Scalable Systems Software for Terascale Computer Centers

www.scidac.org/ScalableSystems
Coordinator: Al Geist ORNL

Participating Organizations:

DOE Labs – ORNL, ANL, Ames, LBNL, PNNL, SNL, LANL

NSF Supercomputer Centers – NCSA, PSC, SDSC

Vendors – IBM, Cray, Unlimited Scale, Intel, SGI, HP

Executive Summary

The nation’s premiere scientific computing centers are facing a crisis where they are having to rewrite all their home-grown systems software to scale to the multi-teraflops systems that are being installed in their centers. The goal of the Scalable Systems Software project is to fundamentally change the way future high-end systems software is developed to make it more cost effective and robust. The research involves two efforts: Collectively getting the DOE centers, NSF centers, and industry to agree on standardized interfaces between system components. Secondly, producing a compliant, fully integrated suite of systems software that can be used across all the terascale computer centers for the cost effective management and utilization of their computational resources. Significant progress has been made on both efforts in the first eighteen months of the project. In the first effort an MPI-like process is being used to define XML interfaces between components. These interfaces are being tested and continue to evolve as the integration efforts continue. To promote usability, the defined interfaces accept multiple wire protocols and the connected components can be written in several different languages. In the second effort, the research has developed a Service Directory component, which allows components to find each other and determine what interface they understand, an Event Manager that keeps track of the entire integrated suite, and software to provide communication service between components as well as a flexible authentication scheme to provide security to the overall system. The research has produced working prototypes of scalable scheduler, allocation manager, job manager, system monitor, checkpoint, and process manager components.

The Scalable Systems Software project is a catalyst for fundamentally changing the way future high-end systems software is developed and distributed. It will reduce facility management costs by: reducing the need to support home-grown software, making higher quality systems tools available, and being able to get new machines up and running faster and keep them running. The project will also facilitate more effective use of machines by scientific applications by providing scalable job launch, standardized job monitoring and management software, and allocation tools for the cost effective management and utilization of terascale computational resources.
1.0 Introduction

System administrators and managers of terascale computer centers are facing a crisis. The nation’s premiere scientific computing centers all use incompatible, ad hoc sets of systems tools and these tools were not designed to scale to the multi-teraflop systems that are being installed in these centers today. One solution would be for each computer center to take their home-grown software and rewrite it to be scalable. But this would incur a tremendous duplication of effort and delay the availability of terascale computers for scientific discovery.

The purpose of the Scalable Systems Software project is to provide a much more timely and cost effective solution by pulling together representatives from the major computer centers and industry and collectively defining standardized interfaces between system components. At the same time this group will produce a fully integrated suite of systems software and tools that can be used by the nation’s largest scientific computing centers.

The scalable systems software suite is being designed to support computers that scale to very large physical sizes without requiring that the number of support staff scale along with the machine. But this research goes beyond just creating a collection of separate scalable components. By defining a software architecture and interfaces between system components, the Scalable Systems Software research is creating an interoperable framework for the components. This makes it much easier and cost effective for supercomputer centers to adapt, update, and maintain the components in order to keep up with new hardware and software. Publicly documented interfaces are a requirement because it is unlikely that any package or vendor can provide the flexibility to meet the needs of every site. A well-defined interface allows a site to replace or customize individual components as needed. Defining the interfaces between components across the entire system software architecture provides an integrating force between the system components as a whole and improves the long-term usability and manageability of terascale systems at supercomputer centers across the country.

The standardization of the systems interfaces is being done using a process similar to that used to successfully define the message passing standard. It is an open forum of university, lab, and industry representatives who meet regularly to propose and vote on pieces of the standard.

Figure 1 shows all the components and interactions that a typical supercomputer center has to deal with. The complexity of this diagram represents the significant challenge this effort is undertaking. Large computer centers typically have several, often heterogeneous, systems and must schedule and monitor jobs across them so the architecture shown in figure 1 has a meta-layer to manage multiple computers within a singe computer center. The figure also illustrates that the primary customers of this effort are the system administrators and supercomputer center managers. The secondary beneficiaries are the scientists who are able get their science done because the integrated tool suite allows the computer center run more smoothly.

[image: image1.png]‘Access control
Security
manager.

Interacts with
all components

all componer
Agplication Environment P

Figure 1. Prototype Architecture for System Software Components and Interfaces

1.1 Organization and Working Groups

The organization structure is set up with Al Geist (ORNL) as the Scalable Systems Software coordinator, four working group leaders under him, and project participants making up the working groups. An integrated effort is key to the success of the Scalable Systems Software project. The project has been organized to foster collaboration across all the organizations involved. Each working group is composed of members from several organizations and the leaders of the working groups come from across the organizations.

Four working groups and leaders are:

1. Node build and configuration - leader Narayan Desai (ANL)

2. Resource management and accounting - leader Scott Jackson (PNNL)

3. Process management, monitoring, and checkpointing - leader Paul Hargrove (LBL)

4. Validation and testing - leader Erik DeBenedictis (SNL)

Working groups are cross-fertilized with members from other groups so that the decisions and ideas about interfaces and components in one group get transferred to the others. The fact that the prototype components developed by each group work with components developed by other groups is a testament to the success of integrated effort.

1.2 Project management

The Scalable Systems Software Project is managed through quarterly face-to-face meetings, weekly working group teleconferences, and daily entries in electronic notebooks. The working groups have three teleconferences per week and notes from these meetings as well as progress in each of the working groups can be found in the individual notebooks set up for the working groups. Each quarter there has been an average of 50 pages of notes put into the notebooks, which is just to say that the working groups are quite active and making good progress defining an XML-based interface across all the system software components. Project material, ideas, specs and meeting notes are kept in shared open notebooks, which are accessible from the project web site.

1.3 Overall project progress

In the initial 18 months of the Scalable Systems Software project there has been significant progress. Figure 2 shows the components that are presently under development and the interfaces that have been defined. Working prototypes exist for the components and interfaces that are outlined in bold.

[image: image2.png]

Figure 2. Progress to date on the integrated suite of system software. The colors represent the working group that is responsible for those components. Yellow is Resource management group, purple is Process management group, gold is Build and Configure group, and blue is the Validation and testing group.

Detailed progress by the working groups is given in the following sections.

2.0 Build and Configuration Management Working Group

In this section we describe the challenges faced by developers when designing build and configuration management components and abstractions for these components. We also discuss our progress to date, and our long-term goals inside and outside of the context of the Scalable Systems Software Center.

The primary challenge of developers in this area is to provide tools to manage the hardware and software in clusters in an efficient and scalable way. The techniques needed for these tools are not well understood yet. The primary goal of the Scalable Systems Software Center in this area is to define a set of interfaces whereby other cluster components can interact with the system management components.

Until now, a systematic approach has not been taken to the study of build and configuration management systems. This makes the design of abstract interfaces that support arbitrary build and configuration management systems particularly difficult.

There is extremely large variance in the techniques and tools commonly used for system management. The primary axis along which these tools differ is configuration description.

Description differences can largely be classified as variance of metadata. Metadata is used in these descriptions to both reuse configuration elements, and reduce the overall size of the description. At the less metadata-structured end of the spectrum, there are systems that employ large amounts of binary data, without much more metadata than a filename for any particular piece of configuration description. By contrast, metadata oriented systems can use finer granularity configuration elements (in many cases, these elements are smaller than complete files) and calculate the configuration based on these bits of configuration.

