Resource Manager Requirements Document

(Draft 12/10//02 by Brett Bode)

1 Introduction

1.1 Purpose

This document details the functionality requirements for the Resource Manager component to be produced by the Scalable Systems Software (SSS) Center.

1.2 Intended Audience

This document is primarily intended for SSS developers (particularly those responsible for aspects of the resource management system) as well as managers and system administrators of terascale computer centers around the nation (particularly those at DOE sites).

1.3 Scope

The creation of this requirements document has several objectives. It is useful for project management, both in schedule planning and to provide a progress metric. It is useful for other component developers to understand what the key features are and how to interact with the Resource Manager. Furthermore, it can be presented to the customers and reviewed to ensure core requirements are satisfied and to elicit feedback with respect to desired capabilities and interface specifications.

1.4 Overview

We propose to develop a queue manager that will interoperate within a resource management system (composed of a resource manager, a scheduler, a process manager, a node manager, and optionally a meta-scheduler and/or an allocation manager) to manage the allocation of CPU and other resources to projects and users. The target operating environment is that of UNIX-based high-performance computing systems.

1.5 Organizational Context

This effort is funded by the U.S. Department of Energy (DOE) as part of the Scientific Discovery through Advanced Computing (SciDAC) Initiative. The software infrastructure vision of SciDAC is for a comprehensive, scalable, robust, portable, and fully integrated suite of systems software and tools for the effective management and utilization of terascale computational resources by SciDAC applications. The Scalable Systems Software Center for its part is responsible to provide an integrated suite of components including resource scheduling, usage accounting and user interfaces.

2 General Description

2.1 System Functionality

The Resource Manager in our design serves two primary purposes in the resource management system. First, it acts as a repository for all information regarding user jobs, both currently active jobs and past jobs. Second, it acts as a job manager to dispatch processes to the process manager in the correct order and time based on individual job steps. The Resource Manager provides interfaces for the submission, monitoring and signaling of jobs for both the user and the administrator.

A typical job trace through the resource management system will begin with job submission via either a command line (ie. qsub) or via a web interface. In either case the submission interface should accept jobs in multiple batch script formats (ie PBS, LoadLeveler, etc) and translate them into our internal format. Once submitted the server will assign the job a unique ID and perform a balance check with the allocation manager. The scheduler will then be notified of the new job. Once the job is scheduled for execution the server will add any required system steps (such as epilogue and prologue) and request process startup of each step via the process manager. The server will receive session and process ID’s from the process manager and use these ID’s to monitor the processes via the node monitor. The process manager will notify the resource manager upon process termination at which time the final resource usage will be obtained from the node monitor and the next job step will then begin. Once all steps are finished, including any copying of output to the user and optional steps such as mailing a job termination notice to the user, the scheduler will be notified of job termination and the job will be archived into the persistent database.

The resource management system should be secure, scalable, portable, fault tolerant, reliable, and easy to use. It must maintain a persistent and queriable record of user jobs. It should support flexible multi-step job descriptions, with multiple, possibly dependant resource requirements. It should also facilitate and enable meta-computing.

2.2 Similar Systems

2.2.1 PBS

The Portable Batch System (PBS) includes three main components, pbs_server, pbs_sched, and pbs_mom. In our design the Resource Manager encompasses most of the same responsibilities as pbs_server, except our design completely separates off the node manager tasks included in pbs_server. This is a significant change since many of the scalability problems in PBS are related to the node management services in the server daemon.

2.2.2 LoadLeveler

LoadLeveler is a commercial resource management system from IBM targeted at their SP line of parallel systems. Since it was designed with parallel systems in mind it does not share many of the problems of systems like PBS. However, it is currently only available under the AIX operating system.

2.3 User Characteristics

The primary intended users of the Resource Manager will be the managers, system administrators and users of terascale computing facilities. It is expected that the system administrators will have a good understanding of resource management system concepts and require sophisticated functionality while the users will be more focused on utilizing the computational systems to achieve scientific results and will be more interested in an easy to use interface.

2.4 User Objectives

This section will describe the set of objectives and requirements for the system from the user’s perspective. It will include feedback from surveys and a “wish list” of desirable characteristics, along with more feasible solutions that are in line with the business objectives.

· Allow dynamic job steering - LLNL

3 Functional Requirements

3.1 Resource Utilization Tracking

The resource manager must be able to track the resources used by each job and store this information in a persistent data store for later retrieval. By utilizing the query interface, managers should be able to produce reports detailing the system resources used by users and projects on their systems over arbitrary time intervals.

3.1.1 Reports

Periodic reports should be able to be generated showing user and group resource usage for the period. In addition reports on various aspects of machine utilization will also be available. These would include basic information such as total machine utilization as well as from jobs such as parallel efficiency.

