White paper February, 2005

What are the System Software Challenges for SciDAC?

Prepared by SciDAC Scalable Systems Software Team

www.scidac.org/ScalableSystems
System Software Challenges

The nation’s premiere scientific computing centers are facing a crisis in which they must rewrite all their home-grown systems software to scale to the multi-teraflops systems that are being installed in their centers. Over the past few years the DOE and others have continued to expand the size of high-end systems. Today there are many systems with more than 1000 processors and several systems with more than 4000 processors. We fully expect this trend to continue in the future with increasing node and processor counts. Indeed the first full scale BlueGene/L system will be delivered in the next year providing a single system with 64 thousand nodes and 128 thousand processors! While this growth has been largely successful on the hardware side, the software needed to manage the growing complexity that comes with larger node counts has continued to lag far behind. In large part the systems management software continues to be based on software developed a decade ago to manage a single system or at most a handful of systems. While many people have worked at patching the software to get it to work on larger systems, there have not been many efforts to design a systems software management infrastructure that is designed for scalability from day one.

The systems software problems for tera-op class computers with thousands of processors are significantly more difficult than for small-scale systems with respect to fault-tolerance, reliability, manageability, and ease of use for systems administrators and users. Layered on top of these are issues of security, heterogeneity and scalability found in today’s large computer centers. The computer industry is not going to solve these problems because market forces push them towards smaller systems aimed at business uses such as web services, database farms, and departmental sized systems. In the longer term, the operating system issues faced by next generation petaop class computers will require research into innovative approaches to systems software that must be started today in order to be ready when these systems arrive.

Goals of the Scalable Systems Software ISIC
The goal of the SciDAC Scalable Systems Software ISIC is to fundamentally change the way future high-end systems software is developed to make it more cost effective and robust. The research involves three efforts. First, collectively getting the DOE centers, NSF centers, and vendors (IBM, Cray, SGI, Intel) to define standardized and flexible interfaces between system components. Second, designing a modular software architecture that is portable across all major supercomputer platforms. Third, producing an open source reference implementation of a fully integrated suite of systems software that can be used across all the terascale computer centers for the cost effective management and utilization of their computational resources. The scope of our suite encompasses the aspects of system management illustrated in Figure 1.

[image: image1.png]
Figure 1. The mission of the Scalable Systems Software center is the development of an integrated suite of systems software and tools for the effective management and utilization of terascale computational resources particularly those at the DOE facilities.
Highlights

Designed Modular Architecture: A critical component of our design is its modularity. The ability to plug and play components is important because of the diversity in both high-end systems and in the individual site management policies. For example, an individual site may have some very specialized requirements for job scheduling that may require them to write their own scheduling component. Figure 2 shows the systems software architecture and how all the components interface with each other. The Event Manager, Service Directory, and Communication library shown in the middle connect to all the other components and allow individual components to announce their participation in the system, find one another, and communicate both synchronously (send/receive) and asynchronously (register/notify). They play a key role in the portability of the architecture to different terascale computing facilities and hardware.

[image: image2.jpg]
Figure 2. System Software Architecture and component interfaces.

Defined XML based interfaces that are independent of language and wire protocol: The interfaces between all the components have been fully documented and made publicly available allowing others to write replacement components (or wrap their existing components) as needed. Components communicate through XML messages and can use one or more of the extensible set of wire protocols supplied by the Communication library. The API imposes no restrictions on the language a particular component is written in. Our reference implementation has a mixture of C, C++, Perl, Java, and Python components. This allows a great deal of flexibility to the component author and allows the same interface to work on a wide range of hardware architectures and facility polices.

Reference Implementation Released: Version 1.0 of our fully integrated systems software suite was released at SC2005 and will be followed by quarterly updates for the next year. The suite is available in both source form and as a precompiled, integrated package in the form of an OSCAR (Open Source Cluster Application Resources) distribution. OSCAR distributions (of which there are several) have been adopted by many cluster vendors and have been downloaded by thousands all around the world. By leveraging the popularity of OSCAR, we raise our software suites profile and availability.

Adoption: The success of a CS ISIC can be measured in part by the adoption of the software into the research community and/or industry. The systems software suite has several key features that will make it attractive for others to adopt. First, the suite is modular, which allows others to easily replace a component that doesn’t meet their needs or use only the parts of the suite they need. Second, standard interfaces allows components to be shared across facilities, reducing development and support costs. Finally, the reference systems software is all provided under an open source license to allow others, including commercial interests, to use, modify, and ship it as part of their own offering.

Production Users: Full system software suites are now in production use for over a year on clusters at Ames laboratory and the Chiba City 200-node cluster at Argonne National Laboratory. Pacific Northwest National Laboratory and the National Center for Supercomputer Applications have adopted one or more components from the suite to use on their production systems. The information gathered from the production use is currently being used as feedback into further developments. We are also in discussion with DOD-HPCMP sites about use of some of our system software components.

