
DRAFT [24/06/2005 20:48:28 “scidac-sss_v3.doc.doc”]

Scalable System Software: A component-based approach

B Bode1, R Bradshaw2, E DeBenedictus7, N Desai2, J Duell3, G A Geist5,
P Hargrove3, D Jackson1, S Jackson6, J Laros7, C Lowe4, E Lusk2, W McLendon7,
J Mugler5, T Naughton5, J P Navarro2, R Oldfield7, N Pundit7, S L Scott5,
M Showerman4, C Steffen4 and K Walker6

1 Ames National Laboratory, 2 Argonne National Laboratory, 3 Lawrence Berkeley
National Laboratory, 4 National Center for Supercomputing Applications, 5 Oak Ridge
National Laboratory, 6 Pacific Northwest National Laboratory, 7 Sandia National
Laboratory

Email: Stephen L. Scott; scottsl@ornl.gov

Abstract. The growth in computing resources at scientific computing centers has created new
challenges for system software. These multi-teraflop systems often exceed the capabilities of
the system software and require new approaches to accommodate these large processor counts.
The costs associated with development and maintenance of this software are also significant
impediments, which are compounded by a lack of interoperability because of site-specific
enhancements. The Scalable System Software project seeks to address these issues through a
component based approach to system software development. An overview of this design and
the benefits of such an approach will be discussed in this paper.

1. Introduction
The nation’s premiere scientific computing centers are facing a crisis in which they must rewrite all
their home-grown systems software to scale to the multi-teraflops systems that are being installed in
their centers. Over the past few years the DOE and others have continued to expand the size of high-
end systems. Today there are many systems with more than 1,000 processors and several systems with
more than 4,000 processors. This trend is expected to continue in the future with increasing node and
processor counts. The first full scale BlueGene/L machine offers a single system with 64 thousand
nodes and 128 thousand processors! While this growth has been largely successful on the hardware
side, the software needed to manage the growing complexity that comes with larger node counts has
continued to lag far behind. In large part the systems management software continues to be based on
software developed a decade ago to manage a single system or at most a handful of systems. While
many people have worked at patching the software to get it to work on larger systems, there have not
been many efforts to design a systems software management infrastructure that is designed for
scalability from day one.

The goal of the SciDAC Scalable Systems Software project is to fundamentally change the way
future high-end systems software is developed to make it more cost effective and robust [1]. The
research involves three efforts. First, collectively getting the DOE centers, NSF centers, and vendors
(IBM, Cray, SGI, Intel) to define standardized and flexible interfaces between system components.
Second, designing a modular software architecture that is portable across all major supercomputer
platforms. Third, producing an open source reference implementation of a fully integrated suite of

DRAFT [24/06/2005 20:48:28 “scidac-sss_v3.doc.doc”]

systems software that can be used across all the terascale computer centers for the cost effective
management and utilization of their computational resources. The scope of our suite encompasses the
aspects of system management illustrated in Figure 1.

Figure 1. The mission of the Scalable Systems Software center is the development of an integrated
suite of systems software and tools for the effective management and utilization of terascale

computational resources particularly those at the DOE facilities.

2. Background
The systems software problems for tera-op class computers with thousands of processors are
significantly more difficult than for small-scale systems with respect to fault-tolerance, reliability,
manageability, and ease of use for systems administrators and users. Layered on top of these are issues
of security, heterogeneity and scalability found in today’s large computer centers. The computer
industry is not motivated to solve these problems because market forces push them towards smaller
systems aimed at business uses such as web services, database farms, and departmental sized systems.
This matter is underscored as centers prepare for next generation peta-op class computers that will
face even greater challenges and require innovative approaches to system software.

The Scalable System Software Center was started in 2001 to address this lack of software for the
effective management and utilization of terascale computational resources. This virtual center is
comprised of experts from around the country working as a single team to develop an integrated suite
of machine independent, scalable systems software components needed for the Scientific Discovery
through Advanced Computing (SciDAC) initiative. The goal being to provide open source solutions
that work for small as well as large-scale systems.

The SSS project was organized into four different working groups, which worked in a distributed
fashion using teleconferences and quarterly face-to-face meetings. These working groups roughly
outline the avenues of investigation:

• Node build, configuration, and information services
• Resource management, scheduling, and allocation
• Process management, system monitoring, and checkpointing
• Validation and integration

These working groups were comprised of individuals from DOE labs, NSF Supercomputer Centers
and Vendors, i.e., ORNL, ANL, LBNL, PNNL, SNL, LANL, Ames, NCSA, PSC, NCSA, PSC, IBM,
Cray, SGI, and Intel.

