Resource Management Interface Specs

Scott Jackson

Draft Initial Release v. 0.3

Brett Bode

7 AUG 2002

David Jackson

Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP)

Status of this Memo

This is a draft form of the initial resource management interface specification. Much of what is expressed is still in active discussion and virtually nothing within it has been definitively decided. One purpose of this document at this stage is to propose a set of protocol characteristics that can then be tested in prototypes and compared against alternative approaches.

Abstract

This document is a draft specification describing a connection-oriented XML-based application layer client-server protocol for the interaction of resource management and accounting software components developed as part of the Scalable Systems Software Center. The SSSRMAP protocol defines a request-response syntax supporting the query and update of extensible objects. The protocol is specified in XML Schema Definition and rides on the HTTP protocol.

Conventions Used In This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [KEYWORDS].

Table of Contents

21
Introduction

32
Overview

33
Encoding

33.1
XML Conventions

33.2
SSSRMAP Message Types

43.2.1
Schema Header and Namespaces

43.2.2
The Message Element

53.2.3
The Request Element

63.2.4
The Get Element

63.2.5
The Set Element

73.2.6
The Where Element

83.2.7
The Data Element

83.2.8
The Count Element

93.2.9
The Reply Element

93.2.10
The Response Element

103.2.11
The Status Element

103.2.12
The Code Element

103.2.13
The Message Element

113.2.14
The Notify Element

113.2.15
The Ack Element

123.3
Examples

123.3.1
Sample Requests

133.3.2
Sample Responses

133.3.3
Sample Notification

143.3.4
Sample Acknowledgement

144
Error Reporting

155
Transport Layer

156
Framing

156.1
Message Header Requirements

156.2
Message Payload Format

156.3
Reply Header Requirements

166.4
Reply Payload Format

166.5
Examples

166.5.1
Sample SSSRMAP Message Embedded in HTTP Request

166.5.2
Sample SSSRMAP Reply Embedded in HTTP Response

167
Asynchrony

178
Authentication

178.1
Signature Example

188.2
Signature Properties

188.2.1
The UserId SignatureProperty

198.2.2
The Hostname SignatureProperty

198.2.3
The Timestamp SignatureProperty

199
Privacy

199.1
Encryption Example

2010
Acknowledgements

2011
References

1 Introduction

A major objective of the Scalable Systems Software [SSS] Center is to create a scalable and modular infrastructure for resource management on terascale clusters including resource scheduling, meta-scheduling, node daemon support, comprehensive usage accounting and user interfaces emphasizing portability to terascale vendor operating systems. Existing resource management and accounting components feature disparate APIs (Application Programming Interfaces) requiring various forms of application coding to interact with other components.

This document proposes a wire level protocol expressed in an XML request-response syntax to be considered as the foundation of a standard for communications between and among resource management and accounting software components. In this document this standard is expressed in two levels of generality. The features of the core SSSRMAP protocol common to all resource management and accounting components in general are described in the main body of this document. The aspects of the syntax specific to individual components are described in the Appendix.

2 Overview

3 Encoding

Encoding tells how a message is represented when exchanged. SSSRMAP data exchange messages are defined in terms of XML schema [XML_SCHEMA].

3.1 XML Conventions

In order to enforce a consistent capitalization and naming convention across all SSSRMAP specifications “Upper Camel Case” (UCC) and “Lower Camel Case” (LCC) Capitalization styles shall be used. UCC style capitalizes the first character of each word and compounds the name. LCC style capitalizes the first character of each word except the first word. [XML_CONV][FED_XML]

1. SSSRMAP XML Schema and XML instance documents SHALL use the following conventions:

· Element names SHALL be in UCC convention (example: <UpperCamelCaseElement/>.

· Attribute names SHALL be in LCC convention (example: <UpperCamelCaseElement lowerCamelCaseAttribute=”Whatever”/>.

2. General rules for all names are:

· Acronyms SHOULD be avoided, but in cases where they are used, the capitalization SHALL remain (example: XMLSignature).

· Underscores (_), periods (.) and dashes (-) MUST NOT be used (example: use JobId instead of JOB.ID, Job_ID or job-id).

3.2 SSSRMAP Message Types

The SSSRMAP protocol provides four general message types: requests, responses, notifications and acknowledgements.

