
Building a test suite for SciDAC SSS

Testing and Integration Working Group

22nd September 2004

1 Introduction

The goal of this effort is to design and develop a comprehensive test suite for the SciDAC scalable systems software (SSS).

The test suite will include

1. tests that check for a proper installation of individual components,

2. tests that check correctness of individual components as well as correctness of component interactions,

3. tests for durability (i.e., stress tests), and

4. tests that evaluate performance and scalability of individual components and the system as a whole.

The short-term goal is to incorporate installation and correctness tests into the test suite by SC’2004.

1.1 Overview of the SSS software

Figure 1 shows the SSS components that are either complete or under development. Bold lines represent working interfaces

between components. Table 1 list components, package names, executable, and existing tests for each of the components.

1.2 A proposed testing infrastructure

Requirements for the testing infrastructure:

1. We want component tests to be able to express dependencies to other components. For example, we may not want to

run tests on the scheduler if the event manager did not pass its installation and correctness tests.

2. We want to allow diagnostic testing. A component developer may want to run a different set of tests after a failure.

For example, the developer may want to re-run the original test with detailed logging turned on.

3. We want all component-specific tests to be part of the component distribution. The developer knows which tests to

run and updates the tests as the functionality of the component changes.

We chose APITest to support our testing infrastructure because of it’s ability to satisfy the first two requirements (de-

pendencies and diagnostic testing). To satisfy the third requirement, our proposed testing infrastructure consists of a single

APITest script called “sssTest.aps” (located in the oscar distribution) and a standard set of directories and APITest batch files

included with each SSS component distribution. Figure 2 shows the directory hierarchy of an SSS component–highlighting

1

Meta
Scheduler

Meta
Monitor

Meta
Manager

Grid Interfaces

Meta Services

Process
Manager

Checkpoint/
Restart

Authentication
communication

Node State
Manager

Node
Configuration

& Build
Manager

Hardware
Infrastructure

Manager

Job Queue
Manager

Allocation
Management

Usage
Reports

Scheduler
System &

Job MonitorAccounting

Service
Directory

Event
Manager

Resource Mgmt WG

Process Mgmt WG

Build & Config WG

Legend

Figure 1: System components under development. Bold lines represents working interfaces between components.

component root/

testing/

install-tests/

install-tests.apb
...

correctness-tests/

correctness-tests.apb
...

stress-tests/

stress-tests.apb
...

perf-tests/

perf-tests.apb
...

...

Figure 2: Required directory structure for SSS component distributions.

2

Table 1: Software packages developed for the SciDAC Scalable Software Systems.

Component Name Developer(s) (Affiliation) Package name Executable(s) to test existing tests

Build and Configure Working Group

Service Directory Desai (ANL) ssslib sd.py

Event Manager Desai (ANL) ssslib emng.py

Hardware infrastructure manager

Node configuration and build managerDesai (ANL)/Naughton (ORNL)

Node state manager Bradshaw (ANL) ssslib

Meta manager Scott (ORNL)

Resource Management Working Group

Meta Scheduler D. Jackson (PNNL)– ?Ames? Maui-sss

Accounting S. Jackson (PNNL) Gold

Allocation Management S. Jackson (PNNL) Gold

Job queue manager Bode (Ames) Bamboo

Usage reports

Scheduler D. Jackson (PNNL) Maui-sss

Process Management Working Group

Checkpoint/restart Hargrove (LBNL) blcr

Process manager Lusk/Desai (ANL) mpich2/ssslib

System and job monitor Steffen (NCSA) Warehouse

Meta monitor Steffen (NCSA)

Authentication communication Desai (ANL) ssslib

Discussion item:

A short-term goal of this effort is to complete this table. To ease this task, we’ve divided up the work...

• Naughton is responsible for components developed by the build and configure working group,

• Oldfield is responsible for components developed by the process management working group, and

• McLendon is responsible for the resource management working group.

(End of discussion item.)

3

the directories and files required by the testing infrastructure. The root directory of each component includes a “testing” di-

rectory that has four sub-directories: “install-tests”, “correctness-tests”, “stress-tests”, and “perf-tests”. Each sub-directory

will also have an APITest batchfile named “[dirname].apb” that executes developer-supplied tests for that component.