Basic functionality also varies between systems. Some systems only support a single configuration. Others support large numbers of configurations. Some systems only support configuration of a single system, as in the case of BProc [2] based clusters.

Systems that use these incompatible models obviously function in very different ways. The way users and other system software components interact with these configuration management components similarly differ when viewed in detail based on the underlying description mechanism used. As there is no dominant description model in the build and configuration management community, the interfaces for the build and configuration management components in the Scalable Systems suite must not restrict the choice of tools.

2.1 Approach

The high-level Scalable System Software architecture calls for a component architecture with well-defined XML interfaces for all components. As mentioned previously, there is a large amount of variance in terms of the techniques used in common build and configuration management tools. Because of this, we have taken the approach of specifying the maximum common subset functionality implemented in most tools. This means that large amounts of the data stored in the build system must be opaque. For example, nodes have an attribute image that is the name of the software configuration the node should run. Some systems may completely ignore this data, as only a single configuration is supported, while on other systems, it might name the totality of configuration. In a third case, it might only be used to derive part of the configuration description.

Another goal in the design of these interfaces was to allow component reuse between different build and configuration management systems. Initial designs called for a single component. This didn't allow any reuse to occur. At this point we moved to a two-component design. One component handled system management functions, and the other imposed system management policy. This model also didn't allow any reuse between toolsets, as the two components couldn't be properly implemented using only the published API.

The Build and Configure working group’s current approach calls for three components. The first component, called the cluster hardware infrastructure, manages all physical node services. This includes basic node identification, hardware inventory functions, power controller access, and management hardware topology information. The second component, called the build system, handles all aspects of software installation and configuration management on all nodes in the system. The node state manager, the third part of the configuration management suite, is an administrative control panel for the cluster. It keeps track of all individual node states and if those nodes are intended for use by the cluster. This allows the administrator to assert direct control over all nodes' activities at any time.

This particular abstraction has been designed specifically to allow adaptation to the full range of available management systems. During this process, we considered how a configuration management system like OSCAR, Cplant, or the City toolkit, could provide the interfaces we defined. We also took systems with incompatible management paradigms like the Scyld/BProc pseudo single system image into account as well. The three components defined correspond with the three major functions that management suites provide to administrators and other components, regardless of the techniques used internally.

2.2 Build and Configuration Progress

The first real test of these interfaces is to see whether multiple management systems can implement the above interfaces and completely function. The litmus test for these interfaces is whether components from different systems can be mixed and matched based on site-specific needs and component implementation feature sets. Currently, two independent implementation efforts are underway, one at Oak Ridge National Lab, based on the OSCAR toolkit, and one at Argonne National Lab, based on the City toolkit.

The OSCAR interfaces are in their early stages with an initial proof of concept wrapper used to access the addition and deletion of nodes from an OSCAR managed cluster. The current efforts underway are to provide a full Scalable Systems compliant interface for the existing OSCAR toolkit. The management enhancements currently slated for OSCAR will have an Scalable Systems interface provided as the facilities mature within the toolkit itself.

Additionally, OSCAR is being tested for a deployment vehicle for Scalable Systems components. The packaging API and remote package repository facilities are to be used to assist with integration. The fact that OSCAR currently uses "best cluster practices" leads to many of the components being available in their less-scalable form, e.g. PBS/MAUI. Currently, the Resource Management and Build & Configuration working groups have provided RPM based versions of their software to make use of OSCAR.

The City toolkit implementation is completed and is used in production on Chiba City at ANL. It includes three components that provide all of the documented interfaces. The components are implemented solely with the Scalable Systems interfaces. This means that the only interface used to communicate with the city node state manager is the Scalable Systems node state manager API. This style of implementation is very important, as it shows that the component APIs are feature-rich enough to support complete (non-prototypic) instantiations of these components.

2.3 Future Plans

The primary focus of the next few months of the Build and Configure group will be to validate our assertion that the defined interfaces are implementation neutral and complete enough to support different types of management systems. We feel that this can be done by implementing two independent and dissimilar management systems and using them on large machines. Chiba City at ANL and XTORC at ORNL will deploy and use these different systems for system management.

A secondary goal is to explore new functionality the Scalable Systems architecture enables. Equal access to data from all components allows powerful tools be developed. First and foremost, the ability to correlate information from disparate components will allow more powerful fault detection and correction systems to be developed. Also, complex system management commands can be developed. Because of the Scalable Systems architecture, these tools will seamlessly translate to completely different implementations of the management stack, or potentially the complete set of system software.

Finally, the work at Oak Ridge will focus in part on this integration into OSCAR to enable experimentation with alternate Scalable Systems component implementations. The composition of OSCAR into scalable systems software will be mutually beneficial, as it will provide a large testing and deployment base, and a new set of advanced system software components that can be easily integrated into the OSCAR framework.

3.0 Scalable Systems Communication Infrastructure

A second effort made by the Build and Configuration is to develop a component communication infrastructure. The purpose of this infrastructure is to allow Scalable Systems component writers to focus on their intended areas of research as opposed to grungy details like wire protocols, component discovery, and security. We will describe the challenges faced in the specification process, our progress to date, and the impact and interactions of these components with other components in the project.

3.1 Technical Challenges

In order for a component-based system to work coherently, a number of facilities must be provided to allow for a complete communication model. Components will be written in different languages by groups of developers in disparate locations. This means that the communication protocols need to be extensively documented. Three particularly problematic areas for inter-component communication are service location, wire protocols, and asynchronous communication. In order for inter-component communication to be powerful and flexible enough to be usable for component developers, these three areas need to be addressed. Also, a solution to these issues should constrain the component writers as little as possible.

3.2 Approach

For components to communicate, components need to be able to locate one another. We have implemented a service directory that stores location and protocol information for all active components. This service provides this information when components need to communicate with one another.

Some number of well-specified wire protocols need to be defined and implemented symmetrically in all components. There are a variety of ways in which these protocols can differ. A protocol's persistent (or non-persistent) nature, message framing, authentication and authorization schemes all determine a protocol's suitability for a given communication pattern. Because there is no single wire protocol that is suitable for all tasks, multiple wire protocols must be supported.

Finally, the issue of asynchronous messages needs to be handled. Asynchronous events occur continuously on large systems, any time that operations take time to complete. In these cases, either the initiator of the action keeps a connection open for the duration of the action or there is an asynchronous callback that occurs when an action completes. The former solution is not scalable, so we have chosen the latter scheme.

The solution implemented needs to constrain future component writers as little as possible. This means that arbitrary programming languages need to be able to be supported. Also, usage of this infrastructure must not preclude the component writers from being able to use particular styles of communication.

3.3 Progress

A mature implementation of the above software has been completed. The service directory was the first component completed. The component and its APIs are stable.

The wire protocol library, called SSSlib, is also quite mature. Its design abstracts protocol persistence, message framing and authentication. The implementation includes several parts. The most important is a shared library written in C. This library is where all of the protocol abstraction features are actually implemented.

Wire protocol support is implemented using a loadable module system; this isolates the library design from the details of the underlying wire protocols. Five wire protocol modules have been written. Three of these are in-house protocols; the other two are http and SSL based, respectively. The API for wire protocols is fixed and stable. More wire protocols are planned.

