
Scalable System Software Less Restricted
Syntax Specification Draft

Narayan Desai Rusty Lusk Rick Bradshaw

January 6, 2005

1 Purpose

Through the last three years of the Scalable Systems Software project, the
group has recognized the need for a scalable, flexible, and validateable com-
mand language. SSS components implement an RPC mechanism, like XML-
RPC[2] or SOAP[1]. Existing RPC protocols were disqualified due to a va-
riety of systems software specific issues, like security. These problems have
been mainly resolved in the SSS messaging library[?] through the introduc-
tion of an abstraction layer for messaging protocols.

This approach allows the introduction of a specific message payload for-
mat that is tailored to the issues faced by high-performance, and scalable
system software. This messaging protocol needs to support the functional
semantics of RPC. After some analysis, an RPC mechanism has three im-
portant goals:

• Server side matching of data elements: System software components
for ultra-scale systems will store large volumes of data. For the sake
of correctness, users of these components need to perform queries with
referential integrity. In order to achieve scalability, users must be able
to perform complex queries without downloading all data, processing
it, and uploading the results.

• Control of returned fields: Similarly due to scalability concerns, users
must be able to specify which data elements are of interest, in relation
to matched elements. Overloading matching criteria for this tasks may
result in wasteful transmission of unimportant data.

1



• Uniform access to this data API: These functions must be accessible
through all aspects of the RPC messaging language.

Based on the experiences gained from several iterations of command syn-
tax design, we designed the following syntax, named the “Less Restricted
Syntax”. (henceforth referred to as the LRS)

2 Data Types

In order for structured matching to be universally available and usable, data
types must be well defined in the LRS. Moreover, matching must be a well
defined operation.

2.1 Data Type Definitions

Each high-level data type in the LRS has a unique name. The purpose of
unique naming is to support type-checking as in function prototypes, and to
match types with their originating component. This data element will have a
set of pre-defined child elements, which function as attributes. The following
is an example of a partially specified process-group instance.

<ProcessGroup>

<User>desai</User>

<PGID>47283</PGID>

<Count>72</Count>

<MemoryLimit unit=’MB’>512</MemoryLimit>

</ProcessGroup>

In the above example, User, Count, MemoryLimit, and PGID are all
single-instance attributes of a ProcessGroup instance. Each of these at-
tributes can contain a unit attribute to further describe the value. Single-
instance attributes of a data type are attributes that can occur once in any
instance. Multiple-instance attributes can also be defined, but they require a
container class. This is required for proper matching semantics, described in
Section 4.1 The following is an example of a partially-specified ProcessGroup
instance with a multiple-instance attribute.

2



<ProcessGroup>

<User>desai</User>

<PGID>47283</PGID>

<Processes>

<Process>

<Host>ccn1</Host>

<PID>4263</PID>

<Session>4262</Session>

</Process>

<Process>

<Host>ccn2</Host>

<PID>6436</PID>

<Session>6435</Session>

</Process>

<Process>

<Host>ccn3</Host>

<PID>2543</PID>

<Session>2643</Session>

</Process>

</Processes>

</ProcessGroup>

Multiple-instance attributes can be nested to arbitrary depth, as required
by the data type definition. This system can be used to describe any data
type needed by system software components. This use of nesting also allows
rigorous validation to used. This means that data instances, once validation
has occurred, can be assumed to be well-formed.

3 Syntax

Commands in the LRS fit a basic pattern.

<Command option1=’val1’ option2=’val2’>

<Specification1/>

<Specification2/>

</Command>

Commands are enumerated for data instances described by Specification.
That is, function Command is executed with the specified options for each

3



data instances that matches Specification. Matching is described in Sec-
tion 4.1. Each command results in a response message that contains the
result of the command match and execution. In the case of multiple specifi-
cations, instances that match one or more specifications are operated on. In
this case, the function is executed once even if it matches multiple specifica-
tion. This set of rules provides Disjunctive Normal Form, guaranteeing that
any arbitrary subset of instances can be matched by a single function call.
Response messages consist of a data container, which includes all matching
instance objects. For example:

<DataContainer>

<Instance1/>

<Instance2/>

<Instance3/>

</DataContainer>

4 Semantics

LRS commands are processed in three steps. First, the specification is
matched against any data type instances currently defined. This process
determines which instances the function will be executed on. Second, the
function is executed on this set of instances. Third, the return specification
is used to determine which attributes should be included in the response
specification.

