APITEST Test Descriptor File Grammar

William McLendon

wcmclen@sandia.gov

1Overview

Notational Conventions
2
Test Specification Grammar
3
RepeatFile Element
4
ShellTestResultDef
4
TcpipTestResultDef
4
ShellTestDef
5
TcpipTestDef
6
DataBufferGroup
7

Overview

This document is an overview of the XML Schema Grammar for APITEST. This is by no means complete as we’re still tweaking the schema and development of the initial APITEST prototype is under way.

Questions, comments, and suggestions on the schema definition are more than welcome.

Notational Conventions

The following are some notational conventions that are used in describing the structure of many XML structures described in this doc.

Elements

<elt>

XML element <elt>

<elt attr1 [attr2]>
<elt> attributes: attr1 is required, attr2 is optional.

Repetition

<elt>?

<elt> appears 0 … 1 times.

<elt>*

<elt> appears 0 … infinity times.

<elt>+

<elt> appears 1 … infinity times.

Element Structures

<choice>

Case. <A> or

1. <A>

2.

</choice>

<>

Grouping. <A> is followed by

<A>

</>
Test Specification Grammar

A file containing a test specification contains the following tags.

<RepeatFile iterCount [iterDelay] />?

<BufferList>?

<BufferDef>*

<Name>

<DataBufferGroup
>

</BufferDef>

</BufferList>

<ResourceList>?

<ResourceDef>*

<Name>

<choice>

1. <IP>

2. <SysName>

</choice>

<Port>

</ResourceDef>

</ResourceList>

<ResultList>?

<>*

<ShellTestResultDef>?

<TcpipTestResultDef>?

</>

</ResultList>

<TestList>?

<>*

<ShellTestDef>?

<TcpipTestDef>?

</>

</TestList>

Notes:

<Name> allows a string 3-70 chars long.

RepeatFile Element

Attribute:
iterCount
(required) – number of times to iterate.

Attribute:
iterDelay
(optional) – delay (seconds) between iterations.

Sub-elements:
None

<RepeatFile> specifies how many times the tests in the file should be repeated.

ShellTestResultDef

<ShellTestResultDef>

<Name>

<Stdout>?

<Stderr>?

<ReturnValue>?

</ShellTestResultDef>

TcpipTestResultDef

<TcpipTestResultDef>

<Name>

<DataBufferGroup
>

</TcpipTestResultDef>

Notes:

<Name> allows a string 3-70 chars long.

Omitting <Stdout>, <Stderr>, or <ReturnValue> causes APITEST to ignore data on that channel.

ShellTestDef

<ShellTestDef>

<CleanUp>?

<Name>

<DependencyList>?

<>*

<choice>*

1. <Parent [conditionCode] >

2. <Sibling>

</choice>

</>

<TimeOut maxTime [minTime] [maxTimeSoft] >?

<RepeatTest count [delay] >?

<TestDelay [pre] [post]>?

<ExpectedResult>?

<>?

<ExpectedResultName>

<ConditionCode>

<FailHandler>

</>

<ResourceList>?

<>*

<Resource>

</>

<Exec>

</ShellTestDef>

Notes:

ConditionCode restricts CDATA to the following:

PASS:

If ALL expected results must match then a test PASSES

FAIL:

If ANY expected result then a test FAILS

UNKNOWN:
shrug

IGNORE:
Doesn’t even bother testing for correctness.

FailCodeHandler tells us what to do if a ConditionCode=FAIL. CDATA is restricted to:

CONTINUE:
Keep going.

BREAK:
Break out of the current test’s loop, run next test.

HALT:

Quit all testing and exit. ShellTests that are have the <CleanUp>

element will be executed before halting.

TcpipTestDef

<TcpipTestDef>

<Name>

<DependencyList>?

<>*

<choice>*

3. <Parent [conditionCode] >

4. <Sibling>

</choice>

</>

<TimeOut maxTime [minTime] [maxTimeSoft] >?

<RepeatTest count [delay] >?

<TestDelay [pre] [post]>?

<ExpectedResult>?

<>?

<ExpectedResultName>

<ConditionCode>

<ConditionCodeHandler>

</>

<ResourceList>?

<>*

<Resource>

</>

<choice>

1. <BufferName>

2. <DataBufferGroup
>

</choice>

<SendDestination>

<SaveResponse>?

</TcpipTestDef>

Notes:

<SaveResponse>
save response buffer into a named buffer for later use (which

might be for comparing later buffers to, or for retransmission.)

DataBufferGroup

<choice>

<byteList>

<shortList>

<intList>

<longList>

<unsignedByteList>

<unsignedShortList>

<unsignedIntList>

<floatList>

<doubleList>

<hexByteList>

<text>

<XMLSchema>

<regularExpression>

</choice>

This group allows specification of some buffer, which is essentially some kind of binary data. Each buffer except for text, XMLSchema, and regularExpression are space-delimited lists of values that will be concactenated into a single buffer stream for transmission.

We’ve differentiated between many data types because limiting to just a buffer of text is not sufficient – in binary terms “1” is not the same as the integer 1, which is also not the same as the floating point number 1.0. If absolute control over the buffer is needed, we provide the capability to use hexadecimal bytes.

The text, XMLSchema, and regularExpression buffers currently only support strings. They are included to allow the capability to specify an expected buffer as either a regular expression or an XML Schema that will be used to validate a response rather than exact matching.

� See §DataBufferGroup for details.

� See §DataBufferGroup for details.

� See §DataBufferGroup for details.

