
Gold User’s Guide

Scott Jackson
Pacific Northwest National Laboratory

Gold User’s Guide
by Scott Jackson

Copyright © 2004 by Pacific Northwest National Laboratory, Battelle Memorial Institute.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the name of the Battelle nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Table of Contents
Notice ..9
1. Overview ..11

Background ...11
Features..11
Interfaces..12

Command Line Clients ..13
Interactive Control Program ...13
Web-based Graphical User Interface ...13
Perl API ..14
Java API..14
SSSRMAP Wire Protocol..14

2. Getting Started ..17
Define Users ..17
Define Machines ...17
Define Projects ..18
Add Users and Machines to the Projects ..18
Create Accounts..19
Define Time Periods...19
Make Deposits ..20
Check The Balance ...20
Define Charge Rates...21
Integrate Gold with your Resource Management System21
Obtain A Job Quote..21
Make A Job Reservation..22
Charge for a Job ..23
Refund a Job..23
List Transactions ...24
List Jobs..25
List Usage ..25
Examine Account Statement...25

3. Managing Users ..27
Creating Users ..27
Querying Users...27
Modifying Users...28
Deleting Users...28

4. Managing Machines...29
Creating Machines ...29
Querying Machines..29
Modifying Machines..29
Deleting Machines..30

5. Managing Projects ..31
Creating Projects...31
Querying Projects ...31
Modifying Projects ...32
Deleting Projects...32

6. Managing Accounts..33
Creating Accounts..33
Querying Accounts ..34
Modifying Accounts ..35
Making Deposits...35
Querying The Balance ...35
Making Withdrawals ...36

5

Making Transfers..36
Obtaining an Account Statement...37
Deleting Accounts ..38

7. Managing Jobs...39
Creating Jobs ...39
Querying Jobs ...39
Modifying Jobs ...39
Deleting Jobs ...40
Obtaining Job Quotes ..40
Making Job Reservations...41
Charging Jobs..41
Issuing Job Refunds ...42

8. Managing Reservations ...43
Creating Reservations..43
Querying Reservations ..43
Modifying Reservations ..44
Deleting Reservations..44

9. Managing Quotations ..47
Creating Quotations...47
Querying Quotations ...47
Modifying Quotations ...47
Deleting Quotations...47

10. Managing Charge Rates...49
Creating ChargeRates ..49
Querying ChargeRates ..49
Modifying Charge Rates ...50
Deleting Charge Rates ...50

11. Managing Time Periods...53
Creating Time Periods ...53
Querying Time Periods ...53
Modifying Time Periods..53
Deleting Time Periods ...54

12. Managing Usage Records..55
Querying Usage Records...55

13. Managing Transactions..57
Querying Transactions...57

14. Integration with the Resource Management System...59
Dynamic versus Delayed Accounting...59

Delayed Accounting...59
Dynamic Accounting ...59

Interaction Points ...59
Job Quotation @ Job Submission Time [Optional — Recommended]59
Job Reservation @ Job Start Time [Optional — Highly Recommended] ..59
Job Charge @ Job End Time [Required]...60

Methods of interacting with Gold ...60
Configuring an application that already has hooks for Gold60
Using the appropriate command-line client...61
Using the Gold control program ..61
Use the Perl API..61
Use the Java API ...62
Communicating via the SSSRMAP Protocol ..62

15. Configuration Files ...65

6

Server Configuration ...65
Client Configuration ..67

7

8

Notice

Important: This User’s Guide is in an alpha release and is incomplete. Additional docu-
mentation will be forthcoming in future releases.

9

Notice

10

Chapter 1. Overview

Gold is an open source accounting system that tracks resource usage on High Perfor-
mance Computers. It acts much like a bank in which resource credits are deposited
into accounts with access controls designating which users, projects and machines
may access the account. As jobs complete or as resources are utilized, accounts are
charged and resource usage recorded. Gold supports familiar operations such as de-
posits, withdrawals, transfers and refunds. It provides balance and usage feedback
to users, managers, and system administrators.

Since accounting needs vary widely from organization to organization, Gold has
been designed to be extremely flexible, featuring customizable accounting and sup-
porting a variety of accounting models. Attention has been given to scalability, se-
curity, and fault tolerance. Gold facilitates the sharing of resources between organi-
zations or within a Grid by providing distributed accounting while preserving local
site autonomy.

Background
Gold is being developed at Pacific Northwest National Laboratory (PNNL) as open
source software under the Scalable Systems Software (SSS) SciDAC project. Gold is
currently in alpha release and is beginning alpha testing at a number of DOE and
university sites.

Gold was designed to meet the accounting needs of computing centers that share
resources in multi-project environments. In order for an organization to use its high
performance computers most effectively, it must be able to allocate resources to the
users and projects that need them in a manner that is fair and according to mission
objectives. Tracking the historical resource usage allows for insightful capacity plan-
ning and in making decisions on how to best mete out these resources. It allows the
funding sources that have invested heavily in a supercomputing resource a means to
show that it is being utilized efficiently.

Gold was also designed to facilitate the sharing of resources between organizations
or within a Grid to take advantage of the tremendous utilization gains afforded by
meta-scheduling.

Features

• Dynamic Charging — Rather than post-processing resource usage records on a peri-
odic basis to rectify project balances, acounts are updated immediately at job com-
pletion.

• Reservations — A hold is placed against the account for the estimated number of
resource credits before the job runs, followed by an appropriate charge at the mo-
ment the job completes, thereby preventing projects from using more resources
than were allocated to them.

• Flexible Accounts — A uniquely flexible account design allows resource credits to
be allocated to specific projects, users and machines.

• Expiring Allocations — Resource credits may be restricted for use within a desig-
nated time period allowing sites to implement a use-it-or-lose-it policy to prevent
year-end resource exhaustion and establishing a project cycle.