When a session is established and the client authenticated, the protocol allows two styles of data exchange between the client and server. [XRP]

1. request/response – the client sends a “request” message requesting the server to perform the task, the server performs the task and returns a “response” reply. [XRP]

2. notify/ack – the server notifies clients about certain events in the system, and receives an “ack” reply as an acknowledgement. [XRP]

Both styles are one-to-one synchronous exchanges wherein a single message is sent from the client to the server, and a corresponding reply is sent from the server to the client.

3.2.1 Schema Header and Namespaces

The header of the schema definition is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<schema

 xmlns=”http://www.w3.org/2001/XMLSchema”

 xmlns:am=”http://www.scidac.org/ScalableSystems/AllocationManager”

 targetNamespace=”http://www.scidac.org/ScalableSystems/AllocationManager”

 elementFormDefault="qualified">

A message consists of a single Message element. A reply consists of a single Reply element. These may contain namespace and other xsd-specific information necessary to validate the document against the schema.

3.2.2 The Message Element

The Message element is a root element that delimits the set of requests or notifications sent to the server. It must contain one or more Request or Notify elements. In addition, it may have any of the following attributes which may serve as processing clues to the parser:

· type – A message type such as “Request” or “Notification”

· actor – The authenticated user sending the message

· count – A positive integer indicating the number of requests in the batch

· component – A component type such as “QueueManager” or “LocalScheduler”

· name – A component name such as “OpenPBS” or “Maui”

· version – A component version such as “2.2p12” or “3.2.2”

Schema Definition:

<complexType name="MessageType">

 <choice minOccurs="1" maxOccurs="unbounded">

 <element ref="am:Request" minOccurs="0" maxOccurs="unbounded"/>

 <any minOccurs="0" maxOccurs="unbounded" namespace="##other"/>

 </choice>

 <attribute name="type" type=”string” use="optional"/>

 <attribute name="actor" type=”string” use="optional"/>

 <attribute name="count" type=”integer” use="optional"/>

 <attribute name="component" type=”string” use="optional"/>

 <attribute name="name" type=”string” use="optional"/>

 <attribute name="version" type=”string” use="optional"/>

</complexType>

<element name="Message" type="am:MessageType"/>

3.2.3 The Request Element

The Request element specifies an individual request. Depending on context, it may contain one or more Get elements or one or more Set elements as well as a Count element and any number of Where or Data elements.

It must have both an object and action attribute and may have a help attribute or an id attribute.

· object – specifies the object class to be acted upon such as “job” or “node”

· action – specifies the action to be performed on the object such as “create”, “query”, “modify” or “delete”

· help – requests a usage message be returned in the response when set to “true”

· id -- uniquely maps the request to the appropriate response

Schema Definition:

<complexType name="RequestType">

 <choice minOccurs="0" maxOccurs="unbounded">

 <choice minOccurs="0" maxOccurs="1">

 <element ref="am:Get" minOccurs="1" maxOccurs="unbounded"/>

 <element ref="am:Set" minOccurs="1" maxOccurs="unbounded"/>

 </choice>

 <element ref="am:Where" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="am:Data" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="am:Count" minOccurs="0" maxOccurs="1"/>

 <any namespace=”##other” minOccurs="0" maxOccurs="unbounded"/>

 </choice>

 <attribute name="object" type="string" use="required"/>

 <attribute name="action" type="string" use="required"/>

 <attribute name="id" type="string" use="optional"/>

 <attribute name="help" type="am:BoolType" use="optional"/>

</complexType>

<element name="Request" type="am:RequestType"/>

3.2.4 The Get Element

The Get element is used to indicate the data fields to be returned in a query. Get is typically used within requests with action=”query”. Multiple Get elements cause the fields to be returned in the order specified. If no Get elements are specified, the query will return a default set of fields.

The valid attributes are:

· name – the name of the data field to be returned

· units – the units in which to return the value (if applicable)

Schema Definition:

<complexType name="GetType">

 <attribute name="name" type=”string” use="required"/>

 <attribute name="units" type=”string” use="optional"/>

</complexType>

<element name="Get" type="am:GetType"/>

3.2.5 The Set Element

The Set element is used to specify the object data fields to be assigned values. Set is typically used within requests with action=”create” or action=”modify”. The use of Get or Set elements within a request are mutually exclusive.

The valid attributes are:

· name – the name of the field being assigned a value

· value – the new value for the field being changed

· units – the units corresponding to the value being set

A Set element without a value may be used as an assertion flag.

