Let’s consider the negative balance problem against 4 implementations and under two allocation scenarios. First let’s assume we have two allocations, each with 50 credits. We have two equal periods and a job that starts in the middle of the first period and finishes in the middle of the second period and charges 50 credits. We assume both allocations are in the same account.
The two allocation scenarios are:

A)
Staggered allocations (distinct allocations in each period)

[image: image14.bmp]
B)
Stepped allocations (all start at common time, expiring periodically)

[image: image2]
The dashed line represents future just-in-time expansion for allocation 2.

[image: image3]
I. Current implementation:

We reserve against accounts (not allocations) valid at job start and we charge against accounts valid at job end -- this is independent of what allocations were valid when the reservation was performed.

A:
Job 1 gets a reservation in the first period in the account because of allocation 1. When it completes in period 2, the charge goes against allocation 2. Another job should not be able to obtain an additional reservation since there was no time when more than the reserved amount was available and the reservation effectively slides to allocation 2 since reservations are tied to accounts instead of reservations.
 SHAPE * MERGEFORMAT

B:
Job 1 gets a reservation in period one because allocation 1 and 2 are both available at that time. When the job completes, it is charged against allocation 2. Another job could have obtained a reservation during either period 1 or 2 (before job 2 got charged) and started running also. When the second job completes, the only active allocation (2) is depleted and you get a negative balance.

[image: image5]
II. Check ahead implementation:

We reserve only against allocations valid throughout the lifetime of the job (i.e a single allocation must start before the job starts and expire after the job ends) and we charge against the same allocations we reserved against.

A:
Job 1 can’t get a reservation to start here because there are no single allocations that are valid throughout the lifetime of the job.

 SHAPE * MERGEFORMAT

B:
Job 1 gets a reservation in period two because only period 2 is valid throughout the lifetime of the job. When the job completes, it is charged against allocation 2. Another job that spans the period boundaries cannot get started until the expanding deposit is made.

[image: image7]
III. Debit against expired allocations implementation:

We reserve against allocations valid at the start of the job and we charge against these same allocations when the job ends, regardless of whether or not the allocation is expired at that time or not.

A:
Job 1 gets a reservation against allocation 1. When it completes in period 2, the charge goes against allocation 1, even though it has expired. Another job trying to start after allocation 2 becomes active should be able to reserve and change against allocation 2.
 SHAPE * MERGEFORMAT

B:
Job 1 gets a reservation against allocation 1. When the job completes, it is charged against allocation 1 even though it has expired. Another job can still obtain a reservation at this time against allocation 2 and will be charged against allocation 2.

[image: image9]
IV. Fractional allocation implementation:

We reserve against portions of multiple allocations.

A:
Job 1 gets a reservation partly in the first period and partly in the second period in proportion with the amount of time it was forecasted to spend in the given periods. When the job completes, the charge comes out of the same allocations that were reserved against, filling the earliest expiring first. Another job coming along may be able to start if it exactly fits over the remainder, i.e. if the first job took 40% in A and 60% in B, and the second job was 60% in A and 40% in B, then theoretically it could start.
 SHAPE * MERGEFORMAT

B:
Job 1 gets a reservation partly in the first allocation and partly in the second allocation in proportion with the amount of time it was forecasted to spend in the given periods (earliest expiring allocations always take precedence). The charge comes out of the same allocations as were reserved against with charges coming out of allocation 1 first up to the reserved amount for that allocation. A second job should theoretically be able to start under the same narrow conditions as in the Staggered allocation case above.

[image: image11]
Analysis:
I.
Current implementation is simple, and works around boundaries but can result in a negative balance if the allocation is not there when the debit occurs.
II.
Check ahead (spanning) implementation eliminates the negative balance problem, but has trouble around staggered boundaries. Additionally, it does not support just-in-time deposits. Jobs are required to fit entirely in the allocation periods.

III.
Debit against expired allocations implementation eliminates the negative balance problem and does not have a problem at staggered allocation boundaries. It also seems to support the just-in-time allocations. However, there may still be some argument between reasonable people about whether a job should be able to start if the allocation is not valid through its completion time.
IV.
Fractional allocation implementation is real hard to implement. Consider allocations that overlap a little, or that don’t quite overlap or allocations that start and end inside the job duration. This starts to become a scheduling problem. It doesn’t seem to buy you much over III except that it doesn’t violate the principle of using only allocation funds valid during the time of the run. Unlike II, it doesn’t suffer problems around boundaries. Basically it gives you the best of all worlds. It does not support just-in-time scheduling, but one might argue that one should not be able to get started on funds that will not be around when you finish.
Based on the above analysis, I am currently inclined to support implementation III in the native code.

Note for Vanderbilt -- I believe this should suit your needs. Any comments???

Scott Jackson

1

2

2

1

Job Starts

Job Ends

B

Job Ends

Job Ends

Job Starts

Job Starts

2

A

Job Ends

Job Starts

2

1

A

1

B

1

2

Job Starts

Job Ends

A

1

2

Job Starts

Job Ends

B

1

2

Job Starts

Job Ends

A

1

2

Job Starts

Job Ends

B

1

2

Job Starts

Job Ends

A

1

2

Job Starts

Job Ends

B

Reservation

Charge

Reservation and Charge

Key:

[image: image1][image: image12.bmp][image: image13.bmp]