11

Chapter 1. Overview

• Flexible Charging — The system can track and charge for composite resource usage
(memory, disk, CPU, etc) and custom charge multipliers can be applied (Quality of
Service, Node Type, Time of Day, etc).

• Guaranteed Quotes — Users and resource brokers can determine ahead of time the
cost of using resources.

• Credit and Debit Accounts — Accounts feature an optional credit limit allowing sup-
port for both debit and credit models. This feature can also be used to enable over-
draft protection for specific accounts.

• Nested Projects — A hierarchical relationship may be created between accounts.
This allows for the delegation of management responsibilities, the establishment
of automatic rules for the distribution of downstream resource credits, and the
option of making higher level credits available to lower level accounts.

• Powerful Querying — Gold supports a powerful querying and update mechanism
that facilitates flexible reporting and streamlines administrative tasks.

• Transparency — Gold allows the establishment of default projects, machines and
users. Additionally Gold can allow user, machines and projects to be automatically
created the first time they are seen by the resource management system. These
features allow job submitters to use the system without even knowing it.

• Security — Gold supports multiple security mechanisms for strong authentication
and encryption.

• Role Based Authorization — Gold provides fine-grained (instance-level) Role Based
Access Control for all operations.

• Dynamic Customization — Sites can create or modify record types on the fly en-
abling them to meet their custom accounting needs. Dynamic object creation al-
lows sites to customize the types of accounting data they collect without modifying
the code. This capability turns this system into a generalized information service.
This capability is extremely powerful and can be used to manage all varieties of
custom configuration data, to provide meta-scheduling resource mapping, or to
function as a persistence interface for other components.

• Multi-Site Exchange — A traceback mechanism will allows all parties of a transac-
tion (resource requestor and provider) to have a first-hand record of the resource
utilization and to have a say as to whether or not the job should be permitted to
run, based on their independent policies and priorities. A job will only run if all
parties are agreeable to the idea that the target resources can be used in the man-
ner and amount requested. Support for traceback debits will facilitate the estab-
lishment of trust and exchange relationships between administrative domains.

• Web Interface — Gold will implement a powerful dynamic web-based GUI for easy
remote access for users, managers and administrators.

• Journaling — Gold implements a journaling mechanism that preserves the indef-
inite historical state of all objects and records. This powerful mechanism allows
historical bank statements to be generated, provides an undo/redo capability and
allows commands to be run as if it were any arbitrary time in the past.

• Open Source — Being open source allows for site self-sufficiency, customizability
and promotes community development and interoperability.

12

Chapter 1. Overview

Interfaces
Gold provides a variety of means of interaction, including command-line interfaces,
graphical user interfaces, application programming interfaces and communication
protocols.

Command Line Clients
The command-line clients provided feature rich argument sets and built-in documen-
tation. These commands allow scripting and are the preferred way to interact with
Gold for basic usage and administration. Use the –help option for usage information
or the –man option for a manual page on any command.

Example 1-1. Listing Users

glsuser

Interactive Control Program
The gold command uses a control language to issue object-oriented requests to the
server and display the results. The commands may be included directly as command-
line arguments or read from stdin. Use the "ShowUsage:=True" option after a valid
Object Action combination for usage information on the command.

Example 1-2. Listing Users

gold User Query

Caution
The gold control program allows you to make powerful and sweeping
modifications to gold objects. Do not use this command unless you
understand the syntax and the potential for unintended results.

Web-based Graphical User Interface
A powerful and easy-to-use web-based GUI is being developed for use by users,
managers and administrators. It sports two interface types:

• Management Interface — The management interface supports an interface that makes
administration and interaction very safe and easy. It approaches things from a
functional standpoint, aggregating results and protecting against accidental modi-
fications.

• Object Interface — The object interface exposes you to the full power of the actions
the server can perform on the objects. This interface allows actions to be performed
on many objects in a single command and can impose arbitrary field conditions,
field updates and field selections to the query.

13

Chapter 1. Overview

Example 1-3. Listing Users

Click on "Manage Users" -> "List Users"

Note: The gold web gui is still in an early development phase and although it is included,
it is not yet ready for general use.

Perl API
You can access the full Gold functionality via the Perl API. Use perldoc to obtain
usage information for the Perl Gold modules.

Example 1-4. Listing Users

use Gold;

my $request = new Gold::Request(object => "User", action => "Query");
my $response = $request->getResponse();
foreach my $datum ($response->getData())
{

print $datum->toString(), "\n";
}

Java API
You can also access Gold operations via a Java API. This is used by the web GUI
which uses Java Server Pages. The javadoc command can be run on the src/gold
directory to generate documentation for the gold java classes.

Example 1-5. Listing Users

import java.util.*;
import gold.*;

public class Test
{

public static void main(String [] args) throws Exception
{

Gold.initialize();
Request request = new Request("User", "Query");
Response response = request.getResponse();
Iterator dataItr = response.getData().iterator();
while (dataItr.hasNext())
{

System.out.println(((Datum)dataItr.next()).toString());
}

}
}

14

Chapter 1. Overview

SSSRMAP Wire Protocol
It is also possible to interact with Gold by directly using the SSSRMAP Wire Protocol
and Message Format over the network. Documentation for these protocols can be
found at SSS Resource Management and Accounting Documentation1.

Example 1-6. Listing Users

POST /SSSRMAP HTTP/1.1
Content-Type: text/xml; charset="utf-8"
Transfer-Encoding: chunked

190
<?xml version="1.0" encoding="UTF-8"?>
<Envelope>
<Body actor="scottmo" chunking="True">
<Request action="Query" object="User"></Request>
</Body>
<Signature>
<DigestValue>azu4obZswzBt89OgATukBeLyt6Y=</DigestValue>
<SignatureValue>YXE/C08XX3RX4PMU1bWju+5/E5M=</SignatureValue>
<SecurityToken type="Symmetric" name="scottmo"></SecurityToken>
</Signature>
</Envelope>
0

Notes
1. http://sss.scl.ameslab.gov/docs.shtml

15

Chapter 1. Overview

16

Chapter 2. Getting Started

In order to prepare Gold for use as an allocation and accounting manager, you will
need to perform some initial steps to define users, machines and projects, create ac-
counts, establish charge rates, etc. This chapter proceeds by offering a number of
examples in performing these steps. These steps may be used as a guide, substituting
values and options appropriate for your system.

