Fault Tolerance with Gold
One of the design goals for Gold is fault tolerance. Gold implements fault tolerance in several ways:

· Robust communication infrastructure

· Transactions

· Hot backup server
Robust Communication Infrastructure

The Gold server and client communications have been designed and tested for robustness. Goldd is a forking server which allows it to handle multiple requests simultaneously, each in a separate process. This approach prevents one hanging or problematic connection from preventing other requests from getting serviced. Additionally, messages between the client and server are handled with a timeout select in non-blocking read and write loops in order to prevent hangs due to dropped connections. The use of strong security for authentication and encryption can prevent third parties from hijacking or eavesdropping on the communications.
Transactions

Gold uses a database backend for data persistence. Each request performs its work within a transaction, which is committed or rolled-back as a unit depending on the success or failure of the request. This approach ensures that all requests are atomic, even if the client, server or database is interrupted at any point in the request.

Hot Backup Server
Gold can be configured to employ a hot backup server. Such a configuration would also require the use of a synchronous multi-master replicated database such as pgcluster. If a gold client detects that the primary gold server or its database is unavailable, it will automatically forward the request to the backup gold server if one is configured.

Example configuring gold with a hot backup server using pgcluster:
For this example we will assume that we have two head nodes called primary and backup.

Unpack and install Gold on both the primary and backup nodes. Follow the installation instructions for Preparation and Install Prerequisites with the exception that pgcluster will need to be installed in the place of postgresql (pgcluster is a repackaging of postgresql with patches for replication).
o PGCluster 1.3 or higher [OPTIONAL]:

PGCluster is a synchronous multi-master replication system based on postgres. PGCluster 1.3c is based on PostgreSQL 8.0.1.

PGCluster is available at: <http://hiroshima.sraw.co.jp/people/mitani/jpug/pgcluster/en/index.html>
Follow the INSTALL_PGCLUSTER instructions for installing pgcluster.
The following are some of the highlights:

[root] useradd postgres

[root] cd /usr/local/src

[root] wget http://hiroshima.sraw.co.jp/people/mitani/jpug/pgcluster/src/1_3/pgcluster-1.3.0c.tar.gz
[root] tar -zxvf /tmp/pgcluster-1.3.0c.tar.gz

[root] chown -R postgres.postgres pgcluster-1.3.0c

[postgres] cd /usr/local/src/pgcluster-1.3.0c

[postgres] ./configure --enable-thread-safety

[postgres] make

[root] make install

[root] chown -R postgres /usr/local/pgsql

[postgres] /usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data

[postgres] vi /usr/local/pgsql/data/pg_hba.conf

host all all <ip address for primary>/32 trust

host all all <ip address for backup>/32 trust
This example configure pgcluster with a pgcluster and a replication server on the

the primary node, and a pgcluster on the backup node. This was found through testing

to be the most stable configuration. No load balance server is used.

[postgres@primary,backup] vi /usr/local/pgsql/data/cluster.conf:

<Replicate_Server_Info>

 <Host_Name> primary.emsl.pnl.gov </Host_Name>

 <Port> 8001 </Port>

 <Recovery_Port> 8101 </Recovery_Port>

 <LifeCheck_Port> 8201 </LifeCheck_Port> </Replicate_Server_Info>

<Rsync_Option> ssh -x </Rsync_Option>

<When_Stand_Alone> read_write </When_Stand_Alone>

A single replication server is configured on the primary node only

[postgres@primary] vi /usr/local/pgsql/etc/pgreplicate.conf:

<Cluster_Server_Info>

 <Host_Name> sst.emsl.pnl.gov </Host_Name>

 <Port> 5432 </Port>

 <Recovery_Port> 7101 </Recovery_Port>

 <LifeCheck_Port> 7201 </LifeCheck_Port>

</Cluster_Server_Info>

Rsync and openssh have to be installed allowing non-interactive ssh connections

Install openssh

[root] cd /usr/local/src

[root] wget http://mirror.mcs.anl.gov/openssh/portable/openssh-3.9p1.tar.gz

[root] tar -zxvf openssh-3.9p1.tar.gz

[root] cd openssh-3.9p1

[root] LIBS=-lcrypt ./configure --prefix=/usr --sysconfdir=/etc/ssh

[root] make

[root] make install

[root] vi /etc/ssh/ssh_config

ForwardX11 no

[root] vi /etc/ssh/sshd_config

RSAAuthentication yes

PubkeyAuthentication yes

AuthorizedKeysFile .ssh/authorized_keys

[root] /etc/init.d/ssh restart

[postgres] cd ~/.ssh

[postgres] ssh-keygen -t rsa # No pass phrase

[postgres] cp id_rsa.pub authorized_keys

[postgres] cat <id_rsa.pub from other host> >> authorized_keys

Test ssh to/from both hosts to ensure non-prompting operation and clear known_hosts

Test rsync
The following is how you startup the replicated database on the two servers
The gold server should be in a quiesced state (or not started yet)

Start the pgcluster and the replication server on the primary

[postgres@primary] /usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data -o "-i" start

[postgres@primary] /usr/local/pgsql/bin/pgreplicate -D /usr/local/pgsql/etc -l

Start the pgcluster on the backup

[postgres@backup] /usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data -o "-i" start

The following is how you stop the replicated database on the two servers
The gold server should be in a quiesced state (or already shut down)

Stop the replication server on the primary, then the pgcluster

[postgres@primary] /usr/local/pgsql/bin/pgreplicate -D /usr/local/pgsql/etc stop

[postgres@primary] /usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data stop
Stop the pgcluster on the backup

[postgres@backup] /usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data stop

The following is how you recover the replicated database on the primary
The gold server should be in a quiesced state (or shut down on primary and backup)

If the pgcluster on the backup is not already running then start it

[postgres@backup] /usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data -o "-i" start

Start the replication server on the primary

[postgres@primary] /usr/local/pgsql/bin/pgreplicate -D /usr/local/pgsql/etc -l

Start the pgcluster on the primary in recovery mode

[postgres@primary] /usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data -o "-i -R" start

The following is how you recover the replicated database on the backup
The gold server should be in a quiesced state (or shut down on primary and backup)

If the pgcluster and replication server on the backup are not already running then start them

[postgres@primary] /usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data -o "-i" start

[postgres@primary] /usr/local/pgsql/bin/pgreplicate -D /usr/local/pgsql/etc -l

Start the pgcluster on the backup in recovery mode

[postgres@backup] /usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data -o "-i -R" start

....Now back to the Gold installation....
Continue following the Gold installation instructions for Configuration, Compilation, Perl Module Dependencies, and Installation. In General Setup, when you edit the Gold client config file (i.e. /usr/local/gold/etc/gold.conf), uncomment the server.backup property and specify the name of the backup host.
server.backup = backup
The Database Setup has partly been done during the pgcluster setup above. The databases should already have been initialized on both the primary and the backup. The /usr/local/pgsql/data/pg_hba.conf should already have been modified to define the hosts for both the primary and backup servers.

Start up the replicated databases.

[postgres@primary] /usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data -o "-i" start

[postgres@primary] /usr/local/pgsql/bin/pgreplicate -D /usr/local/pgsql/etc -l

[postgres@backup] /usr/local/pgsql/bin/pg_ctl -D /usr/local/pgsql/data -o "-i" start

Create the gold user on the primary only.
[postgres@primary] /usr/local/pgsql/bin/createuser gold

 Shall the new user be allowed to create databases? y

 Shall the new user be allowed to create more new users? n
Create the gold database as the gold user on the primary only.

[gold@primary] /usr/local/pgsql/bin/createdb gold

Perform the Bootstrap step on the primary only.
[gold@primary] /usr/local/pgsql/bin/psql gold < bank.sql
Startup the gold server daemons on both the primary and the backup.

[gold@primary,backup] /usr/local/gold/sbin/goldd

Proceed as normal, with the Initialization and Customization steps.

Note: Only the non-interactive clients will automatically switch to use the hot backup. The goldsh client and the web-based gui will not do so. Also, 3rd party applications that communicate with the Gold server may not automatically fail-over such as the Maui Scheduler and the Moab Cluster Manager.