Schema Definition:

<complexType name="SetType">

 <attribute name="name" type=”string” use="required"/>

 <attribute name="value" type=”string” use="optional"/>

 <attribute name="units" type=”string” use="optional"/>

</complexType>

<element name="Set" type="am:SetType"/>

3.2.6 The Where Element

A Request element may contain one or more Where elements that specify the search conditions for which objects the action is to be performed on or supply constraints or options to the request.

Only a name attribute is required. All other fields are optional.

· name – the name of the data field to be tested

· value – the value against which the objects data value is tested

· op – the operator to be used to test the name against the value. If an op attribute is not specified and a value is specified, the field will be tested whether it is equal to the value (“eq”).

· An op attribute of “eq” specifies an equality comparison

· An op attribute of “lt” specifies a “less than” comparison

· An op attribute of “gt” specifies a “greater than” comparison

· An op attribute of “le” specifies a “less than or equal to” test

· An op attribute of “ge” specifies a “greater than or equal to” test

· An op attribute of “ne” specifies a “not equal to” test

· An op attribute of “like” specifies a regular expression matching comparison

· conj -- indicates whether this test is to be anded or ored with the immediately preceding where condition

· A conj attribute of “and” specifies an “and” conjunction

· A conj attribute of “or” specifies an “or” condition

· group – indicates an increase or decrease of parentheses grouping depth

· A positive number indicates the number of left parentheses to precede the condition, i.e. group=”2” represents “((condition”.

· A negative number indicates the number of right parentheses to follow the condition, i.e. group=”-2” represents “condition))”.

· units – indicates the units to be used in the value comparison

Schema Definition:

<complexType name="WhereType">

 <attribute name="name" type=”string” use=”required”/>

 <attribute name="value" type="string" use="optional"/>

 <attribute name="op" type="am:OperatorType" use="optional"/>

 <attribute name="conj" type="am:ConjunctionType" use="optional"/>

 <attribute name="group" type="integer" use="optional"/>

 <attribute name="units" type="string" use="optional"/>

</complexType>

<element name="Where" type="am:WhereType"/>

3.2.7 The Data Element

A Request or Response element may have one or more Data elements that allow the supplying of context-specific data. A request might pass in a structured object via a Data element to be acted upon. Typically a query will result in a response with the data encapsulated within a Data element.

The following attributes are optional:

· name – object name describing the contents of the data

· type – describing the form in which the data is represented

· A type attribute of “xml” indicates the data has internal xml structure and can be recursively parsed by an XML parser

· A type attribute of “binary” indicates the data is an opaque dataset consisting of binary data

· A type attribute of “string” indicates the data is an ASCII string

· A type attribute of “int” indicates the data is an integer

· A type attribute of “text” indicates the data is in formatted human-readable text

· A type attribute of “html” indicates the data is represented in HTML

Schema Definition:

<complexType name="DataType">

 <sequence>

 <any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="name" type=”string” use="optional"/>

 <attribute ref="am:Type" use="optional"/>

</complexType>

<element name="Data" type="am:DataType"/>

3.2.8 The Count Element

A single Count element may be included within a Request or Response and is context-specific. This can be used to represent the number of objects acted upon.

Schema Definition:

<element name="Count" type="positiveInteger"/>

3.2.9 The Reply Element

The Reply element is a root element that delimits the set of responses or acknowledgements returned to the client. It must contain one or more Response or Ack elements. In addition, it may have any of the following attributes:

· type – A reply type such as “Response” or “Acknowledgement”

· count – A positive integer indicating the number of responses in the batch

· component – A component type such as “QueueManager” or “LocalScheduler”

· name – A component name such as “OpenPBS” or “Maui”

· version – A component version such as “2.2p12” or “3.2.2”

Schema Definition:

<complexType name="ReplyType">

 <choice minOccurs="1" maxOccurs="unbounded">

 <element ref="am:Response" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="am:Ack" minOccurs="0" maxOccurs="unbounded"/>

 <any minOccurs="0" maxOccurs="unbounded" namespace="##other"/>

 </choice>

 <attribute name="type" type=”string” use="optional"/>

 <attribute name="count" type=”integer” use="optional"/>

 <attribute name="component" type=”string” use="optional"/>

 <attribute name="name" type=”string” use="optional"/>

 <attribute name="version" type=”string” use="optional"/>

</complexType>

<element name="Reply" type="am:ReplyType"/>

3.2.10 The Response Element

The Response element specifies an individual response. It must contain Status and Code elements. It may also contain Message, Count and any number of Data elements.

