 0.878 �0.062 �0.062

0.916 0.915 �0.052 �0.052
0.972 0.973 �0.024 �0.024
0.987 0.987 �0.012 �0.012
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As can be seen from the tables, the results produced by the multiregion SGBEM code with MQP element
are in very good agreement with the analytical results, even with a relatively coarse mesh. Because our model is
based upon a numerical method, some error is to be expected, particularly when the crack tip is extremely
close to the inclusion-matrix interface. A value of interest was K 0IIA at (xo/rv,yo/rv) = (0.5,1.5). There is
roughly a 10% difference in our value for K 0II and the reference value at this point. However, another reference
[33] used for comparison in Ref. [3] gives a value for K 0IIA = 0.057 at the point in question, that is within 3% of
our calculated value. The validation simulations indicate that our SGBEM code is capable of producing highly
accurate results, even when the crack tip is extremely close to interface boundaries.

3.2. Effects of Ep/Em on single particle–crack interaction

The loading, constraints, and geometry of a three-point beam specimen shown in Fig. 4 are used for all
material constant mismatch simulations that follow. Here L · h · t = 0.150 m · 0.04 m · 0.008 m where t is
the beam thickness. The beam is subjected to a concentrated load P, and the crack length a is selected to
be equivalent to h/4. The changes in crack length in the x and y directions, xa and ya, are normalized with
respect to the half-length L/2, and the height h of the beam, respectively. The materials are modeled as being
linear elastic and isotropic. Plane strain conditions are assumed in all simulations. A normalized mode-I SIF is
introduced and defined as
K 0I ¼
KI

KIo

; ð22Þ
where KIo is the mode-I SIF for the same problem without any particle present.
For simulations involving a single particle, an inclusion of radius r = 0.001 m is centered in the beam and

offset an amount �r from the y-axis (see Fig. 4). The inclusion is offset to facilitate the deflection due to inclu-
sion location. For these as well as the following simulations, 193, 10, and 24 quadratic elements are employed
to mesh the boundary of the beam (excluding the crack), the crack, and each particle, respectively. A relatively
small amount of crack increment, namely Da/a = 0.03, is used for all simulations to ensure the stability of sub-
sequent crack growth steps.

In this section, effects of a Young’s modulus mismatch between a single particle and its matrix on crack
propagation are considered. For these simulations, Em is kept constant while the values for Ep range from
2Em to 16Em and are increased by successive doublings. The Poisson’s ratio for the matrix material and
the particle, mm and mp, are both equal to 0.3 and kept constant for all simulations. The results for the crack
growth are shown in Fig. 5, while the results for the K 0I are shown in Fig. 6.

From Fig. 5, it is clear that the mismatch between Ep and Em plays a prominent role in crack deflection. As
Ep is increased, it can be seen that crack deflection away from the inclusion increases noticeably when the
crack is in the immediate vicinity of the inclusion. Of interest is the observation that the amount of increase
that occurs in the crack deflection does appear to potentially have a bounding value. The difference between
the amounts of crack deflection from one value of Ep/Em to the next, as Ep/Em is increased, appears to be
decreasing. Because of the asymmetrical support conditions the crack is expected to propagate by a very slight
P

h

L

h/2

2r

y

r

a

x

L/2

Fig. 4. Crack–inclusion interaction in a three-point beam specimen.
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Fig. 5. Effects of Ep/Em on crack deflection due to single particle–crack interaction.
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amount in the �x direction, towards the roller constraint. Simulations run without an inclusion have demon-
strated that to be the case. Increases in Ep appear to cause small, but noticeable, increases in the deflection
towards the roller support. The result implies that the inclusion may actually be attracting the crack when
the crack is sufficiently far away from the inclusion, and that increasing the inclusion stiffness causes an
increase in the aforementioned crack attraction.