In order to allow component writers to use any program language, we have written language specific bindings for SSSlib. These have been completed for C, C++, python, perl, and Java. This takes the total number of supported languages to five. These bindings are fairly simple, so it is easy to add more on demand.

Asynchronous message are implemented using an event manager. We have finished a complete implementation and it has been well tested. It has been in production use on Chiba City for the last 7 months.

All of the code involved in the communication infrastructure is fairly stable and feature-complete. The areas where there is still work to be done include that of further wire protocol modules for SSSlib, and adding high availability and scalability features to the infrastructure.

Scalability of this infrastructure is the major problem remaining. We anticipate that the XML message formats will not cause any scalability issues. The major problem we foresee is that of aggregate load. To allow for scalable service provisioning, the service directory allows multiple registrants of any given service on a system at a given time. The onus of coordination and state coherency within a given component is put on that component's implementers.

3.4 Adoption and Impact

This communication infrastructure has been used in all Scalable System Software component demos run to date. All components register themselves on initialization with the Service Directory. Many of the currently existing components generate and receive events. The Event Manager provides all information for the visualization tools demonstrated at SC 2002. Also, other tools have started using SSSlib and the service directory for communication.

SSSlib, the service directory, and the event manager have been deployed in production on Chiba City at ANL for the last 7 months. All management operations use the communication infrastructure for all communications. These tools have also been deployed on the XTORC cluster at Oak Ridge National Lab.

4.0 Process Management Working Group

The Process Management and Monitoring Working Group (PMWG) is responsible for defining and implementing three components: the Process Manager, the Checkpoint Manager, and System Monitoring. These components share a need to deal with jobs on the level of individual processes, and thus must all respond to single requests that might be satisfied only through scalable execution across an entire cluster. They also each include a runtime interface to processes on the nodes. These similarities bring the three components together under the same working group.

Members of the working group meet by telephone on alternate weeks or weekly when needed. In addition to the teams developing the three components, members of the Build and Configuration Management Working Group, and the Resource Management Working Group regularly attend the PMWG conference calls to represent their interests as clients of the PMWG components. Rusty Lusk of Argonne National Lab (ANL) leads the Process Manager team. The Checkpoint Manager team is led by Paul Hargrove of Lawrence Berkeley National Lab (LBNL), who also chairs the PMWG. Mike Showerman of the National Center for Supercomputing Applications (NCSA) leads the System Monitors team. The remainder of this section describes in greater detail each of the three components within the PMWG.

4.1 Process Manager Component

This section describes the Process Manager (PM) component: the challenges present in its specification, the accomplishments to date in this area, the interactions this work has engendered both within and beyond the ISIC, and an outline of the plans for the future.

The principal challenge of the Process Manager component specification is to precisely delineate what the Process Manager is and is not responsible for and then provide a scalable interface by which its functions can be invoked by other components of the Scalable Systems Software environment. This interface must allow for complete flexibility in specifying a parallel job and its execution environment, including individual executables, command-line arguments and environment variables for each process of a parallel job, and a way of handling standard I/O. The interface must also allow for flexibility and scalability in delivering signals to the processes of a parallel job. To support other tools in the environment, it must be able to provide certain information about a parallel job without encroaching on the domains of other components, such as monitoring components.

A separate challenge of the Process Manager design is the specification of an interface to parallel application software, whether realized as languages or libraries. Scalable startup and runtime communication establishment require that the application communication library, such as an MPI implementation, communicate with the Process Manager, which knows where all the processes of a parallel job have been started. Specification of an interface here allows multiple Process Managers to manage multiple communication libraries in a true component design.

A further challenge to Process Manager specification is to design an interface that provides necessary functionality to tools such as debuggers, profilers, checkpointers and other software that must interact with process management.

The primary accomplishment to date has been the development of a Process Manager specification that provides a focused set of functions that are both flexible and complete. The challenges defined above have been met in this specification. Syntax has been defined for specifying job startup, control, and termination in a scalable way.

A prototype of the Process Manager component has been developed. It provides the defined interface to other Scalable Systems Software components such as the Service Directory, Event Manager, and Queue Manager, and actually starts parallel jobs using the MPD process management system[1]. Other systems, such as BProc-based systems[2], can be supported as well. In turn, MPD implements the PMI (Process Management Interface), for use by parallel libraries. In particular, the MPICH implementation of MPI uses the PMI interface to Process Manager services. Thus the prototype Process Manager component described here can be (and has been) used to start large MPI jobs on actual clusters such as the Chiba City research cluster and Jazz production cluster, both at ANL. These are presently the only large-scale clusters where MPD is running as root and thus able to start jobs for multiple users. At SC2002 the Process Manager was one of a set of components that were demonstrated interacting with one another to process an example job stream.

This work has fostered a large number of interactions, within the process management working group, with other working groups within this ISIC, with vendors of scalable computing systems, and with other systems software groups, both research-oriented and commercial. Within the PMWG, the Process Manager component must supply accurate information to both the monitoring and checkpointing components so they can locate the processes they must monitor or checkpoint. The Process Manager interacts with several components from outside the PMWG. It registers with the Service Directory and notifies the Event Manager of job start and job termination events. Its most complex task is to start parallel jobs at the request of the Queue Manager, providing environment variables, command-line arguments, permissions, group memberships, etc., in short every aspect of a process's execution environment to the processes of a parallel job. It can also provide startup of associated "co-processes" for debuggers and monitoring applications.

The Process Manager has been a motivating component driving the development of parts of the general communication infrastructure being developed by the Build and Configuration Management Working Group, and has often been the first component to use, and thus test, new interfaces in the Scalable Systems communication library.

A number of parallel computer vendors have expressed interest in this work. IBM is currently planning to use the MPD prototype Process Manager on its BG/L system of 64,000 processors, and some of the Process Manager's capabilities, such as separate command-line arguments for each process, have been motivated by IBM requests. MPD has also been modified to support Myrinet jobs under MPICH-GM in collaboration with Myricom, enabling support for jobs on Chiba City and Jazz at Argonne. Cray has adopted MPICH as the basis of their MPI implementation for Red Storm at Sandia. They intend a YOD-based implementation of the PMI interface. Interfaces are in general strengthened by multiple implementations.

Others interacting with the Process Manager team on process management issues include Sun and Etnus, who want the Process Manager to facilitate interactive debugging of parallel jobs launched with the Process Manager, and the Paradyn group at Wisconsin for monitoring such jobs. The BProc group at Los Alamos is working with the team to enhance process management for parallel jobs started in their "Clustermatic" environment.

Near-term plans include completion of the prototype Process Manager component and complete implementation of the interface as adopted by the Scalable Systems team as a whole. The MPD Process Manager will be extended to support all of the functionality specifiable through the Process Manager's XML interface. We have not yet dealt with interactive jobs in the Process Manager component, and this needs to be done to support interactive debugging as well as certain types of parallel jobs.

A research issue is how to support the MPI-2 dynamic process management functions, such as MPI_Comm_spawn_multiple, MPI_comm_connect, and MPI_Comm_Accept. These will obviously require support from the process management system, and additions to the PMI interface specifications will be necessary. At that point the Process Manager team will be in a position to begin work on the relevant additions to the external interface of the Process Manager necessary for providing information needed at run time by the dynamic process management functions in the MPI library. We will also begin investigating how to best support less-transparent, non-MPI parallel systems such as those required by UPC or Co-Array Fortran compilers.