It may have an object and action attribute as well as a help attribute or an id attribute.

· object – specifies the object class to be acted upon such as “job” or “node”

· action – specifies the action to be performed on the object such as “create”, “query”, “modify” or “delete”

· help – indicates a request for usage syntax when set to “true”

· id -- uniquely maps the response to the corresponding request

Schema Definition:

<complexType name="ResponseType">

 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="am:Status" minOccurs="1" maxOccurs="1"/>

 <element ref="am:Code" minOccurs="1" maxOccurs="1"/>

 <element ref="am:Message" minOccurs="0" maxOccurs="1"/>

 <element ref="am:Count" minOccurs="0" maxOccurs="1"/>

 <element ref="am:Data" minOccurs="0" maxOccurs="unbounded"/>

 <any minOccurs="0" maxOccurs="unbounded" namespace="##other"/>

 </choice>

 <attribute name="object" type="string" use="optional"/>

 <attribute name="action" type="string" use="optional"/>

 <attribute name="id" type="string" use="optional"/>

</complexType>

<element name="Response" type="am:ResponseType"/>

3.2.11 The Status Element

A Response element must contain a single Status element that indicates whether the reply represents a success or a failure. The Status element must have a boolean value of “true” or “false”.

Schema Definition:

<element name="Status" type="boolean"/>

3.2.12 The Code Element

A Response element must contain a single Code element that specifies the 3-digit status code for the response.

Schema Definition:

<simpleType name="CodeType">

 <restriction base="string">

 <pattern value="[0-9]{3}"/>

 </restriction>

</simpleType>

<element name="Code" type="am:CodeType"/>

3.2.13 The Message Element

A Response element may contain a single Message element that is context specific to the success or failure response. The message should be an error message if status is false. If present for a successful response, it may be used as a human readable message for a user interface.

Schema Definition:

<element name="Message" type="string"/>

3.2.14 The Notify Element

The Notify element may have one or more Data elements that carry the context-specific data with the event notification.

It must have a name attribute while the others are optional:

· name – the name of the event that was triggered

· value – the value for the object that was changed

· id – uniquely maps the notification to its acknowledgement

Schema Definition:

<complexType name="NotifyType">

 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="am:Data" minOccurs="0" maxOccurs="unbounded"/>

 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

 </choice>

 <attribute name="name" type="string" use="required"/>

 <attribute name="value" type="string" use="optional"/>

 <attribute name="id" type="string" use="optional"/>

</complexType>

<element name="Notify" type="am:NotifyType"/>

3.2.15 The Ack Element

The Ack element may have a name attribute:

· name – the name of the event that was triggered

· id – uniquely maps the acknowledgement to the corresponding notification

Schema Definition:

<complexType name="AckType">

 <attribute name="name" type="string" use="optional"/>

 <attribute name="id" type="string" use="optional"/>

</complexType>

<element name="Ack" type="am:AckType"/>

3.3 Examples

3.3.1 Sample Requests

Requesting a list of nodes with a certain configured memory threshold (batch format):

<Message component=”NodeMonitor” count=”1”>

<Request object=”node” action=”query” id=”1”>

<Get name=”name” />

<Get name=”ConfiguredMemory” />

<Where name=”ConfiguredMemory” op=”ge” unit=”MB” value=”512”/>

</Request>

</Message>

Activating a couple of users:

<Message actor=”root”>

<Request object=”user” action=”modify”>

<Set name=”active” value=”true”/>

<Where name=”name” value=”scott”/>

<Where name=”name” value=”brett” conj=”or”/>

</Request>

</Message>

Submitting a simple job:

<Message>

<Request object=”job” action=”submit”>

<Data type=”xml”>

<Job>

<User>xdp</User>

<Account>youraccount</Account>

<Command>myprogram</Command>

<Cwd>/usr/home/scl/xdp</Cwd>

<RequestedNodes>4</RequestedNodes>

<RequestedWCTime>100</RequestedWCTime>

</Job>

</Data>

</Request>

</Message>

3.3.2 Sample Responses

A response to the available memory nodes query (batch format)