It is assumed that you have already installed and bootstrapped Gold as an allocation
and accounting manager and started the gold server before performing the steps
suggested in this section.

Important: You will need to be a Gold System Adminstrator to perform the tasks in this
chapter!

Define Users
First, you will need to define the users that will use, manage or administer the re-
sources (see Creating Users).

Example 2-1. Let’s add the users amy, bob and dave.

$ gmkuser -n "Wilkes, Amy" -E "amy@western.edu" amy

Successfully created 1 User

$ gmkuser -n "Smith, Robert F." -E "bob@western.edu" bob

Successfully created 1 User

$ gmkuser -n "Miller, David" -E "dave@western.edu" dave

Successfully created 1 User

$ glsuser

Name Active CommonName PhoneNumber EmailAddress Organization De-
faultProject Description
---- ------ ---------------- ----------- ---------------- ------------
-------------- -----------
gold True Gold Admin
amy True Wilkes, Amy amy@western.edu
bob True Smith, Robert F. bob@western.edu
dave True Miller, David dave@western.edu

Define Machines
You may want to add the names of the machines that provide resources (see Creating
Machines).

17

Chapter 2. Getting Started

Example 2-2. Let’s define machines called colony and blue.

$ gmkmachine -d "Linux Cluster" colony

Successfully created 1 Machine

$ gmkmachine -d "IBM SP2" blue

Successfully created 1 Machine

$ glsmachine

Name Active Architecture OperatingSystem Organization Description
------ ------ ------------ --------------- ------------ -------------

colony True Linux Cluster
blue True IBM SP2

Define Projects
Next you should create the projects that will use the resources (see Creating Projects).

Example 2-3. We will define the projects weather and genome.

$ gmkproject -d "Biology Department" biology

Successfully created 1 Project

$ gmkproject -d "Chemistry Department" chemistry

Successfully created 1 Project

Add Users and Machines to the Projects
Although this could have been done at the project creation step, you can now assign
users to be members of your projects (see Modifying Projects). Additionally, you can
assign a default set of machines that may be used by the projects.

Example 2-4. Adding users and default machines to our projects.

$ gchproject --addUsers amy,bob --addMachine colony biology

Successfully created 1 ProjectUser
Successfully created 1 ProjectUser
Successfully created 1 ProjectMachine

$ gchproject --addUsers amy,bob,dave chemistry

Successfully created 1 ProjectUser
Successfully created 1 ProjectUser
Successfully created 1 ProjectUser

$ glsproject

Name Active Users Machines Organization Description

18

Chapter 2. Getting Started

--------- ------ ------------ -------- ------------ ------------------
--
biology True amy,bob colony Biology Department
chemistry True amy,dave,bob Chemistry Department

Create Accounts
Next, you can create your accounts (see Creating Accounts).

Example 2-5. We will create accounts for use by the biology and chemistry depart-
ments.

$ gmkaccount -p biology -u MEMBER -m blue -n Biology

Successfully created 1 Account
Successfully created 1 AccountProject
Successfully created 1 AccountUser
Successfully created 1 AccountMachine

$ gmkaccount -p chemistry -u MEMBER -m ANY -n Chemistry

Successfully created 1 Account
Successfully created 1 AccountProject
Successfully created 1 AccountUser
Successfully created 1 AccountMachine

$ glsaccount

Id Name Allocations CreditLimit Projects Users Machines Descrip-
tion
-- --------- ----------- ----------- --------- ------ -------- ------

1 Biology 0 biology MEMBER blue
2 Chemistry 0 chemistry MEMBER ANY

Define Time Periods
It will be useful to define a new time period (see Creating Time Periods).

Example 2-6. Let’s create a time period for this fiscal year.

$ gold TimePeriod Create Name=FY2004 StartTime="2003-10-01" EndTime="2004-
10-01" Description="Fiscal Year 2004"

Successfully created 1 TimePeriod

$ gold TimePeriod Query

Name StartTime EndTime Active Descrip-
tion
-------- ---------------------- ---------------------- ------ --------

Eternity -infinity infinity True Always Active
FY2004 2003-10-01 00:00:00-07 2004-10-01 00:00:00-07 True Fiscal Year 2004

19

Chapter 2. Getting Started

Make Deposits
Now you can make some deposits (see Making Deposits).

Example 2-7. Let’s add 360000000 credits to each account. We will cause both to
expire at the end of the year.

$ gdeposit -t FY2004 -z 360000000 -a 1

Successfully deposited 3600000 credits into account 1

$ gdeposit -t FY2004 -z 360000000 -a 2

Successfully deposited 3600000 credits into account 2

$ glsaccount

Id Name Allocations CreditLimit Projects Users Machines De-
scription
-- --------- ------------------ ----------- --------- ------ --------

1 Biology 360000000 [FY2004] 0 biology MEMBER blue
2 Chemistry 360000000 [FY2004] 0 chemistry MEMBER ANY

Check The Balance
You can verify the resulting balance (see Querying The Balance).

Example 2-8. Let’s look at amy’s balance

$ gbalance -u amy

Balance

720000000
The account balance is 720000000 credits

Example 2-9. It is often useful to get more detail on the balance composition

$ gbalance -u amy --detail

Id Name Amount Reservations CreditLimit Projects Users Machines
-- --------- --------- ------------ ----------- --------- ------ ----

1 Biology 360000000 0 biology MEMBER blue
2 Chemistry 360000000 0 chemistry MEMBER ANY

Here, we notice that not all of the 7200000 credits are valid toward a single project (or
machine).