The first stages of the project focused on the identification of the key components for the system as
well as the methods and standards that would be used during the development phase. This initial

DRAFT [24/06/2005 20:48:28 “scidac-sss_v3.doc.doc”]

specification and requirements phase led to the agreement upon the use of XML for interface
definitions. Additionally, the use of TCP/IP sockets was to be used for inter-component
communication that would be encapsulated in a library. The focus of the project was to be on the
creation of a modular system architecture to facilitate portability and customization across the diverse
computing environments that were to be the consumers of the software. The interface definitions
would be identified much in the manner that was used during the MPI forums. Additionally, an Open
Source reference implementation would also be produced as part of this effort.

3. Project Overview
A critical component of our design is its modularity. The ability to plug and play components is
important because of the diversity in both high-end systems and in the individual site management
policies. For example, an individual site may have some very specialized requirements for job
scheduling that may require them to write their own scheduling component. Figure 2 shows the
systems software architecture and how all the components interface with each other. The Event
Manager, Service Directory, and Communication library shown in the middle connect to all the other
components and allow individual components to announce their participation in the system, find one
another, and communicate both synchronously (send/receive) and asynchronously (register/notify).
They play a key role in the portability of the architecture to different terascale computing facilities and
hardware.

Figure 2. System Software Architecture and component interfaces.

The interfaces between all the components have been fully documented and made publicly

available allowing others to write replacement components (or wrap their existing components) as
needed. Components communicate through XML messages and can use one or more of the extensible
set of wire protocols supplied by the Communication library. The API imposes no restrictions on the
language a particular component is written in. Our reference implementation has a mixture of C, C++,
Perl, Java, and Python components. This allows a great deal of flexibility to the component author and
allows the same interface to work on a wide range of hardware architectures and facility polices.

The reference implementation suite is available in both source form and as a precompiled,
integrated package in the form of an OSCAR (Open Source Cluster Application Resources)
distribution. The OSCAR based offering, SSS-OSCAR version 1.0, was released at SC2004 [2]. This
is being followed by quarterly updates over the next year. OSCAR distributions, of which there are
several, have been adopted by many cluster vendors and have been downloaded by thousands all
around the world. By leveraging the popularity of OSCAR, we raise our software suites profile and
availability.

DRAFT [24/06/2005 20:48:28 “scidac-sss_v3.doc.doc”]

3.1. SSS-OSCAR
The OSCAR toolkit assists in the configuration, build and installation of a cluster [3]. A modular

packaging system is provided, which allows for software to be bundled with a basic configuration and
installed by an end-user without having to have expert knowledge of the tools [4]. This facility was
used to deploy a full suite of SSS components using a default configuration [2]. The following
sections include a brief description of the components included in the release with information about
the actual back-end tools used to implement these components.

3.1.1. Communication Infrastructure: SSSlib
The SSSlib is a communication library is used by the SSS components for inter-component
communication. The library provides a range of default protocols for communication and has an
extensible design, e.g., HTTP(S), SSL. Library bindings exist for several languages including Perl,
Python, C and C++. The infrastructure includes a Service Directory and Event Manager for inter-
component lookups and communication, respectively.

3.1.2. Scheduler: Maui
The widely used Maui scheduling system is configured for the system. It interacts with the system
monitor (Warehouse) and queue manager (Bamboo) to schedule jobs across the cluster. If selected for
installation, authorization for jobs is acquired from the allocation manager (Gold). This SSS-enabled
version of Maui replaces the one typically provided in the standard OSCAR releases.

3.1.3. Queue Manager: Bamboo
The queue manager (Bamboo) receives user submissions and manages the jobs as they are scheduled
(Maui) and then run via the process manager (MPD). Bamboo was developed specifically for the SSS
project and supports a “PBS like” job submission syntax. It is the gateway between the components
responsible for resource and process management.

3.1.4. System Monitor: Warehouse
The monitoring of nodes and their availability for use by the scheduler is controlled through the
system monitor. The Warehouse system has been designed for scalable management of the large
amounts data, which are often associated with large computing resources. A central repository houses
information acquired from collectors on the compute nodes.