4.1 Matching

Specifications are matched on an instance by instance basis. An instance
matches iff:

• The specification tag name is the same as the instance tag name.

• Each single-instance attribute specified in the specification matches
that single-instance attribute in the instance.

• Each multiple-instance attribute specified in the specification matches
at least one instance of the attribute in the data instance.

4



• If the specification includes the attribute match and its value is false,
the match is automatically true.

A single or multiple-instance attribute in a data instance matches the one
specified in a specification if the specified matching operation and specifica-
tion value match the instance attribute value. That is, if the specification
is:

<ProcessGroup>

<PGID op=’gt’>54</PGID>

</ProcessGroup>

Any process group with a PGID greater than 54 would match in this
case. Several matching operations are defined, allowing for multiple matches.
These operations are:

• eq: Equal. This is the default operation, used if none is specified.

• gt: Greater than. The instance value is greater than the one specified.
This operation only works on integers.

• range: The instance value is contained in the specified range. This
operation also only works on integers.

• re: Regular expression. The instance value matches the specified regu-
lar expression.

Each of these operations can be negated with the addition of the negate
attribute in the attribute specification. For example, process groups with
PGIDs less than 55 could be matched using:

<ProcessGroup>

<PGID op=’gt’ negate=’true’>54</PGID>

</ProcessGroup>

5



4.2 Function Execution

Functions operate in the context of the data instances currently stored in
components. For example, a KillProcessGroup command sent to the process
manager will match and act on some number of ProcessGroup instances.
With respect to the underlying set of instances, each function can have one
of three effects. The first, is the addition of one more more instances to
the dataset. CreateProcessGroup, AddEvent, and AddLocation all have this
result: new entries are added to the underlying dataset. The second possible
effect is the deletion of one more more elements from the dataset. DeleteLo-
cation and WaitProcessGroup have this effect. The third possibility is that
the function execution has no effect on the size of the dataset; that is, in-
stance data may be changed, but no instances are added or removed from
the dataset. This case is the most common. GetLocation, GetProcessGroup,
SignalProcessGroup, and SetNodeState are all examples of this sort of func-
tion. Functions can have any effect on matched instances; they may update
certain fields, or conduct an operation that has no effect whatsoever on the
instance data state.

4.3 Data Return

Once functional execution has completed, a response must be constructed
for the client. This response will contain a child element for every instance
matched. Each of these elements will contain attributes as specified by the
specification. By default, and attribute included in the specification will be
included in the response, however, this behavior can be surpressed by the
addition of a response=’false’ attribute to the attribute specification. For
example the specification:

<ProcessGroup>

<PGID op=’gt’>54</PGID>

<Count op=’gt’ return=’false’>16</Count>

<User match=’false’/>

</ProcessGroup>

Will return the PGID and User fields on all jobs with PGID greater than
54 and a processor count greater than 16. In this case, the process count
isn’t included with the response. Note that the match and return attributes
aren’t generally used in conjunction with one another.

6



5 Examples

References

[1] Nilo Mitra. Soap version 1.2 specification. W3C Recomendation, June
2003. http://www.w3.org/TR/soap/.

[2] Dave Winer. Xml-rpc specification. World Wide Web, June 2003. http:
//www.xmlrpc.com/spec.

7

http://www.w3.org/TR/soap/
http://www.xmlrpc.com/spec
http://www.xmlrpc.com/spec

	Purpose
	Data Types
	Data Type Definitions

	Syntax
	Semantics
	Matching
	Function Execution
	Data Return

	Examples