4.2 Checkpoint Manager

This section motivates a distinct Checkpoint Manager (CM) component, and sets the goals it shall meet. The status of the component is described by technical accomplishments and the interactions between the Checkpoint Manager team and other groups, within and beyond this ISIC. Finally, the plans for the future work of this team are outlined.

One goal of the PMWG is to define uniform interfaces to checkpointing capabilities. The capability to checkpoint and restart jobs is included in the Scalable Systems Software architecture because it can be valuable in meeting several common goals on terascale computing facilities. The PMWG has chosen to standardize the interface to a checkpoint implementation as that of a distinct Checkpoint Manager component. There were three main reasons to do this:

· Doing otherwise would continue the existing practice in which each batch scheduler has a different interface to underlying checkpoint implementations.

· The choice to elevate this interface to component status allows independent implementations of the various components to interface with multiple checkpoint implementations without modification.

· This choice neither requires nor precludes systems in which the checkpoint implementation is tightly integrated with the functionality of the Process Manager component.

The main challenge for the Checkpoint Manager interfaces is ensuring that the other components can utilize the checkpoint capabilities to achieve various system-wide goals: providing higher system availability, higher system utilization, lower wait time, and increased fault-tolerance. These four goals highlight three usage scenarios of a Checkpoint Manager, and in turn guide the design of the interfaces.

The first scenario is “CHECKPOINT”, in which the state of a job must be saved in such a way that it can be restored after a reboot. Higher system availability can be achieved by checkpointing jobs shortly before the system (or a portion of it) becomes unavailable due to scheduled down time, eliminating the “queue draining” period that typically results in significant idle time. Similarly, fault-tolerance can be improved by periodic checkpoints to protect against unscheduled down time.

The second scenario is “SUSPEND”, in which a job is made to temporarily cease its use of resources to allow another job (or jobs) to use these resources. This permits preemptive scheduling, which helps to increase utilization and lower wait times.

The third scenario is “MIGRATE”, in which a running job is to be moved from its current set of execution nodes to a different, possibly overlapping, set of nodes. This can be used to help meet the goal of increased system availability when only a portion of the system must become unavailable. Migration can also be used to achieve better utilization of resources, such as bandwidth in a network lacking full bisection-bandwidth.

Considering these three distinct usage scenarios for checkpointing when defining interfaces helps express information about intent, allowing the implementation to take advantage of the differing requirements. For instance, migration might be performed entirely over the network without going to disk, or through globally addressable shared memory.

The Checkpoint Manager team is responsible for developing a production quality implementation of the component on Linux clusters, including system-level (application-transparent) checkpointing. However, there is presently no system-level checkpointing available for Linux that meets our users’ requirements[3]. Checkpointing of open files and MPI communication are two of the most challenging requirements.

At the SC2002 conference, the Checkpoint Manager team demonstrated an early version of system-level checkpointing on Linux clusters. This version uses the vmadump kernel module, maintained by the BProc team at Los Alamos National Lab, with additions to support multi-threaded applications. There is also new kernel code allowing initiation of checkpoints by any authorized process, and a small shared library implementing an interface to runtime libraries. This runtime interface allows libraries such as MPI to cooperate in the checkpointing and restarting of an application.

To date, work on the Scalable Systems interfaces to the Checkpoint Manager has focused on requirements definition. The PMWG has described these interfaces in terms of the three scenarios given in the Challenges section. Specification as XML has been deferred until the implementation has advanced enough to allow the interface to be explored and tested. This specification work will resume soon.

The current checkpoint implementation supports MPI jobs, as was show in the demo given at SC2002. This MPI support is approximately two years ahead of schedule, and was made possible through collaboration with the LAM/MPI team at Indiana University. The TCP/IP code in LAM/MPI was modified to use the runtime interface; registering code which quiesces network communications immediately before a checkpoint is taken and resumes them afterwards. When an application is restarted from a checkpoint, the TCP/IP sockets among the processes are reconnected, even if they have migrated to different nodes.

The combined system of the Linux checkpoint implementation and the modified LAM/MPI has been demonstrated to generate consistent checkpoints of the NAS Parallel Benchmarks (NBPs) running across multiple nodes. The checkpointed NPBs have been restarted across reboots and migrated among nodes. In all cases the restarted NPBs run to completion and verify their results, demonstrating that all MPI messages in-flight at checkpoint time were successfully delivered exactly once to their intended destinations.

The Checkpoint Manager team has been working with the Process Manager team to understand the interaction between these two components when jobs are checkpointed and restored. Interactions on the weekly conference calls of the PMWG and the quarterly face-to-face meetings of the whole ISIC have allowed the Checkpoint Manager team to gather an understanding of how the components of the Resource Management Working Group will use the Checkpoint Manager.

Outside the Scalable Systems effort, many additional interactions have been developed related to this work. The most notable are the interactions with three of the major MPI implementations for Linux clusters. The collaboration with Indiana University was developed first due to the relative simplicity of their TCP code relative to that in MPICH-1.2. However the MPICH-2 team has expressed interest in providing support in the future. MPI-softtech, vendor of the commercial MPI/Pro software, has also expressed interest in adding support once the Linux checkpoint/restart code is released to the public.

The Checkpoint Manager team has been working with the BProc team at LANL to share patches to the vmadump code they maintain, and which is used by both BProc and the Linux checkpoint implementation. The Checkpoint Manager team has contributed their vmadump extensions back to the maintainer.

The team has established contacts with groups that are interested in helping to develop future support for Quadrics (at LANL), porting to Linux on the PowerPC (at Ames Lab) and for integration with OpenPBS and PBSPro (Altair Engineering). The team has also established contacts within numerous hardware vendors and cluster vendors/integrators who are interested in offering products that include checkpointing support under Linux. These interactions are expected to strengthen in the coming year.

The two most immediate plans for the Checkpoint Manager team are preparing the software for a beta distribution, and implementing Scalable Systems XML interfaces. Once the roughly defined interfaces are implemented for testing, refinement and specification of these interfaces can be completed. These three milestones are scheduled for spring of 2003.

The team is collaborating with the LAM/MPI team to prepare an implementation report describing the changes to LAM/MPI for checkpointing. This report will be submitted to SC2003. The team hopes this report will help to add checkpointing support to other MPI implementations including MPICH-2 and MPI/Pro. A draft will be available in April 2003.

System-level checkpoint/restart for Linux is unfinished. Support for restoring open files and for checkpointing process groups and sessions are scheduled for spring and summer of 2003. Support for restoring processes with open files is required for most applications. Checkpointing of entire process groups and/or sessions is required, for instance, in order to deal with jobs launched from shell scripts. Beyond file and process group/session support, there are many resources that are not yet saved and restored. Among these are accounting and resource usage records, and interval timers. Support for restoring these resources will be added as needed. The full set of requirements [3] will be satisfied in FY05.

Once the Linux 2.6 kernel is released, much work is anticipated to port the kernel module and library portions of the implementation. At the same time this is done, the Checkpoint Manager team anticipates rewriting much of the current code to be more robust and maintainable. The team will then port the rewritten version to non-IA32 architectures, including IA64 and PPC. All of this work is tentatively scheduled to begin fall 2003, but depends on the release date of the 2.6 kernel.