3.2 Job Submission

Jobs may be added to the queue via a command line tool or via a graphical (web) interface. In either case the job submission language should be flexible to allow multiple dependant job steps with multiple resource requirements for each step. In addition the submission interface should support a job language translation layer to allow submission of job scripts written for other resource managers such as PBS or LoadLeveler.

3.2.1 Job Submission Filter

The resource manager will optionally run a site specific submission filter to verify that the requested job meets the basic requirement to be accepted by the system. Possible uses include performing an allocation balance check or testing the sanity of the resource request.

3.2.2 Extended Scheduling Requests

The user can specify additional scheduler specific attributes that will be passed along to the scheduler, but ignored by the resource manager.

3.2.3 Extended Resource Allocation

The resource manager will support the request and allocation of extended resources such as switch adapters or port and floating licenses.

3.3 Job Monitoring

Users and administrators will be provided with both command line and graphical interfaces to monitor the status of jobs within the system.

3.3.1 Fine grained information requests

The monitoring interfaces will support limiting the returned job information to one job, jobs owned by particular users or groups or all active jobs.

3.3.2 Access Control

System administrators will have the ability to restrict users ability to see information about jobs other than their own.

3.4 Job Control

Users must be able to signal their own running jobs as well as request job termination. Administrators will also be able to start, suspend and resume jobs

3.4.1 Job Modification

Users will be able to modify most aspects of their own job submissions, with restrictions based on the current job state.

3.4.2 Suspend/Resume

When supported at the process manager level the resource manager will allow the scheduler and/or the administrator to request that a job be suspended or resumed.

3.4.3 Checkpoint/Restart

The resource management system will provide support for checkpoint/restart where possible. This support includes both signaling and, when necessary, data migration.

3.5 Job Steps

The resource manager will fully support multi-step jobs. Included is the ability to perform user level prologue/epilogue actions as well as interdependent job steps with different resource requirement.

3.5.1 System prologue/epilogue

The resource manager will optionally run site specific node setup and teardown scripts on each node allocated to a job. These scripts are run as root allowing the system administrator to perform actions such as adding the user to the node access list, setting up scratch directories, etc.

3.6 Input/Output support

The resource manager will support both traditional batch operations with the option of copying input and output to/from the compute nodes as well as full interactive jobs with input/output redirection from the users terminal.

3.6.1 Interactive Jobs

The user can submit jobs to run in batch mode or interactively. For interactive jobs the job submission client blocks until the job is started and the stdio streams are connected to the users terminal.

3.6.2 Execution Environment

The user may specify a list of environment variables to be passed into the execution environment.

3.6.3 Data Staging

The user will be able to request as a job step the staging of needed data to/from remote storage on the nodes assigned to the job.

3.7 Dynamic Job Support

The resource management system will facilitate dynamic job support, such as that provided in MPI2. This support allows a running job to request an increase or decrease in its resource allocation (including total node count).

3.8 Job Migration

The resource management system will facilitate job migration where possible.

4 Nonfunctional Requirements

4.1 Scalability

Our target is the high-end systems for 2006 which we expect to have tens of thousands of processors, thousands of simultaneous jobs and hundreds of simultaneous users. Serialization must be avoided in favor of parallelization and distribution of data and services. Network accesses should be kept to a minimum while using aggregation and compression where possible. The design could consider a distributed approach to help mitigate scalability and fault tolerance issues.

4.2 Security

The resource manager should utilize strong authentication (no clear text passwords) to prevent unauthorized access and support optional data encryption to prevent information from being sniffed. The authentication routines should be modularized to be able to use alternate delegation-based security mechanisms (such as PKI or Kerberos 5) and support the underlying system security infrastructure where possible.

4.3 Robustness/Fault Tolerance

Provide some redundancy to avoid a single point of failure. A distributed design could be considered.

4.4 Reliability/Fault Recovery

All data will be stored in a full database such as MySQL to take advantage of the fault recovery mechanisms designed into database systems.

4.5 Portability

The resource manager should be machine and operating system independent wherever possible. It will be developed to a reference Linux platform with the goal of supporting portability to UNIX-based vendor operating systems and architectures, particularly those flavors for which there is a large supercomputing base.

4.6 Heterogeneity

It must support clusters and systems containing nodes with heterogeneous architectures, operating systems and versions, processor number/types/speeds, memory capacity/speed, disk capacity/throughput, swap, network types/throughput, etc.

4.7 Logging/Debugging

Consistent, aggregated and “standard format” logging of information

Multiple levels (debugging, information, errors, etc.)

4.8 Performance

As part of the scalability improvements necessary to support thousands of processors, we propose to implement the queue in memory for active jobs with a database used for data archiving and restarts.

4.9 Modularity

The resource manager will be written in a modular, object-oriented design making it easier to adapt, update and maintain, in order to adapt to changes in hardware or software requirements.

