Considerations for using SOAP as the basis for SSSRMAP v4
The Scalable Systems Software Resource Management and Accounting Protocol version 3 is an XML request-response message format over HTTP. In many respects, the SSSRMAP wire protocol closely resembles the SOAP Protocol with an HTTP binding. This is justly because SOAP was among the many protocols studied during the design of the SSSRMAP protocols. Many of SOAP’s desirable qualities were adopted in the SSSRMAP specification. However, it was not adopted outright as the research appeared to indicate that existing SOAP specifications and implementations would not provide the level of scalability required by the Scalable Systems Software project.

Specifically, the two largest problems were: (1) that existing SOAP implementations added significant overhead and latency to the communications, and (2) SOAP did not provide adequate support for large messages.
First problem:
The SOAP specification is complex and supports many features not required by SSS components that add overhead to the communications.

[Investigating the Limits of SOAP Performance for Scientific Computing][Latency Performance of SOAP Implementations][Pushing the SOAP Envelope With Web Services for Scientific Computing][SOAP’s too slow for capital markets]
Second problem:

It was determined early on that as these standards were being designed for the largest scale systems over the coming years (including the possibility of Grid-level scheduling and accounting) that the target components may well be working with data sets that would be larger than the available memory on the servers. This would be particularly true for monitoring, accounting and data-storing services. One of SOAP’s principle weaknesses is that it does not support streaming or chunking of large messages very well. In fact, boxcarring or batching of messages was intentionally excluded from the design. SOAP (over HTTP) only supports a single response for a request. Multiple synchronous or asynchronous responses are not well supported over the SOAP HTTP binding (or any other binding commonly available in SOAP implementations that I am aware of). Existing SOAP implementations usually read messages entirely into memory before they are processed and this poses a major resource problem for large messages. 
[Is soap tough enough for large data loads?]

Many enterprise IT shops use custom XML solutions over HTTP instead of using SOAP. They do this because it is easy to do so, because it often affords them better performance and because the solutions can be readily adapted to their specialized needs. This was the direction we chose to go for similar reasons.
[Why Use SOAP? Choosing Between SOAP and Application-Specific XML for Your Web Services]

By implementing communication protocol logic that focus exclusively on the needs for the SSS components and not supporting the diverse capabilities within SOAP (including the namespace processing and validation), SSSRMAP components can achieve reasonably good communication performance. By modifying the HTTP framing to use HTTP 1.1 Chunking, large message support was enabled for SSS components. 

There could be some significant advantages for using SOAP. The SSSRMAP communication standard might well have a greater chance for widespread adoption by industry were it to use an industry tried-and-proven communication standard. Additionally, SOAP communication modules already exist for the major programming languages and architectures, so it would be easier for a new component implementer to use the SSSRMAP protocol. That being said, coding for the existing SSS protocol is not hard and does not take many lines of code to directly support the SSSRMAP communication protocol if you exclude the authentication and encryption routines.
SSSRMAP protocol v3 currently satisfies our needs. There is presently no large motivation for moving to a protocol that uses SOAP. If it was determined that the SSS components should be enhanced to use another version of SSSRMAP based on the SOAP specification, the following changes would be necessary:
1) Performance

Not much can be done to increase the performance of SOAP. It may be that some implementations of SOAP would be fast enough for our scalability requirements. This has not been adequately tested.

2) Large messages

a) We could give up on large message support
b) We could attach all data as DIME attachments

c) We could use SOAP over an HTTP 1.1 binding that uses chunking


Although large messages could be supported via DIME attachments (which supports chunking), this does not seem to be a very desirable solution because we would rather not handle all of our data via attachments (our data is currently encapsulated in the response body and we would not like to handle large data responses differently than small data responses). Although the SOAP specification appears to allow for an HTTP binding that supports chunking, the existing SOAP modules and implementations use an HTTP binding that does not support chunking.

3) Other protocol differences
Besides that, most of the changes are cosmetic. Both SSSRMAP and SOAP over HTTP sport a very similar HTTP transport layer (SSSRMAP uses Chunking while SOAP uses Content-Length to specify the payload size). Both have an Envelope element at the top layer, although SSSRMAP presently does not require namespaces as SOAP does. SOAP has an optional Header element inside the Envelope element that may contain authentication information while SSSRMAP has an optional Signature element directly inside the Envelope element that contains the authentication information. Both authentication mechanisms are based on XML Digital Signatures (SSSRMAP more loosely). Both SSSRMAP and SOAP have a Body element inside the Envelope element. In SSSRMAP, The Body element and the Signature element may be replaced by an EncryptedData element if the content has been encrypted. SOAP Faults are included in the Header element while all SSSRMAP failure responses are included in the Body element (in the Response) and conform to a 3-digit error code (similar to ftp or http), a status token and a message. SOAP Fault codes are dot-delimited hierarchically qualified names. The contents of the Body as defined by the SSSRMAP Message Format would probably not have to change since just about any XML is allowed as a payload in SOAP. It is possible that a SOAP RPC mechanism might be better supported by making simple alterations to the message format. Namespace qualification may need to be added to the top-level elements in the Body.
· SSSRMAP would have to add in the SOAP namespace qualifiers for the soap-envelope and soap-encoding namespaces.
· The SSSRMAP Signature would have to be placed in the SOAP Header and would have to change to conform to the SOAP Security Extensions and XML Digital Signature.

· SOAP Encryption is going to take some work and more investigation to determine if there even is a standard here. It appears the only direction is to somehow use the emerging XML-ENCRYPTION standard.
· SSSRMAP error codes which indicate failure of the connection itself or security will have to be moved to the Header as a SOAP Fault Code. Business logic errors can still be kept within the Response Body.