20

Chapter 2. Getting Started

Example 2-10. We may want to get more specific

$ gbalance -u amy -p chemistry -m colony --quiet

360000000

Define Charge Rates
Finally, you should define how much you will charge for your resources (see Creating
Charge Rates).

Example 2-11. Let’s just charge for the number of processors used.

$ gold ChargeRate Create Type=Resource Name=Processors Rate=1

Successfully created 1 ChargeRate

$ gold ChargeRate Query

Type Name Rate Description
-------- ---------- ---- -----------
Resource Processors 1

Note: Not defining any charge rates will result in zero-credit charges for all jobs.

Integrate Gold with your Resource Management System
Now you are ready to run some jobs. Before doing so you will need to integrate
Gold with your Resource Management System (see Integrating with the Resource
Management System).

Although the quotation, reservation and charge steps will most likely be invoked
automatically by your resource management system, it is useful to understand their
effects by invoking them manually.

Let’s simulate the lifecycle of a job.

Example 2-12. We’ll assume our job has the following characteristics:

Job Id: PBS.1234.0
Job Name: heavywater
User Name: amy
Project Name: chemistry
Machine Name: colony
Requested Processors: 16
Estimated WallClock: 3600 seconds
Actual WallClock: 1234 seconds

21

Chapter 2. Getting Started

Obtain A Job Quote
When a job is submitted, it is useful to check that the user’s account has enough funds
to run the job. This will be verified when the job starts, but by that point the job may
have waited some time in the queue only to find out it never could have run in the
first place. The job quotation step (see Obtaining Job Quotes) can fill this function.
Additionally, the quote can be used to determine the cheapest place to run, and to
guarantee the current rates will be used when the job is charged.

Example 2-13. Let’s see how much it will cost to run our job.

$ gquote -p chemistry -u amy -m colony -P 16 -t 3600

Successfully quoted 57600 credits with quote id 1

$ glsquote

Id Project User Machine Amount ExpirationTime WallDuration Used Charg-
eRates Description
-- --------- ---- ------- ------ ---------------------- ------------ --
-- --------------------- -----------
1 chemistry amy colony 57600 2004-08-10 15:27:07-07 3600 0 Resource:Processors:1

Make A Job Reservation
When a job starts, the resource management system creates a reservation (or pending
charge) against the appropriate allocations based on the estimated wallclock limit
specified for the job (see Making a Job Reservation).

Example 2-14. Make a reservation for our job.

$ greserve -J PBS.1234.0 -p chemistry -u amy -m colony -P 16 -
t 3600

Successfully reserved 57600 credits for job PBS.1234.0

$ glsres

Id Account Amount Name User Project Machine ExpirationTime De-
scription
-- ------- ------ ---------- ---- --------- ------- ------------------
---- -----------
1 2 57600 PBS.1234.0 amy chemistry colony 2004-08-03 15:29:30-
07

This reservation will decrease our available balance by the amount reserved.

$ gbalance -p chemistry --quiet

359942400

As illustrated by the detailed balance listing:

$ gbalance -p chemistry --detail

Id Name Amount Reservations CreditLimit Projects Users Machines
-- --------- --------- ------------ ----------- --------- ------ ----

22

Chapter 2. Getting Started

2 Chemistry 360000000 -57600 0 chemistry MEMBER ANY

Although our allocation has not changed.

$ glsaccount -p chemistry

Id Name Allocations CreditLimit Projects Users Machines De-
scription
-- --------- ------------------ ----------- --------- ------ --------

2 Chemistry 360000000 [FY2004] 0 chemistry MEMBER ANY

Charge for a Job
After a job completes, any associated reservations are removed and a charge is issued
against the appropriate allocations based on the actual wallclock time used by the job
(see Charging Jobs).

Example 2-15. Issue the charge for our job.

$ gcharge -J PBS.1234.0 -u amy -p chemistry -m colony -P 16 -t
1234

Successfully charged job PBS.1234.0 for 19744 credits
1 reservations were removed

Your allocation will now have gone down by the amount of the charge.

$ glsaccount -p chemistry

Id Name Allocations CreditLimit Projects Users Machines De-
scription
-- --------- ------------------ ----------- --------- ------ --------

2 Chemistry 359980256 [FY2004] 0 chemistry MEMBER ANY

However, your available balance actually goes up (because the reservation that was
removed was larger than the actual charge).

$ gbalance -p chemistry

Balance

359980256
The account balance is 359980256 credits

Refund a Job
Now, since this was an imaginary job, you had better refund the user’s account (see
Issuing Job Refunds).

23

Chapter 2. Getting Started

Example 2-16. Let’s isse a refund for our job.

$ grefund -J PBS.1234.0

Successfully refunded 19744 credits for job PBS.1234.0

Our balance is back as it was before the job ran.

$ gbalance -p chemistry

Balance

360000000
The account balance is 360000000 credits

The allocation, of course, is likewise restored.

$ glsaccount -p chemistry

Id Name Allocations CreditLimit Projects Users Machines De-
scription
-- --------- ------------------ ----------- --------- ------ --------

2 Chemistry 360000000 [FY2004] 0 chemistry MEMBER ANY

List Transactions
You can now check the resulting transaction records (see Querying Transactions).

Example 2-17. Let’s list all the job transactions

$ glstxn -O Job --show="RequestId,TransactionId,Object,Action,JobId,Project,User,Machine,Amount"

RequestId TransactionId Object Action JobId Project User Ma-
chine Amount
--------- ------------- ------ ------- --------------------- --------
- ---- ------- ------
634 456 Job Quote chemistry amy colony 57600
637 459 Job Reserve PBS.1234.0 chemistry amy colony 57600
655 463 Job Create
655 465 Job Charge PBS.1234.0 chemistry amy colony 19744
655 467 Job Modify
662 469 Job Refund PBS.1234.0,PBS.1234.0
662 470 Job Modify

Example 2-18. It may also be illustrative to examine what transactions actually
composed our charge request...