Development of the Checkpoint Manager component that presents the Scalable Systems interfaces to other components will proceed concurrently with the development of the Linux checkpoint/restart implementation. In addition to providing the interfaces, the Checkpoint Manager team will develop utilities to allow manual checkpointing by users and systems administrators, and for management of checkpoint files. Through the various contacts detailed in the Interactions section, the team will work to generate support in additional MPI implementations and in widely used batch systems.

4. 3 System/Job Monitoring

This section is devoted to the System Monitoring component and will present the challenges related to this component, the accomplishments and interactions to date, and the plans for the future.

The System Monitoring component is responsible for providing the real-time state data of various components within a large-scale computational resource. It focuses on scalability and extensibility into new environments. It provides a framework that is a unified source for collecting data that is often redundantly collected by multiple subsystems within existing systems.

Scalability is central to the design of this component. The number of devices in high performance computing systems has been dramatically increasing for large installations over the last few years. Concurrently, the availability of high quality data at the device level has expanded significantly as well. Network switches, interconnect switches, power controllers, host adapters, storage systems and many other devices now incorporate not only performance information, but other data that is useful in predictive failure analysis such as temperature, voltage, and fan speed information.

In traditional systems, there are multiple separate and often overlapping infrastructures to gather and interpret this information without a common interface to provide the data to its consumers. Resource managers, performance monitors, and administration/health monitors often use independent mechanisms for collecting their own information without any aggregation or sharing. This System Monitoring component must include a common interface specification for the collection and distribution of device data in an extensible and scalable manner.

The primary technical challenge of the implementation design centers on defining an internal communication protocol that minimizes the latencies of a hierarchical structure, and balancing the performance tradeoffs between extensibility and data quality at new scales. Secondary interests involve the creation of a reasonably portable reference implementation at all layers of the hierarchy, and defining a simple functional interface to site-specific shared library examples.
The System Monitoring component has three phases of the development. The first phase has been completed and is in review, while the second is underway. Phase one involved designing a monitoring system prototype that collects the necessary data for the other Scalable Systems Software components, defining an extensible XML interface. In addition, this interface has been designed and tested to provide a framework that accommodates the expansion of new types data and devices to be monitored. Existing software used for the collection and visualization of system performance data was adapted to use this new communication mechanism, and new applications are being tested to demonstrate the flexibility of the component interface and provide the data graphically. In addition to the collection of system performance data, an application has been developed to view the registration and communications between the software systems contained within the ISIC. This application is helpful in the debugging phase of component interactions, and is also a visual aid in demonstrating the communication paths within the entire Scalable Systems Software environment.

The second phase of monitoring development is underway for the design and implementation of the software foundation for a scalable extensible monitoring hierarchy. This first involves daemons to monitor hardware/software systems. The design of this software incorporates the use of an abstraction layer that partitions the software between platform/system specific sections, and infrastructure object software. This is partially accomplished by developing portable software objects for the internal data storage and communication mechanisms, while defining a functional interface for the collection and querying of the data. The implementation of this functional interface is provided in dynamically linked shared libraries. This allows a single daemon to collect and export different or new information based on the implementation of libraries linked at run time. This model requires the use of internal data stores that are flexible in the manner they retain their data.

This design also requires additional isolation of the data content from the processing at the middle layers of the collection hierarchy. In this phase, research into the scalability/ data quality/ extensibility tradeoffs will be required to tune the software layer used to aggregate the data and export it via the XML interface. Finalization of the lightweight semi-intelligent protocol used between devices producing performance/state data and the aggregation components will be completed during this phase of development.

In the third phase, new visualization software, performance archiving and meta-monitoring components will be developed to demonstrate and test the functionality of this system. For an example of a meta-monitor, a software component can be used to gather job information from the Queue Manager, process information from the Process Manager, and correlate the real-time performance data from the System Monitoring component to provide job-based monitoring. This could provide standardized metrics like actual memory or CPU usage at the job level, or provide new types of job based data as a result of site specific implementations of the data collection shared libraries. In the case of a cluster, this may be current bytes/sec of the Myrinet[4] network for a specific job to help understand performance bottlenecks of a cluster.

Also in the third phase, new functionality to improve administration and scheduling capabilities will be added by providing query engine to the performance database. This could be used to provide an XML response to devices that meet a certain criteria. A scheduler may query online hosts with available CPU, memory, disk, rather than gathering all of the necessary scheduling parameters for suitable and unsuitable hosts to arrive at the same conclusion. Visualization techniques for choosing and displaying meaningful data for very large-scale systems will also be developed. This involves both dense data representation, and the creation of metrics that provide sufficient contrast to illuminate the important differences between devices and jobs. An early example of current functional job/system monitoring is represented by NCSA’s Clumon [5] project.
5.0 Resource Management Working Group

The Resource Management and Accounting Working Group (RMWG) is responsible for research and development revolving around four components: the Scheduler, the Job Queue Manager, the Accounting and Allocation Manager and the Meta-Scheduler. The Scalable Systems Software resource management system integrates with components being developed by other working groups such as the Process Manager, the System Monitor and other infrastructure components.

Members of the working group meet weekly in a telephone conference call to coordinate activities and discuss design issues. Development of the Accounting and Allocation Manager component is led by Scott Jackson of PNNL, who is also the chair of this working group. Development of the Scheduler and Meta-Scheduler is led by David Jackson of Ames Laboratory. The Job Queue Manager development is being led by Brett Bode of Ames Laboratory.

5.1 Scheduler

Maui is a high performance optimizing cluster scheduler with extensive advance reservation support and policy control.
Significant progress has been made towards virtually all of the specified scheduling line-item deliverables. Some items are in early phases of development, others in final phases of completion. The progress is summarized below.

Maui has been placed under revision control and Scalable Systems specification documentation has been completed. XML-based state checkpointing has been enabled and an object-based internal design implemented.

Maui has been enhanced to support the Scalable Systems-based socket protocols. The HTTP protocol is supported for allocation manager and resource manager interfaces. New Scalable Systems interfaces which have been added to Maui include the allocation manager interface (to query/modify account allocation state), the queue manager interface (to query/manage batch jobs), the system monitor interface (to query performance and configuration information for compute resources), the event manager interface (allow registration of and subscription to various batch system events), the service directory interface added (allow interface registration and automatic detection of peer component services), as well as a scheduling extension interface (allow scheduling plug-ins to enable to scheduling algorithms and capabilities). Select scheduler client commands have been rewritten to utilize XML based data (to allow easy GUI interface development to display batch system state data). Additionally, there has been enhanced native support for Loadleveler, PBS, SGE, LSF, and BProc based systems.

Improvements for usability include significantly enhanced web based scheduler documentation, additional scheduler command man pages for select commands, and standardization of scheduler client command line flags. Security support for DES, HMAC, MD5, and external source secret key based algorithms has been implemented for client/server authentication. Improved buffer overflow protection has been added to critical scheduler interfaces. A generalized secret key management facility has been implemented for secure multi-party communication.

Scalability improvements to the Maui Scheduler include decreasing memory consumption by over 80%, enabling support for up to 8,000 nodes, enabling support for up to 32,000 processors, enabling support for up to 2,000 simultaneous active jobs, and enabling support for jobs requesting up to 16,000 hosts.

Progress on the fault tolerance front includes the migration of all Resource Manager calls to a threaded Resource Manager interface (enabling scheduler survival of interface hangs and crashes), the incorporation of Resource Manager and Allocation Manager diagnostics and failure tracking statistics, as well as the implementation of improved data checking and handling routines to detect and correct corrupt Resource Manager data.

