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SUMMARY

An algorithm based upon the residue calculus for computing three-dimensional anisotropic elastic
Green’s function and its derivatives has been presented in Sales and Gray (Comput. Structures 1998;
69:247–254). It has been shown that the algorithm runs three to four times faster than the standard
Wilson–Cruse interpolation scheme. However, the main concern of the Sales–Gray algorithm is its nu-
merical instability that could lead to signi�cant errors due to the existence of multiple poles of the
residue. This paper proposes a remedy for the problem by adding the capability to evaluate the Green’s
function in case of multiple poles of the residue. Further, an improved numerical implementation based
on the use of double-subscript-notation elastic constants in determining the Christo�el tensor is also at
issue. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Boundary element analysis requires numerous evaluations of a Green’s function (fundamental
solutions) and its derivatives. While these functions are relatively simple for isotropic elas-
ticity, they are far more complicated in case of materials of general anisotropy. Thus, an
e�ective scheme for evaluating these complicated functions is very crucial for the success of
a boundary element anisotropic analysis.
An approach based upon the residue calculus to computing the three-dimensional (3-D)

anisotropic elastic Green’s function has been investigated by Wang [1], and Sales and Gray
[2]. The results are obtained in terms of the residue of poles whose positions are determined
by the roots of a sixth degree polynomial equation. While the work of Wang primarily focused
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on the derivation of explicit expressions for the Green’s function, Sales and Gray devoted
e�orts to a practical algorithm for computing this function and its derivatives. Although the
proposed algorithm is technically sound, potential problems in terms of numerical instability
could arise when the residue is not a single pole. The objective of this paper is to address the
above concern by adding the capability to evaluate the Green’s function in case of multiple
poles, whereas a full-length paper on the development of the derivatives in this case will be the
subject of a subsequent publication. Further, by using double subscript notation in expressing
the fourth-rank elastic constant tensor Cjklm, an improved numerical implementation versus
that proposed in Reference [2] is also discussed herein.

2. RESIDUE CALCULUS APPROACH TO THE GREEN’S FUNCTION

2.1. Green’s function Ujk

Consider an unbounded anisotropic elastic body subjected to a uniformly distributed load.
Let Ujk be the Green’s function corresponding to the displacement �eld in the xk direction
produced by the load in the xj direction. Ujk can be expressed as a line integral [3, 4]

Ujk(x;x0)=
1
8�2r

∮
S1

K−1
jk (^) ds(^)≡

1
8�2r

�Ujk (1)

where x0 is the pole or source point, x is the observation or �eld point, ^∈R3, Kjk is the
Christo�el tensor de�ned in terms of the elastic constants Cjklm of the material

Kjk =Cjklm�l�m (2)

and r= ‖x − x0‖. The integration path is the unit circle in the plane having normal x − x0,
S1 = S1(x;x0)= {^∈R3 | ‖^‖=1; ^ ·(x − x0)=0} (3)

2.2. General solution of the Green’s function Ujk

The contour integral in Equation (1) can be written as

�Ujk =
∫ 2�

0
K−1
jk (^(t)) dt (4)

where ^ is written parametrically as

^(t)=




�1(t)

�2(t)

�3(t)



=




sin(�) cos(t) + cos(�) cos( ) sin(t)

− cos(�) cos(t) + sin(�) cos( ) sin(t)
− sin( ) sin(t)




(5)

The integral in Equation (4) can be evaluated using residue calculus by transforming the
integrand into a rational function and expanding the range of the integral to include all real
numbers. One way to achieve this transformation is using the following change of variable [5]:

Z = tan(t) (6)

Copyright ? 2004 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng 2004; 20:335–341



3-D ANISOTROPIC ELASTIC GREEN’S FUNCTION 337

By using this transformation, the components of K−1
jk become rational functions of Z .

Finally, the integral in Equation (4) can be written in the form [2]

�Ujk =2
∫ ∞

−∞

Pjk(Z)
Q(Z)

dZ =4�i� (7)

where Pjk(Z) and Q(Z) are polynomials of Z , � is the sum of the residues Res(�n) of
Pjk(Z)=Q(Z) at the poles �n of Q(Z) which lie in the upper plan.
Note that only Res(�n) for the case of simple poles (or distinct roots �1 �= �2 �= �3) was re-

ported in Reference [2]. In general, Res(�n) can be determined using the following expression
(e.g. Reference [6]):

Res(�n)=
1

(m− 1)!
[
dm−1

dZm−1

{
(Z − �n)m

Pjk(Z)
Q(Z)

}]
Z=�n

(8)

• In case of a simple pole (m=1),

�Ujk =4�i
3∑

n=1
Res(�n) (9)

where

Res(�n) =
[
(Z − �n)

Pjk(Z)
Q(Z)

]
Z=�n

=
Pjk(�n)
Qs(�n)

(10)

Pjk(�n) =
4∑

l=0
pjkl �l

n (11)

Qs(�n) = q6(�n − ��n)
3∏

o=1
o�=n

(�n − �o) (�n − ��o) (12)

• In case of a double pole (m=2), for example �1 = �2, one gets

�Ujk =4�i[Res(�n) + Res(�3)] (13)

where n can either be 1 or 2, and

Res(�n) =
[
d
dZ

{
(Z − �n)2

Pjk(Z)
Q(Z)

}]
Z=�n

=
1

Qd(�n)

{
Pjk; Z(�n)− Pjk(�n)

(
1

�n − �3
+

2

�n − ��n
+

1

�n − ��3

)}
(14)

Pjk; Z(�n) =
3∑

l=0
(l+ 1)pjk(l+1)�l

n (15)