4.10 Usability/Manageability/Ease of use

A web interface for job submission, monitoring, and control is envisioned. A command-line interface, both prompt based and individual clients, will precede the web interface so that commands can be scripted.

4.11 Interoperability

Using standardized interfaces defined by the Scalable Systems Software Center will promote interoperability, portability and long-term usability. Integrates with batch schedulers, process managers, and allocation management systems.

4.12 Extensibility

This system will allow for future change: increase in computer resources, number of users, projects, resource types, etc. It will be open source and thus will be able to be modified by the sites to support additional attributes in the accounts, support new kinds of resources to be managed, etc.

5 Software Development Requirements

“Long term maintenance and supportability is of high importance to us”

Lifecycle software development plan

5.1 Open Source

In order to be of maximum benefit to the high performance technical community, this software should be open source, allow free distribution, allow sites to make local modifications, customizations and derived works, and promote the sharing of patches, ports, and enhancements from the user community.

5.2 Documentation

 Proper documentation will be created and made available from a public website. At a minimum, there should be a User Guide, an Administration Guide, an installation Guide, a technical paper, and man pages.

5.3 Revision Control

The resource manager will be placed under the CVS revision control system.

5.4 Test suites

A tests harness will be written for the resource management system that allows regression testing of its functionality and performance whenever changes are made to the code. It is anticipated to use a test framework like dejaGnu.

5.5 Modular design

The code will be written in an object oriented language, with classes for each object type. Additionally, the communication layers will be written as replaceable modules (extension of an abstract/base class) allowing different framing, data-representation and security modules to be selected at runtime.

5.6 Packaging

It is anticipated that this will be packaged as a gzipped tarball. It might also be packaged into RPM format.

5.7 Installation/Update procedure

It is anticipated that this will utilize the configure, make, make install methodology for installation (or rpm). There should be a mechanism whereby patches may be applied simply, as well as semi-automatic database schema updates between major revisions.

6 Interface Requirements

6.1 Component Interface

XML Schema validation

Written according to public API to allow easy replacement of components such as the accounting system or the meta-scheduler

Well defined API allows the site to replace or augment individual components as needed

6.1.1 Request Types

SubmitJob

QueryJob

RunJob

KillJob

ModifyJob

SuspendJob

ResumeJob

SignalJob

6.2 User/Admin Interface

Should be remotely accessible

Command line followed by Web-based GUI.

6.3 Web-based graphical Interface

A web-based GUI will be developed which will give users, managers and administrators a simple interface in which to perform common tasks such as submitting, querying, and terminating jobs. In addition the web interface will allow sites to create submission modules tuned for commonly used programs and their local resources. For example a site may create modules for the quantum chemistry codes GAMESS and NWChem which expose the specific resource options relevant to each program such as memory, disk, number of processors, etc.

6.4 API Interface

A public API (Application Programming Interface) will be created which will allow schedulers, meta-schedulers and other allocation managers and services to interface to the bank and make dynamic reservations, withdrawals, quotations, queries, etc.

6.5 Protocol Interface

A public wire protocol interface will be developed based on XML according to an SSS standard specification. Other components can communicate directly with the allocation manager over this protocol without having to link in to libraries, modules etc. This will be a flexible request/response syntax that allows for pipelining of requests/responses, and a powerful querying capability supporting the functionality of an SQL backend. The protocol will use support the capacity to validate the XML against the specified XML schema, thereby establishing its conformity to the specification. Validation can be disabled to enhance performance.

7 Persistent Data Requirements

7.1 Database backend

The resource manager will take advantage of the powerful querying capabilities of a relational database to store and retrieve the job information. This provides concurrency and transactions to prevent data corruption. It also provides better performance than flat-file solutions. Sites can use built-in report utilities or create their own that use resource manager API’s or query the database directly.

8 Preliminary Schedule

1 JUN 2002

Release initial (V1) XML interface specifications

1 DEC 2002
Resource Manager adapted to V1 XML interface and security

protocols

1 FEB 2003
Release version 2 of the interface specification

1 JUN 2003
TRU64 and AIX initial support

1 DEC 2003
Release production version of resource manager, fully integrated and tested with other SSS resource management system components based on V2 of XML interface specs.

1 DEC 2003
User-oriented problem response system

1 JUN 2004
Fully integrated with Silver metascheduler

1 DEC 2004
Fault tolerance supporting 25% cluster loss

1 JUN 2005
Maintain problem reporting website and mailing lists

1 DEC 2005
Support parallel checkpoint/restart jobs

1 JUN 2006
Fault tolerance support loss of 50% of cluster

1 JUN 2006
Scalability adequate for largest DOE system

9 Validation/Testing Criteria

9.1 Test Harness

A test harness will be created and used to perform regression tests on the software so that changes can be quickly verified to not break the code.

9.2 List of Reviewers