<Reply count=”1”>

<Response object=”node” action=”query” id=”1”>

<Status>true</Status>

<Code>000</Code>

<Count>2</Count>

<Data name=”NodeList” type=”xml”>

<Node>

<Name>fr01n01</Name>

<ConfiguredMemory>512</ConfiguredMemory>

</Node>

<Node>

<Name>fr12n04</Name>

<ConfiguredMemory>1024</ConfiguredMemory>

</Node>

</Data>

</Response>

</Reply>

Two users successfully activated

<Reply>

<Response>

<Status>true</Status>

<Code>000</Code>

<Count>2</Count>

<Message>Two users were successfully modified</Message>

</Response>

</Reply>

A failed job submission:

<Reply>

<Response>

<Status>false</Status>

<Code>711</Code>

<Message>Invalid account specified. The job was not submitted.</Message>

</Response>

</Reply>

3.3.3 Sample Notification

A change in available memory triggers a notification:

<Message>

<Notify name=”AvailableMemory” value=”952” id=”47327”/>

</Message>

3.3.4 Sample Acknowledgement

An event subscriber acknowledges receipt of the notification

<Reply>

<Ack id=”47327”/>

</Reply>

4 Error Reporting

SSSRMAP requests will return a status and a 3-digit response code to signify success or failure conditions. When a request is successful, a corresponding response is returned with the status element set to true and the code element set to “000”. When a request results in an error detected by the server, a response is returned with the status element set to false and a 3-digit error code in the code element. An optional human-readable message may also be include in a failure response providing context-specific detail about the failure. The default message language is US English. (The status flag makes it easy to signal success or failure and allows the receiving peer some freedom in the amount of parsing it wants to do on failure [BXXP]).

Category

Code
Response Message in US English

---------------------------+-------+---

Success

000
Request completed successfully

Unknown Failure
999
Request failed

---------------------------+-------+---

1xx

---------------------------+-------+---

Protocol Syntax
2xx

---------------------------+-------+---

Object Management
3xx

---------------------------+-------+---

Authentication Error
4xx

---------------------------+-------+---

Connection Problem
5xx

---------------------------+-------+---

Server Side Failure
6xx

---------------------------+-------+---

Client Side Failure
7xx

---------------------------+-------+---

Business Logic
8xx

---------------------------+-------+---

5 Transport Layer

This protocol will be built over the connection-oriented reliable transport layer TCP/IP. Support for other transport layers could also be considered, but native support for TCP/IP can be found on most terascale clusters and automatically handles issues such as reliability and connectionfullness for the application developer implementing the SSSRMAP protocol.

6 Framing

Framing specifies how the beginning and ending of each message is delimited. Given that the encoding will be expressed as one or more XML documents, clients and servers need to know when an XML document has been fully read in order to be parsed and acted upon.

SSSRMAP will use the HTTP 1.1 [HTTP] protocol for framing. HTTP uses a byte-counting mechanism to delimit the message body. HTTP chunking can be used to delimit batched messages and for persistent connections.

6.1 Message Header Requirements

The HTTP request line (first line of the HTTP request header) begins with POST and is followed by a URI and the version of the HTTP protocol that the client understands. It is suggested for this protocol that the URI consist of a single slash, followed by the protocol name in uppercase (i.e. /SSSRMAP), though this field is not specified and could be empty, a single slash or any URI.

The Content-Type must be specified as test/xml. Charset may be optionally specified and defaults to US-ASCII. It is recommended that charset be specified as “utf-8” for maximum interoperability.

The Content-Length must be specified and must be correct for the payload.

Other properties such as User-Agent, Host and Date are strictly optional.

6.2 Message Payload Format

The message payload is in XML and consists of a single XML document having a root element of Message or Signature if the message has been digitally signed.

6.3 Reply Header Requirements

The HTTP response line (first line of the HTTP response header) begins with HTTP and a version number, followed by a numeric code and a message indicating what sort of response is made. These response codes and messages indicate the status of the entire response and are as defined by the HTTP standard. The most common response is 200 OK, indicating that the message was received and an appropriate response is being returned.

The Content-Type must be specified as test/xml. Charset may be optionally specified and defaults to US-ASCII. It is recommended that charset be specified as “utf-8” for maximum interoperability.

The Content-Length must be specified and must be correct for the payload.

For HTTP 1.1, the Connection should be specified as close if a persistent connection is not required.

Other properties such as Server, Host and Date are strictly optional.

6.4 Reply Payload Format

The reply payload is in XML and consists of a single XML document having a root element of Reply or Signature if the message has been digitally signed.