There have been significant improvements in functionality as well. Dynamic job support interfaces have been designed. Support has been added for job suspend/resume Resource Manager interfaces and support algorithms (PBS/LL). Support has been added for checkpoint/restart interfaces with the Resource Manager and support algorithms (PBS/LL). Resource utilization tracking interfaces and associated statistics collection/reporting facilities have been added. Support has been enabled for initial resource utilization based limits and violation policies. Extended QOS facilities allow improved control over resource and functionality access and targeted service delivery. Generalized hierarchical prioritization infrastructure has been enabled. Generalized throttling policies infrastructure has been added to allow low-level control of real time resource access to jobs. Limited support for generic resources has been enabled (i.e., software licenses, network bandwidth, global disk caches, etc.).

Maui is actively used at many of the world's largest and most advanced highest performance computing sites. It is estimated that Maui is now in use on more than 600 systems. Below is a select list of a few of the sites actively using Maui in production and/or involved in Maui-based scheduling research: Ames Lab, Argonne National Lab, ASC, Brookhaven National Lab, Fermilab National Accelerator Laboratory, LBNL/NERSC, Los Alamos National Lab, MHPCC, NASA/JPL, National Institute of Science and Technology, Naval Research Laboratory, NCSA, NOAA, ORNL, PNNL, Sandia National Lab, SDSC, Wright-Patterson AFB

While phase I consisted of heavy infrastructure changes required to support key Scalable Systems capabilities, phase II is where this effort really bears fruit. This phase focuses on capitalizing on this new infrastructure to bring mature functionality to production sites. This phase will bring about virtual partitioning through resource limit enforcement and tracking, advanced support of preemption capabilities utilizing suspend/resume and checkpoint restart, and will add support for malleable or dynamic jobs. Further, this phase will bring about further enhancements to a site's ability to manage cycle delivery through quality of service support for completion time guarantees, minimum service levels, and increased service access. Support for interactive job steering will be added and intelligent data pre-staging will be enabled to improve overall system utilization. In addition to these features, progress will continue in the realm of refining and extending interfaces to accommodate realized and anticipated enhancements in cluster and resource manager capabilities. Along these same lines, intra and inter component security features will be matured and made more flexible.

 Phase III will continue to deliver production quality algorithms and features within both Maui and Silver and will continue to enhance inter component interfaces to address evolving system capabilities and requirements. Feedback received from partner sites will be rolled into existing capabilities and packaging and documentation matured. During phase III, earlier projects will be finalized and a number of very promising research projects will begin. These projects include efforts in the areas of peer-to-peer scheduling, incorporation of network topology into scheduling optimization algorithms, and resource reservation of bandwidth and data cache space. This phase will evaluate extending these newly developed capabilities into new realms and will develop intelligent fault tolerance features to proactively handle anticipated issues and maintain the highest possibly level of service availability

5.2 Job Queue Manager

As the resource management system’s design has evolved it was broken down into constituent components. Acting as a central job information hub the Queue Manager maintains a complete database of information about jobs, both present and past. The Queue Manager also acts as the entry point for jobs into the system. As such it must support a robust and full-featured job submission interface providing ease of use to the

user while also exposing all of the features available in the system including special scheduler instructions or other specialized component directives. Once a job start request is received the Job Manager turns it into a series of process start requests and sends them to the Process Manager. The Job Manager also manages node setup and teardown

for jobs and other tasks related to running jobs such as output delivery and job termination notification. However, an important feature of the design is that the Queue/Job Manager does not make policy decisions. Rather it relies on the Scheduler to make decisions about when a job is started and when to terminate a job if it exceeds

its resource allocation. Once the scheduler makes such a decision the Queue/Job Manager implements it.

The Queue/Job Manager interacts with many different components from each of the working groups. The most important interactions are with the scheduler and the process manager. The scheduler queries the Queue Manager for job information and instructs the Job Manager to start or stop jobs. The Job Manager then issues process start and stop requests to the Process Manager. Process termination notification is received via the event manager. In addition the Service Directory is used to look up the host and port information for the other components and in the future the Job Manager will retrieve resource usage information on running jobs from the Node Monitor and may request special node OS installation on behalf of a job from the Node Manager. The Job Manager

may also be required to manage data staging for users as well as for the checkpoint/restart system once job migration is supported.

A basic Queue/Job Manger has been created from scratch to meet the needs of the overall RMS design. The current focus has been on meeting the immediate needs for a basic functional component that meets the needs of the other Scalable Systems components. To this end we have created a component that handles job submission, signaling, monitoring and deletion. To ease the transition for users the initial user command interface has been modeled after the same interface in the Portable Batch System (PBS). Thus existing PBS commands and job scripts are directly accepted by the new system. The current component has interfaces in place with the Scheduler, Service Directory, Event Manager, and Process Manager components. These interfaces and indeed the entire component infrastructure have been installed on several systems, including Chiba City and XTORC, and tested on several occasions with good results. The tests have included full job lifecycle tests from submission through termination.

The current Queue Manager implements persistence by saving job data to flat files with a database interface currently in progress. Active job information is maintained in memory so most queries are very fast. The Job Manager currently handles single step jobs from startup to completion. The system has been designed such that there are no compile time limits imposed on the number of hosts, etc., rather they are limited only by the amount of available systems. The capabilities of the Job Manager are being enhanced with new features as they become available in the Process Manager.

The current Queue/Job Manager is being extended in several ways. First, the data archiving capabilities are being enhanced such that all job data will be archived with the install time option of using either flat files or an SQL database. This will allow queries to the system for job data on any job, past or present. To enhance performance, data on current jobs will be cached in memory while old jobs will be stored to the backend files or database and looked up on demand. One capability we plan to implement is a database information search function to allow structured searches of the jobs archive. The search capability will not only be useful to users, but will provide a valuable tool to administrators. For example, an administrator might wish to query usage by a specific user, or the jobs that ran on a specific node prior to a failure. This type of search is often difficult or impossible to retrieve in many current resource managers.

Support for multi-step jobs is currently being added to the job manager. The system design will encompass two types of multi-step jobs. The first and most common are multi-step jobs that can be scheduled as a single entity. Since site-dependent node setup and teardown steps will be added to all jobs this type of job will be ubiquitous. The second type of multi-step job will include separately-scheduled, possibly dependent, job steps that may have completely orthogonal resource requirements. An example of this type of job might be a long parallel computation, followed by a data staging step, followed by a visualization step. Support for this type of job in the Queue/Job Manager requires support in the submission interface for a description of the job steps and their dependencies and a correct handling of job step transitions where data must be transferred from one set of nodes to another before node cleanup is performed.

Finally the XML interface continues to evolve to allow for the inclusion of advanced features such as multi-step and dynamic jobs. In addition the current relatively flat XML structure is being enhanced to a hierarchical design to better distinguish between groups of similar information such as requested resources versus consumed resources. This sort of design will also facilitate the addition of multi-step, and thus multi-requirement jobs. In addition the user interface will be extended with the addition of front ends to directly support job scripts written for other third party resource managers such as LoadLeveler and LSF.