$ glstxn -R 655 --show="Id,Object,Action,Name,JobId,Amount,Account,Delta"

Id Object Action Name JobId Amount Account Delta
--- ----------------- ------ ---------- ---------- ------ ------- ----
--
462 Usage Create
463 Job Create
464 AccountTimePeriod Modify 1

24

Chapter 2. Getting Started

465 Job Charge 1 PBS.1234.0 19744 1 -19744
466 Reservation Delete PBS.1234.0
467 Job Modify 1

List Jobs
A job record was created for the job as a side-effect of the charge (see Querying Jobs).

Example 2-19. We’ll list all the jobs

$ glsjob

Id JobId User Project Machine Charge Class Type QualityOfService Nodes Pro-
cessors Executable Application StartTime EndTime WallDuration QuoteId De-
scription
-- ---------- ---- --------- ------- ------ ----- ---- --------------
-- ----- ---------- ---------- ----------- --------- ------- --------
---- ------- -----------
1 PBS.1234.0 amy chemistry colony 0 16 1234

Notice that the charge is zero because the job has been fully refunded.

List Usage
Additionally a usage record was created for each resource used by the job (see Query-
ing Usage).

Example 2-20. Let’s look at the usage

$ glsusage

Id JobId Resource Amount Machine WallDuration ConsumptionRate Charg-
eRate Multiplier Charge Description
-- ---------- ---------- ------ ------- ------------ --------------- --
-------- ---------- ------ -----------
1 PBS.1234.0 Processors 16 colony 1234 1 1 19744

Examine Account Statement
Finally, you can examine the account statement for our activities (see Obtaining an
Account Statement).

Example 2-21. We can request a detailed account statement over all time for the
Chemistry account (account 2)

$ gstatement 2 --detail

##
#
Statement for account 2 generated on Tue Aug 3 16:06:15 2004.
#
Reporting account activity from -infinity to now.

25

Chapter 2. Getting Started

#
##

Beginning Balance: 0
------------------ --------------------
Total Credits: 360019744
Total Debits: -19744
------------------ --------------------
Ending Balance: 360000000

############################### Credit Detail ##################################

Object Action Child Delta CreationTime Description
------- ------- ---------- --------- ---------------------- ----------
-
Account Deposit FY2004 360000000 2004-08-03 16:01:15-07
Job Refund PBS.1234.0 19744 2004-08-03 16:04:02-07

############################### Debit Detail ###################################

Object Action Child Delta CreationTime Description
------ ------ ---------- ------ ---------------------- -----------
Job Charge PBS.1234.0 -19744 2004-08-03 16:03:39-07

############################### End of Report ##################################

26

Chapter 3. Managing Users

A user is a person authorized to submit jobs to run on a high performance computing
resource. User properties include the common name, phone number, email, organi-
zation, and default project for that person. A user can be created, queried, modified
and deleted.

Creating Users
To create a new user, use the command gmkuser:

gmkuser [-A | -I] [-n common_name] [-F phone_number] [-E email_address] [-o
organization_name] [-p default_project] [-d description] [—debug] [-? |
—help] [–man] [—quiet] [-v | —verbose] {[-u] user_name }

Example 3-1. Creating a user

$ gmkuser -n "Smith, Robert F." -E "bob@western.edu" -F "(509)
555-1234" bob

Successfully created 1 User

Note: It is possible to have users be created automatically when first encountered in a job
function (charge, reserve or quote) by setting the user.autogen configuration parameter
to True. It is also possible to establish a system default user to be used in job functions
when the user is unspecified (see Server Configuration).

Querying Users
To display user information, use the command glsuser:

glsuser [-A | -I] [—show attribute_name [,attribute_name ...]...] [—showHid-
den] [—showSpecial] [—raw] [—debug] [-? | —help] [—man] [—quiet] [[-u] user_pattern]

Example 3-2. Listing all info about active users

$ glsuser -A

Name Active CommonName PhoneNumber EmailAddress Organiza-
tion DefaultProject Description
---- ------ ---------------- -------------- ---------------- --------
---- -------------- -----------
amy True Wilkes, Amy (509) 555-8765 amy@western.edu
bob True Smith, Robert F. (509) 555-1234 bob@western.edu

27

Chapter 3. Managing Users

Example 3-3. Displaying bob’s phone number

$ glsuser --show PhoneNumber bob --quiet

(509) 555-1234

Example 3-4. Listing all user names without the header

$ glsuser --show Name --quiet

amy
bob

Modifying Users
To modify a user, use the command gchuser:

gchuser [-A | -I] [-n common_name] [-F phone_number] [-E email_address] [-o
organization_name] [-p default_project] [-d description] [—debug] [-? |
—help] [—man] [—quiet] [-v | —verbose] {[-u] user_name }

Example 3-5. Activating a user

$ gchuser -A bob

Successfully modified 1 User

Example 3-6. Changing a user’s email address

$ gchuser -E "rsmith@cs.univ.edu" bob

Successfully modified 1 User

Deleting Users
To delete a user, use the command grmuser:

grmuser [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-u] user_name }

Example 3-7. Deleting a user

$ grmuser bob

Successfully deleted 1 User

28

Chapter 4. Managing Machines

A machine is a resource that can run jobs such as a cluster or an SMP box. Machine
properties include the description and whether it is active. A machine can be created,
queried, modified and deleted.

Creating Machines
To create a new machine, use the command gmkmachine:

gmkmachine [-A | -I] [—arch architecture] [—opsys operating_system] [-o
organization_name] [-d description] [—debug] [-? | —help] [—man] [—quiet] [-
v | —verbose] {[-m] machine_name }

Example 4-1. Creating a machine

$ gmkmachine -d "Linux Cluster" colony

Successfully created 1 Machine

Note: It is possible to have machines be created automatically when first encountered
in a job function (charge, reserve or quote) by setting the machine.autogen configuration
parameter to True. It is also possible to establish a system default machine to be used in
job functions when the machine is unspecified (see Server Configuration).