6.5 Examples

6.5.1 Sample SSSRMAP Message Embedded in HTTP Request

POST /SSSRMAP HTTP/1.1

Content-Type: text/xml; charset=”utf-8”

Content-Length: 321

<Message …/>

6.5.2 Sample SSSRMAP Reply Embedded in HTTP Response

HTTP/1.1 200 OK

Connection: close

Content-Type: text/xml; charset=”utf-8”

Content-Length: 456

<Reply …/>

7 Asynchrony

Asynchrony (or multiplexing) allows for the handling of independent exchanges over the same connection. A widely-implemented approach is to allow pipelining (or boxcarring) by aggregating requests or responses within the body of the message or via persistent connections and chunking in HTTP 1.1. Pipelining helps reduce network latency by allowing a client to make multiple requests of a server, but requires the requests to be processed serially [RFC3117]. Parallelism could be employed to further reduce server latency by allowing multiple requests to be processed in parallel by multi-threaded applications.

Segmentation may become necessary if the messages are larger than the available window. With support for segmentation, the octet-counting requirement that you need to know the length of the whole message before sending it can be relaxed – and you can start sending segments before the whole message is available. Segmentation is facilitated via “chunking” in HTTP 1.1.

The current SSSRMAP strategy supports pipelining of requests and responses in batches contained within the Message and Reply elements. Later versions of the protocol could introduce parallelism such as that found in the BEEP protocol [BEEP] which allows independent parallel exchanges via multiple channels.

8 Authentication

Authentication entails how the peers at each end of the connection are identified and verified. It is proposed that SSSRMAP use XML Digital Signatures [XML_DSIG] for authentication. In addition to authentication, the use of digital signatures also ensures integrity of the message, protecting exchanges from third-party modification. In particular, the SHA-1 [SHA-1] message digest algorithm (http://www.w3.org/2000/09/xmldsig#sha1) should be used for computing individual request digests and the HMAC algorithm [HMAC] based on the SHA1 message digest (http://www.w3.org/2000/09/xmldsig#hmac-sha1) should be used as the default message authentication code algorithm for user identification and message integrity. In order to preserve a layered approach to protocol, it is proposed the SSSRMAP use an enveloping XML signature.

8.1 Signature Example

<Signature Id=”SSSSignature” xmlns=”http://www.w3.org/2000/09/xmldsig#” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” xsi:schemaLocation=”http://www.w3.org/2000/09/xmldsig# xmldsig-core-schema.xsd”>

 <SignedInfo>

 <CanonicalizationMethod Algorithm=”http://w3.org/TR/2001/REC-xml-c14n-20010315”/>

 <SignatureMethod Algorithm=”http://www.w3.org/2000/09/xmldsig#hmac-sha1”/>

 <Reference>

 <DigestMethod Algorithm=”http://www.w3.org/2000/09/xmldsig#sha1”/>

 <DigestValue>aZh8Eo2alIke1D5NNW+q3iHrRPQ=</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>kpRyejY4uxwT9I74Fyv8nQ==</SignatureValue>

 <Object>

 <SignatureProperties>

 <SignatureProperty Target=”#SSSSignature”>

 <Timestamp xmlns=”http://www.scidac.org/ScalableSystems/Signature”>999999999</Timestamp>

 </SignatureProperty>

 </SignatureProperties>

 <Message actor=”scott” xmlns="http://www.scidac.org/ScalableSystems/AllocationManager" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.scidac.org/ScalableSystems/AllocationManager am.xsd">

 <Request object=”job” action=”query”>

 <Get name=”JobId”/>

 <Where name=”QueuedState” value=”Running”/>

 </Request>

 </Message>

 </Object>

</Signature>

8.2 Signature Properties

Signature Properties may be included within the Object Element to specify the userid, timestamp and hostname for user authentication, to prevent replay attacks and to thwart spoofing. These are all optional as far as the schema is concerned (as is SignatureProperties) although certain SignatureProperties may be required by the application (such as UserId in order to verify the requestor’s authorization to perform the requested function).

The valid signature properties are associated with the http://www.scidac.org/ScalableSystems/Signature namespace.

8.2.1 The UserId SignatureProperty

The UserId element specifies the userid requesting the service and is used to verify that the user is authorized to perform the given function.

Schema Definition:

<element name=”UserId” type=”string”/>

8.2.2 The Hostname SignatureProperty

The Hostname element indicates the name of the host from which the request was issued. This is meant to thwart requested from unauthorized hosts or domains.