The Mode-I SIF clearly shows a decrease in magnitude as the crack nears the inclusion followed by an
increase in magnitude as the crack reaches, and subsequently passes, the inclusion. Once past the inclusion,
KI undergoes another, less substantial, decrease in its magnitude. The initial KI reduction seems to be more
substantial than the corresponding amount of amplification, in general. A stiffer inclusion increases the KI

amplification and reduction that occur, and increasing Ep appears to have a more substantial effect on KI

reduction than KI amplification. The secondary KI reduction that occurs also experiences an increase with
increasing Ep. However, the increase in the amount of secondary KI reduction is less considerable than that
experienced by either the initial KI reduction or the KI amplification.

3.3. Effects of mp/mm on single particle–crack interaction

Effects of a Poisson’s ratio mismatch between a single inclusion and matrix material have also been
explored. The Poisson’s ratio effects are evaluated at Ep/Em = 2 and Ep/Em = 16, in order to cover cases of
both relatively high and low Ep/Em ratios. In all simulations, the Poisson’s ratio mm is selected to be 0.3 while
mp takes the values 0.2, 0.3 and 0.4. Figs. 7 and 8 show the effects of mp on crack deflection for Ep/Em = 2 and
Ep/Em = 16, respectively. Figs. 9 and 10 show the effects of mp on KI for Ep/Em = 2 and Ep/Em = 16, respec-
tively. When Ep/Em is large, the crack deflection away from the inclusion varies only slightly as mp is increased.
However, a notable increase in the deflection can clearly be seen for the lower value of Ep/Em as mp is increased.
Crack attraction towards the inclusion when the crack is far away from the inclusion is in general lessened as
mp is increased. As with crack deflection, the ratio mp/mm is more influential on crack attraction at lower values
of Ep/Em. There does not seem to be any discernable change in the actual path of the crack deflection due to
changes in mp/mm relative to the Young’s modulus simulations.
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The pattern of KI amplification and reduction also remained unchanged from the previous simulations
shown in Fig. 6. The magnitude of KI amplification and reduction, for both Ep/Em = 2 and Ep/Em = 16,
are increased as mp is increased. Ratio mp/mm has a considerably greater effect on KI for the lower value of
Ep/Em. It is also worth noting that, for the lower value of Ep/Em, the KI curves appear to be more spread
out (shifted horizontally) in the reduction portion of the curve than in the amplification portion. This result
may imply that mp/mm plays a more important role in KI reduction at least for small values of Ep/Em. For the
higher value of Ep/Em, the amount of curve separation appeared essentially uniform between all portions of
the curves.

3.4. Effects of Ep/Em on aggregate–crack interaction

Effects of a Young’s modulus mismatch on a matrix material containing multiple inclusions (aggregate) are
considered next. The values for Ep, Em, mp, mm, and increment values (for Ep) are identical to those used in the
single inclusion Young’s modulus mismatch simulations. The geometry of the aggregate is shown in Fig. 11
where the center of the aggregate coincides with the center of the single particle in Fig. 4. Fig. 12 shows
the variation in crack deflection with changing Ep/Em while Fig. 13 shows the variation in KI with changing
Ep/Em.

Comparing the single particle simulation results to the results given by [9], it could be said that increasing
inclusion stiffness has a similar effect on crack deflection as increasing the inclusion size or decreasing the dis-
tance between the particle and crack. This assertion is useful in understanding and interpreting the results of
the multiple inclusion simulation. Fig. 12 shows that the addition of inclusions to the beam material has a sig-
nificant effect on the crack deflection pattern. Crack deflection away from the first inclusion encountered
shows a larger and sharper peak for all values of Ep/Em relative to the results from the corresponding single
inclusion simulations. The increase in crack deflection magnitude and sharpness is most easily attributed to the
presence of a nearby particle, added deflection caused by one or both of the far particles, or a combination of
the two effects. There are certainly other possible explanations but these are the most straightforward. The
general deflection pattern indicates increasingly complex interactions between the crack and inclusions with
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varying Ep/Em. The crack path does show a trend towards deflection away from nearby particles. However,
the amount of deflection and its pattern is clearly not dictated solely by the near particles. The far particles’



0 0.1 0.2 0.3 0.4 0.5 0.6

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

ya /h

K
’ I

νp/νm = 2/3
νp/νm = 1
νp/νm = 4/3

Ep /Em=16

Fig. 10. Effects of mp/mm on K 0I due to single particle–crack interaction (Ep/Em = 16).