Querying Machines
To display machine information, use the command glsmachine:

glsmachine [-A | -I] [—show attribute_name [,attribute_name ...]...] [—showHid-
den] [—showSpecial] [—raw] [—debug] [-? | —help] [—man] [—quiet] [[-m] ma-
chine_pattern]

Example 4-2. Listing all inactive machine names and descriptions

$ glsmachine -I --show Name,Description

Name Description
----- ------------------------
inert This machine is unusable

Modifying Machines
To modify a machine, use the command gchmachine:

29

Chapter 4. Managing Machines

gchmachine [-A | -I] [—arch architecture] [—opsys operating_system] [-o
organization_name] [-d description] [—debug] [-? | —help] [—man] [—quiet] [-
v | —verbose] {[-m] machine_name }

Example 4-3. Deactivating a machine

$ gchmachine -I colony

Successfully modified 1 Machine

Deleting Machines
To delete a machine, use the command grmmachine:

grmmachine [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-m] ma-
chine_name }

Example 4-4. Deleting a machine

$ grmmachine colony

Successfully deleted 1 Machine

30

Chapter 5. Managing Projects

A project is a research interest or activity requiring the use of computational resources
for a common purpose. Users may be designated as members of a project and allowed
to share its allocations. Machines may also be designated as members of a project as
a default resource pool.

Creating Projects
To create a new project, use the command gmkproject:

gmkproject [-A | -I] [-u [+ | -]user_name [, [+ | -]user_name ...]] [-m [+ | -
]machine_name [, [+ | -]machine_name ...]] [-o organization_name] [-d de-
scription] [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-p] project_name }

Example 5-1. Creating a project

$ gmkproject -d "Chemistry Department" chemistry

Successfully created 1 Project

Note: It is possible to have projects be created automatically when first encountered
in a job function (charge, reserve or quote) by setting the project.autogen configuration
parameter to True. It is also possible to establish a system default project to be used in
job functions when the project is unspecified (see Server Configuration).

Querying Projects
To display project information, use the command glsproject:

glsproject [-A | -I] [—show attribute_name [,attribute_name ...]...] [—showHid-
den] [—showSpecial] [-l | —long] [-w | —wide] [—raw] [—debug] [-? | —help] [—man] [—quiet] [[-
p] project_pattern]

Example 5-2. Listing all info about all projects

$ glsproject

Name Active Users Machines Organization Description
--------- ------ ------------ -------- ------------ ------------------
--
biology True amy,bob colony Biology Department
chemistry True amy,dave,bob Chemistry Department

Example 5-3. Displaying the name and user members of a project in long format

$ glsproject --show Name,Users -l chemistry

Name Users
--------- -----

31

Chapter 5. Managing Projects

chemistry bob
dave
amy

Example 5-4. Listing all project names

$ glsproject --show Name --quiet

biology
chemistry

Modifying Projects
To modify a project, use the command gchproject:

gchproject [-A | -I] [-o organization_name] [-d description] [—addUser(s)
[+ | -]user_name [, [+ | -]user_name ...]] [—addMachines(s) [+ | -]machine_name [, [+ |
-]machine_name ...]] [—delUser(s) user_name [,user_name ...]] [—delMachines(s)
machine_name [,machine_name ...]] [—actUser(s) user_name [,user_name ...]] [—act-
Machines(s) machine_name [,machine_name ...]] [—deactUser(s) user_name [,user_name ...]] [—de-
actMachines(s) machine_name [,machine_name ...]] [—debug] [-? | —help] [—man] [—quiet] [-
v | —verbose] {[-p] project_name }

Example 5-5. Deactivating a project

$ gchproject -I chemistry

Successfully modified 1 Project

Example 5-6. Adding multiple users as members of a project

$ gchproject --addUsers jsmith,barney chemistry

Successfully created 2 ProjectUsers

Deleting Projects
To delete a project, use the command grmproject:

grmproject [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-p] project_name }

Example 5-7. Deleting a project

$ grmproject chemistry

Successfully deleted 1 Project

32

Chapter 6. Managing Accounts

An account is a container for time-bounded resource credits valid toward a specific
set of projects, users and machines. Much like with a bank, accounts hold resource
credits. Each account has a set of access control lists designating which users, projects,
and machines may access the account. An account may restrict the projects that can
charge to it. Normally an account will be tied to a single project but it may be tied
to an arbitrary set of projects or ANY project. An account may restrict the users that
can charge to it. It will frequently be tied to the the user MEMBERs of the associated
project(s) but it may be tied to an arbitrary set of users or ANY user. An account
may restrict the machines that can charge to it. It may be tied to an arbitrary set of
machines, just the machine MEMBERs of the associated project(s) or ANY machine.

When resource credits are deposited into an account, they are associated with a time
period within which they are valid. These time-bounded pools of credits are known
as allocations. (An allocation is a pool of resource credits associated with an account
for use during a particular time period.) By using multiple allocations that expire in
regular intervals it is possible to implement a use-it-or-lose-it policy and establish a
project cycle.

Accounts may be nested. Hierarchically nested accounts may be useful for the dele-
gation of management roles and responsibilities. Deposit shares may be established
that assist to automate a trickle-down effect for funds deposited at higher level ac-
counts. Additionally, an optional overflow feature allows charges against lower level
accounts to trickle up the hierarchy.

Operations include creating, querying, modifying and deleting accounts as well as
making deposits, withdrawals, transfers and balance queries.

Creating Accounts
gmkaccount is used to create a new account. A new id is automatically generated for
the account.

gmkaccount [-n account_name] [-p [+ | -]project_name [, [+ | -]project_name ...]] [-
u [+ | -]user_name [, [+ | -]user_name ...]] [-m [+ | -]machine_name [, [+ | -
]machine_name ...]] [-L credit_limit] [-d description] [—debug] [-? | —help] [—man] [—quiet] [-
v | —verbose]

Important: When creating an account, it is important to specify at least one user, machine
and project designation. If omitted, it will default to ANY.