Qd(�n) = q6(�n − �3) (�n − ��n)2(�n − ��3) (16)
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• In case of a triple pole (m=3) we have �1 = �2 = �3, thus

�Ujk =4�i Res(�n) (17)

where n can either be 1, 2 or 3, and

Res(�n) =
1
2

[
d2

dZ 2

{
(Z − �n)3

Pjk(Z)
Q(Z)

}]
Z=�n

=
1

Qt(�n)

{
Pjk;ZZ(�n)

2
− 3Pjk; Z(�n)

�n − ��n
+

6Pjk(�n)

(�n − ��n)2

}
(18)

Pjk;ZZ(�n) =
2∑

l=0
(l+ 1) (l+ 2)pjk(l+2) �l

n (19)

Qt(�n) = q6(�n − ��n)3 (20)

2.3. Numerical implementation and computation time

As in Reference [2], the three roots �n are found using Newton’s approach in conjunction
with Horner’s method [7] for e�cient polynomial evaluation.
Once the roots have been found, the quantities |�1−�2|, |�2−�3| and |�3−�1| are compared

with �=10−4 to determine whether a multiple root occurs. Then depending on the order m
of the roots, appropriate equations among (9), (13) and (17) need to be selected to compute
the tensor elements of �Ujk .
It is well known that the description of both elastic strain and stress tensors involve only six

independent components identi�able by a double subscript notation. Since both these quantities
as well as Kjk in Equation (2) are symmetric with respect to an interchange of the subscripts,
it will be convenient to abbreviate the double subscript notation (Kjk =Cjklm �l �m) to a single
subscript (ku= cuvev) with u=v running from 1 to 6 for jk=lm=11; 22; 33; 23=32; 31=13; 12=21,
respectively.
The use of single subscript notation will eliminate the unnecessary storage for symmetric

components in the elastic constant tensor Cjklm and Green’s function Ujk since the handling
of a fourth-rank tensor Cjklm and a (3× 3) matrix Ujk can be reduced to that of a (3× 3)
matrix cij and a (6× 1) vector kj, respectively. Thus, the computation time resulted from this
numerical implementation will even be better than that reported in Reference [2].

3. NUMERICAL EXAMPLES

3.1. Simple roots

First, we evaluate �Ujk in case of distinct roots (simple poles) in the polynomial Q(Z) using the
numerical implementation proposed above. The materials germanium (Ge) and tin (Sn), which
respectively are cubic and tetragonal crystal systems, are employed. The elastic constants for
germanium are (in units of 1011 dynes=cm2) [8] c11 = 12:85, c12 = 4:83 and c44 = 6:68. Tin
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Figure 1. Error of �U22(�; �=2) for germanium.

has a piezo-elasto-dielectric matrix type de�ned by the following six elastic constants (in the
same units) [8]: c11 = 7:35, c33 = 8:7, c44 = 2:2, c66 = 2:265, c12 = 2:34 and c13 = 2:8.
Residue calculus results for �Ujk(�;  ) are compared with those obtained from a direct numer-

ical quadrature. The absolute errors of �U22(�; �=2) for germanium and �U13(�;  ) for tin are,
respectively, shown in Figures 1 and 2. Excellent agreements can be concluded considering
that the elastic constants cij are typically only known to three signi�cant digits.

3.2. Multiple roots

In this section, the evaluation of �Ujk in case of multiple roots in the polynomial Q(Z) is
carried out to validate the numerical implementation of Equations (13) and (17).
Assume that the contour integral term �U11 is given by

�U11 = 2
∫ ∞

−∞

P11(Z)
Q(Z)

dZ (21)

where

P11(Z)=3Z 4 + 2Z3 − 5Z 2 − 10Z + 25 (22)

and

Q(Z)=3Z6 + 18Z5 + 93Z 4 + 180Z3 + 513Z 2 + 546Z + 2535 (23)

or

Q(Z)=2Z6 + 36Z5 + 276Z 4 + 1152Z3 + 2760Z 2 + 3600Z + 2000 (24)
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Figure 2. Error of �U13(�;  ) for tin.

Table I. Evaluation of �U11 in case of a double pole.

Maple solution Residue calculus Error (%)

1.063000129 1.0630001286 0:211× 10−8

• Double pole: This is the case of Equation (23) in which Q(Z) can be written as

Q(Z) = 3Z6 + 18Z5 + 93Z 4 + 180Z3 + 513Z 2 + 546Z + 2535

= 3(Z − �1)(Z − �2)2(Z − ��1)(Z − ��2)2 (25)

where �1 = 1 + 2i, and �2 = �3 =− 2 + 3i.
• Triple pole: This is the case where Q(Z) is given by Equation (24) since we have

Q(Z) = 2Z6 + 36Z5 + 276Z 4 + 1152Z3 + 2760Z 2 + 3600Z + 2000

= 2(Z − �1)3(Z − ��1)3 (26)

where �1 = �2 = �3 =− 3 + i.
The residue calculus results are compared with those obtained using the symbolic package

Maple. These results are shown in Tables I and II where they can actually be considered as
identical.
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Table II. Evaluation of �U11 in case of a triple pole.

Maple solution Residue calculus Error (%)

292.5608159 292.5608158655 −0:194× 10−5

4. CONCLUSION

An improved numerical scheme based upon the residue calculus for evaluating the 3-D
anisotropic elastic Green’s function is presented. The scheme is not only able to determine the
Green’s function in case of multiple poles of the residue which was not addressed in Refer-
ence [2], but also enhances the computational e�ectiveness of the algorithm initially proposed
by that work through the use of double subscript notation in expressing the fourth-order elastic
constant tensor. Evaluation of the derivatives of the Green’s function will be the subject of a
subsequent full-length publication which is currently pursued by the authors.
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