February, 2005

Scalable Systems Software for Terascale Computer Centers

www.scidac.org/ScalableSystems
Summary

The nation’s premiere scientific computing centers are facing a crisis where they are having to rewrite all their home-grown systems software to scale to the multi-teraflops systems that are being installed in their centers. The goal of the Scalable Systems Software project is to fundamentally change the way future high-end systems software is developed to make it more cost effective and robust. The research involves two efforts: Collectively getting the DOE centers, NSF centers, and industry to agree on standardized interfaces between system components. Secondly, producing a compliant, fully integrated suite of systems software that can be used across all the terascale computer centers for the cost effective management and utilization of their computational resources.
The Scalable Systems Software Center is a multi-institution, multi-disciplinary group formed in 2001, composed of experts from around the country working as single team to develop an integrated suite of machine independent, scalable systems software components needed for the Scientific Discovery through Advanced Computing (SciDAC) initiative. The goal of the center is the creation of a set of open source solutions for the management of large-scale computer systems. The scope of our suite encompasses the aspects of system management illustrated in Figure 1.

[image: image1.png]
Figure 1. Systems software areas that are being standardized, integrated, and made scalable to promote scientific discovery.

Over the past few years the DOE, along with others, have continued to expand the size of high-end systems. Today there are dozens of systems with more than 1000 processors and several systems with more than 4000 processors. We fully expect this trend to continue in the future with increasing node and processor counts. Indeed the first full scale BlueGene/L system will be delivered in the next year providing a single system with 64 thousand nodes and 128 thousand processors! While this growth has been largely successful on the hardware side, the software to needed to manage the growing complexity that comes with larger node counts has continued to lag far behind. In large part the systems management software continues to be based on software developed years ago to manage a single system or at most a handful of systems. While many people have worked at patching the software to get it to work on larger systems, there have not been many efforts to design a systems software management infrastructure that is designed for scalability from day one.

The systems software problems for tera-op class computers with thousands of processors are significantly more difficult than for small-scale systems with respect to fault-tolerance, reliability, manageability, and ease of use for systems administrators and users. Layered on top of these are issues of security, heterogeneity and scalability found in today’s large computer centers. The computer industry is not going to solve these problems because business trends push them towards smaller systems aimed at web serving, database farms, and departmental sized systems. In the longer term, the operating system issues faced by next generation petaop class computers will require research into innovative approaches to systems software that must be started today in order to be ready when these systems arrive.
The mission of the Scalable Systems Software center is the development of an integrated suite of systems software and tools for the effective management and utilization of terascale computational resources particularly those at the DOE facilities. While the focus is on the needs of the DOE centers, the team is actively seeking input and collaboration opportunities with groups such as other governmental agencies (DOD, NSF, NASA) and with companies such as IBM, Cray and others. In the long term we hope to attract vendor interest in our suite such that they might pick it up and provide it with their hardware offerings. The suite currently under development has several key features that will make it attractive for others to pick up. First, the suite is designed to be modular. This allows others to use only the parts of the suite they need as well as being able to easily replace a component that doesn’t meet their needs. Second, the interfaces between the components are all public and fully documented allowing others to write replacement components as needed. Finally, the software under development is all provided under an open source license to allow others, including commercial interests, to use, modify it, and ship it as part of their own offering. While the focus of the development effort is the high-end systems the suite will provide many benefits for the myriad of smaller scale systems as well.

Current Progress:

As described previously, a critical component of our design is its modularity. The modularity is important because of the diversity in both high-end systems and in the individual site management policies. For example, the process management and monitoring components need different implementations to function optimally on a large SMP versus a large distributed memory machine. Similarly, an individual site may have some very specialized requirements for job scheduling that may require them to write their own scheduling component. Thus one of our first key design decisions was how to break down the software requirements into a set of functional components. Figure 2 illustrates our framework.

[image: image2.png]
Figure 2. System components presently under development and their interfaces. Dark lines represent working interfaces.