Example 6-1. Creating an account

$ gmkaccount -p chemistry -u MEMBER -m ANY -n "Chemistry"

Successfully created 1 Account
Successfully created 1 AccountProject
Successfully created 1 AccountUser
Successfully created 1 AccountMachine

33

Chapter 6. Managing Accounts

Example 6-2. Creating a wide-open credit account

$ gmkaccount -p ANY -u ANY -m ANY -L 1000000000000 -n "Cornucopia"

Successfully created 1 Account
Successfully created 1 AccountProject
Successfully created 1 AccountUser
Successfully created 1 AccountMachine

Example 6-3. Creating an account valid toward all biology project members except
for dave and all machines except for blue

$ gmkaccount -p biology -u MEMBER,-dave -m ANY,-blue -n "Not Dave"

Successfully created 1 Account
Successfully created 1 AccountProject
Successfully created 1 AccountUser
Successfully created 1 AccountUser
Successfully created 1 AccountMachine
Successfully created 1 AccountMachine

Querying Accounts
To display account information, use the command glsaccount:

glsaccount [-A | -I] [-n account_name] [-p project_name] [-u user_name] [-m
machine_name] [-t time_period_name] [—show attribute_name [,attribute_name ...]...] [—showHid-
den] [-l | —long] [-w | —wide] [—raw] [—debug] [-? | —help] [—man] [—quiet] [[-
a] account_id]

Example 6-4. Listing all info about all accounts with multi-valued fields displayed
in a multi-line format

$ glsaccount -long

Id Name Allocations CreditLimit Projects Users Machines De-
scription
-- ---------- ------------------ ------------- --------- ------ ------
-- -----------
1 Chemistry 360000000 [FY2005] 0 chemistry MEMBER ANY

360000000 [FY2004]
2 Cornucopia 0 [Eternity] 1000000000000 ANY ANY ANY
3 Not Dave 250000 [4Q04] 0 biology -dave -blue

250000 [3Q04] MEMBER ANY
250000 [2Q04]
250000 [1Q04]

34

Chapter 6. Managing Accounts

Example 6-5. Listing all info about all accounts useable by dave

$ glsaccount -u dave -long

Id Name Allocations CreditLimit Projects Users Machines De-
scription
-- ---------- ------------------ ------------- --------- ------ ------
-- -----------
1 Chemistry 360000000 [FY2005] 0 chemistry MEMBER ANY

360000000 [FY2004]
1000 [Eternity]

2 Cornucopia -1000 [Eternity] 1000000000000 ANY ANY ANY

Modifying Accounts
To modify an account, use the command gchaccount:

gchaccount [-n account_name] [-L credit_limit] [-d description] [—addPro-
ject(s) [+ | -]project_name [, [+ | -]project_name ...]] [—addUser(s) [+ | -
]user_name [, [+ | -]user_name ...]] [—addMachine(s) [+ | -]machine_name [, [+ |
-]machine_name ...]] [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-a]
account_id }

Example 6-6. Changing the credit limit for an account

$ gchaccount -L 500000000000 -a 2

Successfully modified 1 Account

Example 6-7. Adding a user to the list of users that share the account

$ gchaccount --addUser dave 1

Successfully created 1 AccountUser

Making Deposits
gdeposit is used to deposit time-bounded resource credits into accounts. (See Time
Periods for managing time periods). The time period will default to Eternity (always
valid) if not specified. Accounts must first be created using gmkaccount.

gdeposit [-t time_period_name] [-d description] {-z amount } [—debug] [-? |
—help] [—man] [—quiet] [-v | —verbose] {[-a] account_id }

Example 6-8. Making a deposit

$ gdeposit -t FY2004 -z 360000000 -a 1

Successfully deposited 360000000 credits into account 1

35

Chapter 6. Managing Accounts

Querying The Balance
To display balance information, use the command gbalance:

gbalance [-p project_name] [-u user_name] [-m machine_name] [—available] [—de-
tail] [-l | —long] [-w | —wide] [—raw] [—debug] [-? | —help] [—man] [—quiet]

Example 6-9. Querying the balance for a particular user in a particular project on a
particular machine

$ gbalance -u bob -m colony -p chemistry

Balance

360000000
The account balance is 360000000 credits

Example 6-10. Querying the simple amount available for charging including avail-
able credit for a particular user in a particular project on a particular machine

$ gbalance -u bob -m colony -p chemistry --available --quiet

1000360000000

Example 6-11. Querying the project balance detail broken down by account

$ gbalance -p chemistry --detail

Id Name Amount Reservations CreditLimit Projects Users Ma-
chines
-- ---------- --------- ------------ ------------- --------- ------ --

1 Chemistry 360000000 0 chemistry MEMBER ANY
2 Cornucopia 0 1000000000000 ANY ANY ANY

Making Withdrawals
To issue a withdrawal, use the command gwithdraw:

gwithdraw {[-z] amount } [-t time_period_name] [-d description] [—debug] [-
? | —help] [—man] [—quiet] [-v | —verbose] {[-a] account_id }

Example 6-12. Making a withdrawal

$ gwithdraw -z 12800 -a 1 -d "Grid Tax"

Successfully withdrew 12800 credits from account 1

36

Chapter 6. Managing Accounts

Making Transfers
To issue a transfer between accounts, use the command gtransfer. If the time period
is specified, then only credits associated with the specified time period will be trans-
ferred, otherwise, only active credits will be transferred. Account transfers preserve
the time periods associated with the resource credits from the source to the destina-
tion accounts.

gtransfer {–fromId source_account_id } {–toId destination_account_id } [-t
time_period_name] [-d description] [—debug] [-? | —help] [—man] [—quiet] [-
v | —verbose] {[-z] amount }