5.3 Accounting and Allocation Manager

In order to efficiently use high performance computers, a site must be able to allocate resources to the users and projects that most need them in a manner that is fair and according to mission objectives. Tracking the historical resource usage allows for insightful capacity planning and in making decisions on how to best met out these resources. It allows the funding sources that have invested heavily in a supercomputing resource a means to show that it is being utilized efficiently.
 Additionally, accounting and allocation management are critical to being able to take advantage of the tremendous utilization gains afforded by meta-scheduling.

The accounting and allocation manager tracks and manages job and resource usage. Much like a bank, an allocation manager associates a cost to computing resources and allows resource credits to be allocated to users and projects and meted out in a fair and judicious manner. As jobs complete or as resources are utilized, projects are dynamically charged and resource usage recorded.

An accounting and allocation management component is being developed and integrated into the scalable resource management system to provide accounting and dynamic project charging. A flexible GUI is being developed to simplify use and the management of project and accounting data. QBank, a dynamic reservation-based allocation manager created at PNNL, is being enhanced and used in the initial Scalable Systems software offering. This will later be replaced by Gold, a redesigned accounting and allocation information system that is currently in an advanced prototype stage.

One of the first things that were done is that a software requirements specification document and a survey were created which were circulated and reviewed by over a dozen DOE and government sites with the largest high performance computational facilities. Feedback was collected and integrated into the next generation design.

A very powerful XML-based resource management interface standard was designed and produced to allow alternative components to easily swap into the resource management system. This interface was developed as a wire-level requests-response protocol supporting complex extensible objects and a very powerful query syntax. This design allows software components to be interchanged for others without the need for modifying or recompiling the software. The SSSRMAP protocol addresses important protocol mechanisms such as framing, encoding, error handling, parallelism, authentication, and transport security. An XML schema was developed to validate the standard interface. An allocation manager binding was generated and the interfaces tested with the scheduler component.

QBank, an existing allocation manager, was enhanced and packaged for large-scale use at other sites. QBank was placed under revision control. A test harness was installed based on tools developed by the Validation and Testing groug. Test suites were created and bugs fixed. Security was strengthened. The install process was streamlined and QBank was packaged in RPMs and tarballs for Linux. Documentation was significantly improved including the creation of a user guide, a deployment guide, man pages, and updated online documentation. A support queue and mailing list have been created. QBank is currently being used or evaluated by dozens of sites including PNNL, ANL, ORNL, NCSA, MHPCC, and several universities.

Gold, the next generation allocation system, incorporates the design features collected from the industry survey. It is in an advanced prototype stage and has been built up to include core functionality and design features to the point of being included in the live demonstration of the Scalable Systems resource management suite at SuperComputing 2002. Gold implements the Scalable Systems resource management interface standard. It currently supports management features for accounts, users, machines, allocations, jobs, resources, usage and charging. It implements a powerful query/update interface including create, query, modify, delete and undelete actions, as well as support for operators, conjunctive expression combinations and object joined queries. It allows new object/record types and their fields to be dynamically created/modified through the regular query language (command line or GUI). This capability turns this system into a generalized information service. This capability is extremely powerful and can be used to manage all varieties of custom accounting data, to provide meta-scheduling resource mapping, or function as a persistence interface for other components. Gold implements a powerful journaling mechanism that preserves the indefinite historical state of all objects and records. This powerful mechanism allows bank statements to show balances for any arbitrary time in the past, provides an undo/redo mechanism for administrative mistakes, and allows any command to run as if it were an arbitrary time in the past.

A web accessible GUI was designed and prototyped to help managers, users and admins gain access from their own PC’s. It combines the metadata dictionary inherent in the component design with the power of PHP and Javascript to provide a powerful and dynamic user interface.

Scalability testing was performed on both the QBank and Gold components. These scalability tests were carried out in three levels. Component-level testing was done to test timings to perform barrages of common accounting and allocation operations (charges, reservations, balance checks, etc.) Simulations were performed with the Maui scheduler to test transaction times with the allocation manager interface. And system tests were carried out with various combinations of the Scalable Systems resource management components.

QBank was packaged and released in the initial version (1.0) of the Scalable Systems resource management suite consisting of the enhanced pre-existing components. It has been made available for download from a link off of the Scalable Systems Software Center main page. This accomplishment represents a great deal of work not to exclude those involving the licensing and distribution mechanisms.

The accomplishments listed above fully meet the relevant deliverables touted for the first of three phases for the Scalable Systems Software Center.

In phase two, we will focus on the development of Gold into a production quality software component. We will fully implement the set of interfaces determined during phase 1, and we will release version 2 of the Scalable Systems resource management interface specifications. Flexible charging algorithms will be implemented. Additional features such as quotations, hierarchical accounts, debit and credit allocations, automatically expiring allocations and reservations, etc. will be incorporated into Gold. The allocation manager will be enhanced to track, allocate and charge for SMP resources such as memory, network and disk. Mechanisms will be researched and implemented to provide the scalability improvements necessary to support thousands of processors. Security mechanisms and role-based authentication will be implemented. During this period, portability will be emphasized, with QBank and Gold being ported to the architectures used at DOE’s largest scale computing facilities (AIX, Tru64, possibly Cray). Fault tolerance will receive some attention, supporting up to a 25% cluster loss. Gold will be released in a second Scalable Systems distribution that includes all components. A user oriented problem response system will be established for both QBank and Gold.

Phase three will be marked by advanced scalability research and polished and supported software. Forms of parallelism and multiplexing will be implemented to improve average transaction times. Fault tolerance will be heavily researched and incorporated into Gold -- with a possible solution of hot backup applications running on separate servers providing high availability. Peer to peer communication will be implemented to support accounting and allocation within meta-scheduled environments. User feedback from Phase 2 will be incorporated into the application and validated on the largest DOE systems where scalability tests will also be carried out. The user interfaces will receive significant attention to make them more secure, easy to use, and error averse. A third software release will implement version 2 of the resource management interface specifications. A problem reporting system and lifecycle software engineering will be actively maintained.

5.4 Meta-Scheduler

A meta-scheduler is able to intelligently load balance across resources that span geographic and administrative domains providing better average response times for user jobs and better system utilization on the participating systems. The meta-scheduler is also capable of adding new services such as co-allocation of resources and support for massive jobs spanning multiple sites.

Silver is an advance reservation based meta-scheduler designed to effectively distribute workload within a campus grid or similar sized collection of HPC systems. A requirement specification document was developed for Silver and it was placed under CVS revision control. The object-based internal design has been partially implemented. Support has been added for Globus 2.0 and 2.2 based job staging and an initial information service interface has been designed. The sqsub client was created enabling PBS style submission of meta jobs. Silver security has been enhanced by adding Globus credential caching and enabling generalized secret session key management.

Initial resource feasibility checking has been added to minimize unusable resource queries. Support has been added for retrying resources to enhance fault tolerance. Additional functionality includes the basic data management interface and an initial file staging capability.

Silver is involved in production meta-scheduling or grid research at a number of facilities. While still at an early phase in development, interest in immediate use has been pronounced. Below is a list of some of the sites/grids current using Silver or involved in Silver based research: NCSA (TeraGrid), ORNL, University of Utah, Princeton University, Clemson University, University of Buffalo, Ohio Supercomputing Center (Cluster Ohio Grid), University of Indiana

Phase II will also see significant development of the Silver meta scheduler allowing resources within a facility to be effectively shared and efficiently utilized. Silver will be modified to communicate using version 2 of the Scalable Systems Resource Management XML interface. The meta-scheduler will employ intelligent data pre-staging, a critical element for the efficient use of distributed systems to be successful. Also, peer-to-peer interaction between meta-schedulers will enhance the effectiveness of meta-scheduling by extending the view and reach of each meta-scheduler allowing greater resource access, a larger selection of jobs to choose from, and improved load balancing across systems.