3.1.5. Process Manager: MPD
The startup and management of processes for the system is controlled by the process manager (MPD).
The Multi-Purpose Daemon (MPD) provides the backend for the SSS implementation of this
component, which is taken from the MPICH distribution [5]. This portion of the system is responsible
for the efficient startup and execution of applications on the computing resources as well as the control
of input, i.e., standard input/output, UNIX signals.

3.1.6. Checkpoint Manager: BLCR
The SSS architecture includes a checkpoint component that can be used to stop running processes
and/or restart processes at previously stored instances. A system-level facilities is provided via the
Berkeley Labs Checkpoint/Restart (BLCR) system, which enables Linux processes to be checkpointed
and later restarted with little to no application knowledge. The SSS-OSCAR release also includes a
BLCR-enabled version of LAM/MPI to allow for the checkpointing of MPI jobs across a cluster [6].

3.1.7. Allocation Manager: Gold
The accounting and allocation manager (Gold) is responsible for the tracking and granting of resources
for users. The Gold implementation of this component interacts with the scheduler (Maui) to enforce
these restrictions.

DRAFT [24/06/2005 20:48:28 “scidac-sss_v3.doc.doc”]

4. Conclusion
The success of this effort can be measured in part by the adoption of the software into the research
community and/or industry. The systems software suite has several key features that will make it
attractive for others to adopt. First, the suite is modular, which allows others to easily replace a
component that doesn’t meet their needs or use only the parts of the suite they need. Second, standard
interfaces allows components to be shared across facilities, reducing development and support costs.
Finally, the reference systems software is all provided under an open source license to allow others,
including commercial interests, to use, modify, and ship it as part of their own offering.

Full system software suites are now in production use for over a year on clusters at Ames
laboratory and the Chiba City 200-node cluster at Argonne National Laboratory. Pacific Northwest
National Laboratory and the National Center for Supercomputer Applications have adopted one or
more components from the suite to use on their production systems. The information gathered from
the production use is currently being used as feedback into further developments.

The suite’s scheduler component is the widely used Maui Scheduler. The public Maui release (as
well as the commercial Moab scheduler) has been updated to use the public XML interfaces and has
added new capabilities for fairness, higher system utilization, and improved response time. All new
Maui and Moab installations worldwide (more than 3000/month) now use the system software
interfaces developed in this project.

Acknowledgements
Research supported by the Mathematics, Information and Computational Sciences Office, Office of
Advanced Scientific Computing Research, Office of Science, U. S. Department of Energy, under
contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

References
[1] Al Geist et al. Scalable Systems Software Enabling Technology Center, March 7, 2001.

http://www.scidac.org/ScalableSystems/.
[2] John Mugler, Thomas Naughton, and Stephen L. Scott. The Integration of Scalable Systems

Software with the OSCAR Clustering Toolkit. In Proceeding of 2nd Annual OSCAR
Symposium (OSCAR 2004), Winnipeg, Manitoba Canada, May 16-19 2004.

[3] John Mugler, Thomas Naughton, Stephen L. Scott, Brian Barrett, Andrew Lumsdaine, Jeffrey
M. Squyres,Benoit des Ligneris, Francis Giraldeau, and Chokchai Leangsuksun. OSCAR
Clusters. In Proceedings of the 5th Annual Ottawa Linux Symposium (OLS'03), Ottawa,
Canada, July 23-26, 2003.

Open Cluster Group: OSCAR Working Group. OSCAR: A packaged cluster software for High
Performance Computing. http://www.OpenClusterGroup.org/OSCAR.

[4] John Mugler, Thomas Naughton, and Stephen L. Scott. OSCAR Meta-Package System. In
Proceeding of 3rd Annual OSCAR Symposium (OSCAR 2005), Guelph, Ontario, Canada,
May 15-18 2005.

[5] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation of
the MPI message passing interface standard. Parallel Computing, 22(6):789{828, September
1996.

[6] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, Andrew Lumsdaine, Jason Duell, Paul
Hargrove, and Eric Roman. The LAM/MPI checkpoint/restart framework: System-initiated
checkpointing. In Proceedings LACSI Symposium, Sante Fe, New Mexico, USA, October
2003.

[7] Narayan Desai, Rick Bradshaw, Ewing Lusk, and Ralph Butler. Component-Based Cluster
Systems Software Architecture: A Case Study. Technical Report MCS-P1149-0404,
Argonne National Laboratory, April 2005.

[8] Berkeley Lab Checkpoint/Restart. http://ftg.lbl.gov/checkpoint.
[9] Resource Management and Accounting. http://sss.scl.ameslab.gov/home.shtml.