The sssTest script searches each installed component for the appropriate batch files, constructs a large dependency graph

(based on the search results and the dependencies specified by each component), and traverses the graph–executing install

tests, correctness tests, and (optionally) the stress and performance tests for each component. The sssTest script reports a

component failure for any of the following reasons:

• the appropriate test directories do not exist,

• the directories exist, but the APITest batch files do not exist,

• the install tests return failure, or

• the correctness tests return failure.

2 Constructing the tests (developer responsibilities)

Discussion item:

Before diving into the developer responsibilities, we should point out that although developing a complete set of

APITest scripts (as listed below) may seem to be a daunting task, our hope is that many of these tests already exist in

the form of shell, perl, Python, or C programs. It is enough, in the short-term, to supply us (see the discussion item

below Table 1 for the person responsible for your component) with those tests and we will build the corresponding

APITest script file. In most cases, the APITest script will simply call your test directly. Each test is meant to be short

and simple, so if the test does not already exist, it should be easy to construct.

(End of discussion item.)

2.1 Pre-installation tests

Although technically not part of the testing infrastructure, the developer is responsible for making sure to check for sys-

tem compatibility and software requirements before installation. In particular the configure scripts should resolve issues

like architectural requirements (e.g., requires client nodes with disks), system requirements (e.g., clients need threads and

TCP/IP), and software requirements (e.g., requires Python (ver >= 2.3) at compile time. For pre-compiled RPMs, the spec-

ification (i.e., “[component-name].spec”) files should be properly written to execute similar checks for architectural and

software requirements.

2.2 Installation and configuration tests

Each component distribution is to include installation and configuration tests in the “testing/install-tests/install-tests.apb”

batch file. These tests are executed by the the sssTest script after installation of all components. The installation-tests

include:

1. Checks for configuration files, executables, libraries, ...

(a) What is the file name/path?

(b) What are the expected file permissions or is that significant?

4

(c) Do you install into a global file system location, e.g.,/usr/local/bin, /usr/bin/ or a “private” loca-

tion, e.g.,/opt ?

2. Checks for software conflicts.

(a) There might be applications or other component implementations that are known to fail when used by your

components, e.g., a particular MPI implementation.

(b) Do you provide an Env-Switcher/Modules approach for setting environment, e.g., PATH, etc.?

3. Tests for proper initialization/shutdown of network services.

(a) Do you start network services on the cluster?

i. Service names?

ii. Do they honor standard init script capabilities,servicename {start|stop|restart|status}

4. Tests for special Linux kernel dependencies? This test really should be executed before installation by configure

script or by the RPM spec file (for binary distributions), but it wouldn’t hurt to run these tests here as well.

5. Tests for other required software packages (oscarized packages or not), or SSS components? Ex. Java, SSSLib,

Xerces. These tests should also be run before installation.

6. What parts of your software run on the headnode/clients? (Note, this is usually expressed in oscar packages in the

‘config.xml’ file.)

2.3 Correctness tests

The component developer supplies correctness tests in the “testing/correctness-tests/correctness-tests.apb” APITest batch

file. The top-level sssTest script executes the correctness tests after executing the installation tests for a particular compo-

nent. The correctness tests include:

1. Tests to start/stop a component. Things to consider for these tests...

(a) Requirements:

i. Prerequisite components (e.g., the component needs the event manager and service directory to be running).

ii. Environment variables: ...

iii. Other requirements...

(b) How do we start/initialize a component?

(c) How do we check that the component is up and running?

(d) How do we shutdown a component?

(e) How do we verify that the component shutdown properly?

2. Functionality tests.

(a) Need a separate test for each type of request.

i. What XML needs to be transmitted to the component?

5

(b) What does the result look like?

i. How should we format the result to make it readable.

(c) How do we determine success/failure?

i. From the request result?

ii. By looking for new events in the event manager?

iii. By checking the existence/contents of a file?

iv. Should the test time out? When?

v. Others tests for success or failure...

2.4 Stress tests

2.5 Performance and scalability testing

6