Figure 2 also illustrates the significant progress to date on producing scalable components and defining standardized interfaces between them. The bold lines represent working interfaces. The light lines represent interfaces in progress. The colors of the components represent which of the four multi-lab working groups inside the project is responsible for it. The center has specified that all of the public interfaces will use an XML message format, framed on the wire with one of a specified group of wire protocols which offer varying levels of security and thus varying levels of complexity. The XML message format of each component forms its public interface and is documented in one of the centers electronic notebooks. Thus to replace a single component an end site simply needs to implement the same public XML interface. This allows a great deal of flexibility to the component author and allows the same interface to work on a wide range of hardware architectures from SMPs to clusters. For example, the Process Manager interface specifies the interface other components can use to make requests of the Process Manager. The interface does not specify anything about how the Process Manager communicates with cluster nodes (if at all), or how the Process Manager manages processes. On a traditional distributed memory machine the Process Manager will likely have a process on each node that must communicate with the master node. On a machine like IBM’s BG/L the Process Manager may be a simple component that translates requests from the SSS SML interface into requests to the native IBM process management services. Similarly a large SMP system might simply fork a child process off of the master for each group of processes.

Along with the interfaces the center is developing a full set of prototype components to prove the utility of the interfaces. Some component implementations have been developed as a modification of an existing program such as the Maui scheduler. However, most components have been developed from scratch. After several beta releases the center has recently released version 1.0 of the suite at the SC2005 conference. Beginning in 2005 we will be targeting an updated software release once per quarter. The suite is available in both source form (all components are released under an open source license) and as a precompiled, integrated package in the form of an OSCAR distribution. The full suite is now in production use on clusters at Ames laboratory and Argonne National Laboratory. The information gathered from the production use is currently being used as feedback into further developments.

(Not sure the following really works… I want to highlight the components with significant short term external use.)

As mentioned the prototype scheduler component is the widely used Maui Scheduler. Maui has been modified to use the public XML interfaces throughout and has now implemented them in both the server and client components of the scheduler. These developments have been rolled in to the public Maui release such that all new Maui installations will use the SSS specified interfaces.

The accounting and allocation component, Gold, has been written from scratch as part of the center. Gold has now reached the point where it will soon be deployed on the production system at PNNL. (Get Scott to comment here??)

The Checkpoint/Restart component, BLCR, is a from scratch checkpoint/restart implementation for Linux. Currently BLCR has demonstrated checkpoint/restart and suspend/resume on parallel jobs and is part of the 1.0 release. (Get Paul to add something here??)

Future work:

Tie ins to FastOS projects (Linux projects, alternative OS projects K42…)

IBM’s BlueGene/L system ranks as the current fastest computer in the world and will soon be upgraded to 64 thousand nodes. One factor in IBM’s design is the simplicity of the nodes, both in terms of hardware and software. While this has aided in the scalability of the system, it does not necessarily make the system easier to manage. For example, the compute node kernel runs only a single thread. Thus process management and monitoring must be performed in a quite different fashion than on a traditional distributed memory system. One possible implementation of our suite would include a process management component that simply wrappers the provided IBM process launching software with the SSS interfaces. The BG/L system offers a variety of monitoring data via its JTAG management network so a monitoring component can certainly obtain the data. The challenge will be in producing a monitoring component that can digest the volume of data available on 64 thousand nodes into a data stream that is both meaningful and finite in size. The SSS team is already working in close collaboration with IBM on the BG/L project and expects the collaboration to continue on BG/L as well as follow on systems.

Cray (X1, redstorm, XD1…)

Cray has several products currently available or under development such as the X1 vector system, the RedStorm system and the XD1 system. While these platforms are converging on Linux as the OS they have significant diversity. For example, the RedStorm system is designed for high-scalability and uses a lightweight OS. While the XD1 system is less scalable, runs a full blown Linux OS and offers a reconfigurable computing option. Each of these platforms offers unique capabilities and unique management challenges. The modular nature of the SSS suite offers significant advantages to both Cray and end sites since the relevant components can easily be optimized for the specific system providing a unified interface to both users and system administrators.

NLCF

The NLCF will incorporate several of the previously mentioned systems including X1 vector systems, a RedStorm system, and a BlueGene/L system. While this diversity will be a benefit for many applications, it will add significant complexity to the system management. This is an area where the SSS suite can offer significant benefits. If the suite is optimized to run on each of the architectures it would provide the system administrators as well as the users with a uniform interface to each system. Many of the underlying components would have different implementations, but the modularity of the system should allow much of hose differences to be hidden.