Adoption of API: The suite’s scheduler component is the widely used Maui Scheduler. The public Maui release (as well as the commercial Moab scheduler) has been updated to use the public XML interfaces and has added new capabilities for fairness, higher system utilization, and improved response time. All new Maui and Moab installations worldwide (more than 3000/month) now use the system software interfaces developed in this ISIC. This includes: 75 of the top 100 supercomputers in the TOP 500 list and commercial industries such as Amazon and Ford.

In February 2005 we held discussions with Cray about their software roadmap for the Leadership-class systems. Cray also has a plan to use XML messages to connect their systems components. We have exchanged information on our XML format, process manager API, and API test harness.

View to the Future—CS ISIC Gaps:

Although much has been accomplished in the CS ISICs, several important gaps have been identified requiring research and development over the next few years in order to provide capable Leadership-class resources to the SciDAC scientists (see Figure 3).
· Given the heterogeneous nature of the multiple leadership-class machines, science teams need to have a robust environment that presents similar programming interfaces and tools across the different machines.

· There is a lack of understanding of the fault tolerance requirements in the OS and systems software, particularly as systems scale up to petascale in the 2010 time frame.
· Support for application users submitting interactive jobs is presently not addressed, but will become more important as scientists begin to use computational steering for scientific discovery.

· Security has been addressed in the communication infrastructure, but not at higher levels where one wishes to restrict access to certain components while allowing access to others.

· There are increasingly demanding needs on the file systems including security, scalability, and fault tolerance. It is critical to the success of the NLCF that these issues be addressed.

The National Leadership Computing Facility (NLCF) will incorporate several different systems including a Cray X1 vector systems, a RedStorm system, and an IBM BlueGene system. While this diversity will be a benefit for many applications, it will add significant complexity to the system management. This is an area where the systems software effort can offer significant benefits. If the suite is optimized to run on each of the architectures it would provide the system administrators as well as the scientists with a uniform interface to each system. Many of the underlying components would have different implementations, but the modularity of the system should allow much of those differences to be hidden

One of the challenges of such a heterogeneous environment is that while the application may be developed in a standard language such as FORTRAN or C that is available on most machines, the underlying algorithms implemented in the software typically do not translate as easily to “yet another” architecture. Thus, at best you can hope for an application that does not run optimally and at worst, the application will simply not run at all. Research into unified computing environments that employ techniques to simplify leveraging of the underlying architecture will go a long way in improving this situation. Here the hope is to provide a common look and feel for application development across the varying hardware platforms used to construct NLCF class computing. This will include everything from common libraries, with their underlying implementation hidden yet taking advantage of specific architectural traits, to common system administration suites for the operators.

Today batch scheduling is the norm, but there is an increasing desire by science teams to be able to do things more interactively, one example is to steer a computation while visualizing the live results of a run. Another problem that is emerging is how to dynamically expand, or scale-up, a computation in an efficient manner during runtime.

Research in survivability and resiliency of hardware/software systems will go far to increase the usability and scalability of our NLCF class machines. In those situations where a failure can not be circumvented, an extended recovery capability with a transparent failure recovery is needed in order to provide more future options to better enable the requisite scale-out for NLCF class computing. Some of these options include reliability-aware intelligent checkpointing, a sophisticated rule-based recovery, diskless checkpointing on non-volatile memory, and a common interface layer available to the various message passing and shared memory schemes.

High-end, parallel file systems are evolving as the de-facto standard for supercomputing centers due to their attractive price-performance ratio, high/sustained throughput required for data intensive applications and tight integration with computing nodes. However, they lack strong availability semantics, often times creating "islands" of file system hierarchies due to head node failure, etc. In addition, seamlessly scaling to several hundreds of terabytes is also an issue. To this end, exploring low-cost alternatives that can complement these systems to transparently and reliably make available several orders of terabytes through storage aggregation can be worthwhile. Local cluster storage or workstation storage can be transparently accrued to offer a highly-available, replicated store for these high-end parallel file systems. Further, to address seamless application functioning, client accesses to partitioned (unavailable) portions of the parallel file system can be transparently channeled to such aggregate stores and eventually to archival stores, thereby creating a seamless hierarchical pipeline of differentiated storage services. These research areas can help improve the capacity, availability and serviceability of supercomputer storage systems.

Security is becoming a big issue at supercomputer centers as the sophistication of attacks has increased significantly in the past couple years. Logins are shifting to One-Time-Passwords and hardware security tokens. These changes are going to affect the SciDAC teams, applications, and system administrators. Research is required in systems software and at higher levels in order to understand the impact of increased security on scientific progress, and explore ways to maintain or even improve productivity in this tighter security.

[image: image3.jpg]
Figure 3. Hardware teams, SciDAC CS teams, and Science teams all contribute to ultimate goal of scientific breakthroughs