In phase III the meta-scheduler will receive heavy emphasis. This is a period in which enhanced scheduling algorithms for the scheduler and the meta-scheduler will be investigated and implemented. Every scheduling decision will consider the cost on underlying network bandwidth, available data staging space, computational throughput, and start time. The scheduler and meat-scheduler will be enhanced to support co-allocation of resources (network, data, licenses) and locality scheduling. Locally submitted jobs will be able to migrate to systems where they could run sooner. The meta-scheduler and allocation manager will be enhanced to allow for monitoring, tracking, allocation and accounting across site and system boundaries.
6.0 Validation and Testing Working Group

The SciDAC Scalable Systems project is developing a standardized runtime system for parallel supercomputers. Runtime systems of these types often have very complex interactions and will also operate in a non-deterministic manner since system users are the ones dictating what happens on a particular system. For testing, validation, and integration of such a system to be effective a systematic approach to testing must be adopted. This is the task of the Validation and testing working group being conducted primarily by researchers from Sandia National Laboratories.

The testing approach necessarily includes strong unit testing as well as testing of coupled components as the runtime system is integrated. As unit testing is completed, we will begin application tests. As a part of unit testing, we are developing a new tool designed to test the API of network-aware components.

We define Application tests to be sets of applications whose ‘view’ of the system is a ‘batch machine’ – that is, they are run via command line or through the job queue. Application tests can be separated into several distinct classes. The first class consists of smaller codes and vender supplied kernel tests. Next we can move into user application kernels (i.e. kernels from scientific codes, etc.) in a simulated multi-user environment. Finally, we run stress tests to load up the system with large jobs that have high IO, memory, and communication requirements.

Sandia also has an effort in applying the XML-based Scalable System components and protocols to the Cplant systems in use at Sandia.

The following is a summary of work done by the Validation and Testing working group.

· Developed systematic approach to testing and validation

· Application Test Framework

– implemented on CPlant

· Linpack

– package included

· NAS-Parallel

– package included

· BLACS

– package included

· MPI-Test

– package included

· Multi-user Environment Simulation

– in development

· APITEST Tool

– in development

· QMTest as the SSS test driver

– agreement at Houston mtg

· XML Interfacing

– XML command & status daemons

The following sections will discuss in more detail the APITEST and the Application Test frameworks.

6.1 APITEST Component

Unit testing is critical to complex run-time systems like the ones for parallel computers since application tests give little information about failure modes. The APITEST component is designed as a unit-test driver for black-box testing components through their communications interfaces. Components in the Scalable Systems project communicate with each other via XML over TCP/IP. Since these components form the core of the runtime system, much can be done to test them via their APIs.

The purpose of APITEST is to allow easier testing of the networked components through their interfaces. This allows the developer to make very specific tests to validate functionality and specific paths in the runtime system without resorting to intensive coding for testing. Scripting tests in this manner has the advantage over compiled tests in that they can be run faster than recompiling every test individually.

APITEST is designed as a multi-protocol tool. Besides TCP/IP, we also intend to support the Portals protocol, which is used by Sandia Laboratories supercomputers (ASCI Red, CPlant, and Red Storm).

At this time APITEST is in early development. We have looked at using this tool for testing as well as fault diagnosis in a run-time manner by developing tests whose outputs can be fed into an expert system to try and diagnose errors.

Early concept design has been coordinated with Narayan Desai at Argonne. The XML Schema has been designed for test scripting, core data structures are 90% complete, and we are working on TCP/IP, SSSLIB, and Portals messaging. An initial version will be working mid-spring with basic functionality.

This tool is intentionally being designed with generality in mind. The goal is to provide a tool that is applicable to Scalable Systems components, Sandia Laboratories institutional systems, and any other application or system that is network aware. The flexibility allowed in composing tests will allow integration testing as well as fault diagnosis of systems. This component is being coded from scratch and is proceeding at a good pace. With luck, the initial version will be available in the spring of 2003.

6.2 Application Tests
No test strategy is complete without testing a system as a whole. Beyond unit testing, we have application testing. The ‘view’ of the system at this point is that of a “batch system” – that is, it’s what a user might see. These tests consist of applications, which are run on the machine in various manners for the purpose of finding bugs, and giving confidence that the system will not crash during production use.

We developed a test framework and it is in use on CPlant at Sandia Labs. This test framework uses freely available tests and tools and is designed to be generally applicable to running application tests. The framework consists of a set of packages. Some packages are written at Sandia and may not be available to open-source, but many of the existing packages in use on CPlant are available on the Internet and may be packaged in an open-source manner. Each package can be considered a test suite (sequence of tests) in its own right, but generally it’s clear from context just which suite is being referred to. The “interface” to a package is a set of make targets. The same interface is used for the suite overall, with logic that “broadcasts” a target presented to the overall suite to every package in the suite.

The framework is something more than just a set of packages. It is also the expected set of makefile targets that each package will respond to and a set of conventions about where makefiles, scripts, and sources are placed in the directory structure. Packages are the building blocks for the framework. The attributes they all share in common—makefile targets, file locations, similar actions for target names unify the packages into a framework.

Each test package and the overall test suite is driven by GNU Make (http://www.fsf.org/manual/make-3.79.1/make.html). Packages are intended to provide some modularity to the overall suite and they give testers a way of selecting parts of the suite for building and running. We have tried to leverage the convention that a makefile typically accompanies most open source software, adding a few additional mechanisms. Some amount of integration code is needed on a case-by-case basis requiring knowledge of a package’s internals while adding it to the test framework, but this is the case no matter what test harness a suite of tests would be added to. Hopefully, this would be a one-time cost for each package.

This framework is currently in use on CPlant at Sandia Laboratories. We are working to generalize it more and bring it over to other platforms (Chiba City) for use with the Scalable Systems effort. Minor modifications are required for such things as the job launcher script (Sandia uses a command called yod, the equivalent to this on other systems might be mpirun). We are working to configure QMTest as the driver for this test so that it may be used in concert with APITEST.

6.3 Controlling Cplant through Scalable Systems protocols

Sandia has developed “status” and “control” system daemons to monitor and control Cplant functions using its native APIs, these are called Cluster Integration Toolkit (CIT). By summer of 2003 CIT will be modified to talk to the outside world using Scalable Systems XML protocol standards.
References

[1] R. Butler, W. Gropp, and E. Lusk, "Components and Interfaces of a Process Management System for Parallel Programs", Parallel Computing 27(2001), pp. 1417-1429.

[2] BProc Project Home Page, http://bproc.sourceforge.net
[3] J. Duell, P. Hargrove, and E. Roman, “Requirements for Linux Checkpoint/Restart”. Berkeley Lab Technical Report LBNL-49659, 2002. http://www.nersc.gov/research/ftg/checkpoint/LBNL-49659.pdf

[4] Myricom’s myrinet interconnect: http://www.myri.com
[5] Clumon: Cluster monitor used on NCSA’s production clusters http://padmin2.ncsa.uiuc.edu