Schema Definition:

<element name=”Hostname” type=”string”/>

8.2.3 The Timestamp SignatureProperty

The timestamp element specifies the GMT time in seconds from the epoch in which the request was generated. This is intented to counter replay attacks and may be used to ensure idempotent transactions.

Schema Definition:

<simpleType name=”TimestampType”>

 <restriction base=”string”>

 <pattern value=”\d{9}”/>

 <pattern value=”\d{10}”/>

 </restriction>

</simpleType>

<element name=”Timestamp” type=”sig:TimestampType”/>

9 Privacy

Privacy involves encrypting the sensitive data in the message, protecting exchanges against third-party interception and modification. It is proposed that SSSRMAP sessions use block cipher encryption according to the emerging XML Encryption [XML_ENC] standard when privacy is required. In particular, it is proposed that we use AES-128 (Advanced Encryption Standard with a 128 bit shared secret symmetric encryption key) with cipher block chaining feedback mode. This algorithm is specified by the URI identifier “http://www.w3.org/2001/04/xmlenc#aes128-cbc”.

The encrypted SSSRMAP sessions will use plaintext replacement on the content of the Message and Reply elements.

9.1 Encryption Example

In this example, a simple request is demonstrated without a digital signature for the sake of emphasizing the encryption plaintext replacement.

Pre-encryption:

<Reply component=”AllocationManager” Id=”EncData1”>

<Response object=”user” action=”query”>

<Status>true</Status>

<Code>000</Code>

<Count>2</Count>

<Data>

<User>

<Name>fr01n01</Name>

<PhoneNumber>512</PhoneNumber>

</User>

</Data>

</Response>

</Reply>

Post-encryption:

<Reply component=”AllocationManager”>

<EncryptedData xmnls=”http://www.w3.org/2001/04/xmlenc#”>

<EncryptionMethod Algorithm=”http://www.w3.org/2001/04/xmlenc#aes128-cbc”/>

<CipherData>

<CiperValue>

mPCadVfOMx1NzDaKMHNgFkR9upTW4kgBxyPWjFdWUhiE4uQpww+t68lUIuZ9y5QVhR1EdfZ5H4Ytza2v8anvv6YwVwBhjHU3vSm49FgZp7KZ5l1KMKp5PyQNAkE9iQofYhyOfiHZ29kkEFVJ30CAwEAAaMSMBAwDgYDVR0PAQH/BAQDAgSQMA0GCSq

</CiperValue>

</CipherData>

</EncryptedData>

</Reply>

10 Acknowledgements

11 References

[KEYWORDS] S. Bradner, “Key Words for Use in RFCs to Indicate Requirement Levels”, RFC 2119, March 1997.

 [BEEP] M. Rose, “The Blocks Extensible Exchange Protocol Core”, RFC 3080, March 2001.

[HMAC] H. Krawczyk, M. Bellare, R. Canetti, “HMAC, Keyed-Hashing for Message Authentication”, RFC 2104, February 1997.

[SHA-1] U.S. Department of Commerce/National Institute of Standards and Technology, “Secure Hash Standard”, FIPS PUB 180-1.

[SSS] “Scalable Systems Software”, http://www.scidac.org/ScalableSystems
[HTTP] “Hypertext Transfer Protocol – HTTP/1.1”, RFC 2616, June 1999.

[XML_CONV] “I-X and <I-N-CA> XML Conventions”.

[FED_XML] “U.S. Federal XML Guidelines”.

[RFC3117] M. Rose, “On the Design of Application Protocols”, Informational RFC 3117, November 2001.

[XML_DSIG] D. Eastlake, J. Reagle Jr., D. Solo, “XML Signature Syntax and Processing”, W3C Recommendation, 12 February 2002.

[XML_ENC] T. Imamura, B. Dillaway, E. Smon, “XML Encryption Syntax and Processing”, W3C Candidate Recommendation, 4 March 2002.

[XRP] E. Brunner-Williams, A. Damaraju, N. Zhang, “Extensible Registry Protocol (XRP)”, Internet Draft, expired August 2001.

[XML] Bray, T., et al, “Extensible Markup Language (XML) 1.0 (Second Edition)”, 6 October 2000.

[XML_SCHEMA] D. Beech, M. Maloney, N. Mendelshohn, “XML Schema Part 1: Structures Working Draft”, April 2000.