0 0.1 0.2 0.3 0.4 0.5 0.6

0.94

0.96

0.98

1

1.02

1.04

ya /h

K
’ I

ν
p

/ ν
m
 = 2/3

ν
p

/ ν
m
 = 1

ν
p

/ ν
m
 = 4/3

E
p
/E

m
 = 2

Fig. 9. Effects of mp/mm on K 0I due to single particle–crack interaction (Ep/Em = 2).

R.C. Williams et al. / Engineering Fracture Mechanics 74 (2007) 314–331 325
influence becomes more and more evident as Ep is increased, and one notices that the magnitude and pattern
of crack deflection for Ep/Em = 16 deviates from the trend seen with the lower values for Ep/Em. The result is
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Fig. 12. Effects of Ep/Em on crack deflection due to aggregate–crack interaction. The right plot is a close-up view of the left one.
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most likely due to the fact that increasing the Young’s moduli of the particles has a similar effect to increasing
the particles size, allowing for stronger competing and complementary interactions between the particles. The
crack attraction, when the crack is far away from the particles, follows a similar pattern as the crack deflec-
tion. The crack attraction is seen to clearly increase with increasing Ep/Em. However, when Ep/Em = 16 a devi-
ation from the tendency is observed.

For single inclusion simulations, it was shown that increasing Ep had the effect of increasing the magnitudes
of both KI amplification and reduction. With multiple inclusions present, one would assume competing and
complementary interactions between the particles would affect the magnitude and trend of KI. Fig. 13 substan-
tiates this assumption. Increasing Ep with the given inclusion pattern has the general effect of increasing KI

amplification, resulting in a shift of the KI curve. However, it is clear that at various portions of the curves,
one is evaluating the effects of more than one particle and that any observed trend is not absolute. For
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instance, there are sections of the Ep/Em = 16 curve (ya/h = 0.3) and sections of the Ep/Em = 2 curve
(ya/h = 0.4) which deviate from the general trend. The deviation is most likely due to interactions between var-
ious particles and the crack. Considering the matrix and particle material properties in conjunction with aggre-
gate geometry, particle number, and particle geometry it seems plausible to conclude that crack–particle
interactions could potentially be manipulated in essentially infinite number of ways. Any formulation that
seeks to fully describe the nature of the interactions between a crack and particle or aggregate of particles will
be a complex function of the aforementioned variables.

3.5. Effects of mp/mm on aggregate–crack interaction

The effects of a Poisson’s ratio mismatch on a matrix material with multiple inclusions are considered in this
section. Simulations are carried out for both relatively high and low Ep/Em ratios. The aggregate geometry is
identical to that in Fig. 11. Fig. 14 shows the effects of the mp/mm ratio on crack deflection with Ep/Em = 2,
while Fig. 15 show the effects of the mp/mm ratio on crack deflection with Ep/Em = 16. Fig. 16 shows the effects
of the mp/mm ratio on K 0I with Ep/Em = 2, while Fig. 17 shows the same effects with Ep/Em = 16.

As with single inclusion simulations exploring the effects of the mp/mm, it is clear that the ratio has a greater
effect at lower Ep/Em values. The general effect of increasing mp is an increase in crack deflection. However
Fig. 14 indicates that the trend is not absolute as there are areas in which the plots with lower mp/mm ratio
appear to show more crack deflection than plots representing a higher mp/mm. The deviation does not occur
in the case where Ep/Em = 16. These results reinforce the fact that there is strong interplay between material
constants, and emphasize the importance of considering the effects of material constants along with particle
volume fraction and aggregate geometry. It also points out the necessity of understanding the situations in
which certain properties become more relevant to the overall material behavior. The behavior for the crack
attraction, before the crack reaches the particle, appears consistent for both values of Ep/Em considered
and shows decreasing attraction to the particle with increasing mp/mm.

The mp/mm ratio has the most influence on KI at lower values of Ep/Em (see Figs. 16 and 17). For Ep/Em = 16
the most notable deviation between the KI curves is seen to be in the amplification peaks, whereas for
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Ep/Em = 2 the largest difference between the curves is in the reduction or shielding portions. The result implies
that both the amount and nature of the influence that mp/mm exerts varies with Ep/Em. The higher value of Ep/
Em yields more uniform behavior with varying mp than the lower value. In any case, it is clear that increasing
mp/mm allows the presence of the particles further away from the crack to be felt more strongly. It is interesting
to note that, between (ya/h = 0.2) and (ya/h = 0.5), for Ep/Em = 16, the overall KI value is steadily increasing
whereas for Ep/Em = 2, the overall KI value is steadily decreasing. Because the particle number, aggregate
geometry, and variation of mp/mm are constant between the two simulations, the results must be solely due
to the differences in Ep/Em. This observation reiterates how substantial the effects of various combinations
of the material constants can be on crack growth behavior.

4. Concluding remarks

A SGBEM-based quasi-static crack growth prediction tool was developed and employed to investigate the
effects material constants play in determining crack growth and KI behaviors in heterogeneous materials. It is
demonstrated through validation that, by incorporating the MQP element into a multiregion SGBEM ana-
lysis, the code is able to produce accurate SIFs for problems involving crack–particle interactions. Simulations
were carried out for both single and multiple inclusions. The Young’s modulus and Poisson’s ratio of the
inclusion(s) were varied to affect the ratios Ep/Em and mp/mm, respectively. The principal results of the simula-
tions are summarized as follows:

• An inclusion embedded in a relatively compliant matrix material causes crack deflection away from the
inclusion when the crack is near the particle, and crack attraction towards the inclusion when the crack
is relatively far from the particle. Increasing either Ep/Em or mp/mm has the effect of increasing crack deflec-
tion away from the particle when the crack is close to it. However, when the crack is far from the inclusion,
increasing Ep/Em causes an increase in the crack attraction towards the particle whereas increasing mp/mm

causes a decrease in the crack attraction.
• In general, the ratio Ep/Em appears to have the most overall influence on crack propagation and KI. For

low ratios of Ep/Em, the effects of mp/mm are extremely significant. At higher Ep/Em the effects of mp/mm

are detectable, but appear to be less significant. In regards to crack deflection, it could be said that increas-
ing the ratio of the elastic constants has a general effect similar to shifting the particle closer to the initial
crack-line/vertical axis of symmetry (a horizontal shift) or increasing the particle’s/particles’ size.

• The crack tip shielding and amplification were also observed, as in, i.e., [4,9]. Reduction and amplification
of KI both increase in value with increases in the elastic constant ratios. Changes in the elastic constants
appear to have a greater, positive influence on the reduction portion of the KI curve than the corresponding
amplification portion (the amount of reduction is consistently greater than the amount of amplification).

• The presence of multiple inclusions causes complex complementary and competing interactions between the
particles that strongly effect crack deflection and KI. Overt trends can be seen in the deflection and KI

behavior. However, the nature of the interactions between the crack and multiple inclusions makes any
attempt to formulate an absolute characterization of the deflection and KI behaviors difficult.

• The results of multiple inclusion simulations indicate a complicated interaction strongly dictated by mate-
rial constants. The simulation results naturally suggest the potential influence of particle number and spa-
tial orientation. The aforementioned variables, taken collectively, could be manipulated in a seemingly
infinite number of ways with the possibility to produce significantly varying results (at least in some cases).
In order to formulate a definitive characterization of crack deflection and stress intensity behavior, inclu-
sion number, material constants, and the relative orientation of the particles must all be considered.
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