Example 6-13. Transferring credits between two accounts

$ gtransfer -fromId 1 -toId 2 10000

Successfully transferred 10000 credits from account 1 to account 2

Obtaining an Account Statement
To generate an account statement, use the command gstatement. For a specified time
frame it displays the beginning and ending balances as well as the total credits and
debits to the account over that period. A detailed report of the debits and credits may
be obtained by using the –detail option.

gstatement [-s start_time] [-e end_time] [—detail] [—debug] [-? | —help] [—man] {[-
a] account_id }

Example 6-14. Generating an account statement

$ gstatement -detail -a 2

##
#
Statement for account 2 generated on Tue Aug 3 16:06:15 2004.
#
Reporting account activity from -infinity to now.
#
##

Beginning Balance: 0
------------------ --------------------
Total Credits: 360019744
Total Debits: -19744
------------------ --------------------
Ending Balance: 360000000

############################### Credit Detail ##################################

Object Action Child Delta CreationTime Description
------- ------- ---------- --------- ---------------------- ----------
-
Account Deposit FY2004 360000000 2004-08-03 16:01:15-07
Job Refund PBS.1234.0 19744 2004-08-03 16:04:02-07

############################### Debit Detail ###################################

37

Chapter 6. Managing Accounts

Object Action Child Delta CreationTime Description
------ ------ ---------- ------ ---------------------- -----------
Job Charge PBS.1234.0 -19744 2004-08-03 16:03:39-07

############################### End of Report ##################################

Deleting Accounts
To delete an account, use the command grmaccount:

grmaccount [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-a] ac-
count_id }

Example 6-15. Deleting an account

$ grmaccount 2

Successfully deleted 1 Account

38

Chapter 7. Managing Jobs

Gold can track the jobs that run on your system, recording the charges and resources
used for each job. Typically, a job record is created when the resource manager charges
for a job. Job quotes, reservations, charges and refunds can be issued.

Creating Jobs
In most cases, jobs will be created by the resource management system with the
gcharge command (See Charging Jobs).

However, it is also possible to create job records by hand using the command gold
Job Create:

gold Job Create JobId=<Job Id > [User=<User Name>] [Project=<Project Name >] [Ma-
chine=<Machine Name>] [Charge=<Charge >] [Class=<Class >] [Type=<Job Type >] [QOS=<Quality
Of Service >] [Nodes=<Number Of Nodes >] [Processors=<Number Of Processors >] [State=<Job
State >] [Executable=<Executable >] [Application=<Application >] [StartTime=<Start
Time>] [EndTime=<End Time>] [WallDuration=<Wallclock Time in seconds >] [QuoteId=<Quote
Id >] [Description=<Description >] [ShowUsage:=true]

Example 7-1. Creating a job record

$ gold Job Create JobId=PBS.1234.0 User=jsmith Project=chem Ma-
chine=cluster Charge=2468 Processors=2 WallDuration=1234

Successfully created 1 Job

Querying Jobs
To display job information, use the command glsjob:

glsjob [[-J] job_id_pattern] [-p project_name] [-u user_name] [-m machine_name] [-
C queue] [-T type] [—application application] [-s start_time] [-e end_time] [—show
attribute_name [,attribute_name ...]...] [—showHidden] [—raw] [—debug] [-
? | —help] [—man] [—quiet] [[-j] gold_job_id]

Example 7-2. Show specific info about jobs run by amy

$ glsjob --show=JobId,Project,Machine,Charge -u amy

JobId Project Machine Charge
---------- --------- ------- ------
PBS.1234.0 chemistry colony 0

Modifying Jobs
It is possible to modify a job by using the command gold Job Modify:

39

Chapter 7. Managing Jobs

gold Job Modify [JobId==<Job Id > | Id==<Gold Job Id >] [User=<User Name>] [Project=<Project
Name>] [Machine=<Machine Name>] [Charge=<Charge >] [Class=<Class >] [Type=<Job
Type>] [QOS=<Quality Of Service >] [Nodes=<Number Of Nodes >] [Pro-
cessors=<Number Of Processors >] [State=<Job State >] [Executable=<Executable >] [Ap-
plication=<Application >] [StartTime=<StartTime >] [CompletionTime=<CompletionTime >] [Wall-
Duration=<Wallclock Time in seconds >] [QuoteId=<Quote Id >] [Descrip-
tion=<Description >] [ShowUsage:=true]

Caution
The gold control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in
the inadvertant modification of all jobs.

Example 7-3. Changing a job

$ gold Job Modify JobId==PBS.1234.0 Charge=1234 Description="Benchmark"

Successfully modified 1 Job

Deleting Jobs
To delete a job, use the command gold Job Delete:

gold Job Delete [JobId==<Job Id > | Id==<Id >]

Caution
The gold control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in
the inadvertant deletion of all jobs.

Example 7-4. Deleting a job

$ gold Job Delete JobId==PBS.1234.0

Successfully deleted 1 Job

Obtaining Job Quotes
Job quotes can be used to determine how much it will cost to run a job. A quote id is
returned and can be used in the subsequent charge to guarantee the rates that were
used to form the original quote. Since this step also verifies that the submitter has
sufficient funds for, and meets all the allocation policy requirements for running a
job, it can be used at job submission as an early filter to prevent jobs from getting in
and waiting in the job queue just to be blocked from running later.

To request a job quote, use the command gquote:

40

Chapter 7. Managing Jobs

gquote [-p project_name] [-u user_name] [-m machine_name] [-P processors] [-
M memory] [-D disk] [-Q QOS] [-t wallclock_time] [-d description] [—de-
bug] [-? | —help] [—man] [—quiet] [-v | —verbose]

Example 7-5. Requesting a quotation

$ gquote -p chemistry -u amy -m colony -P 2 -t 3600

Successfully quoted 7200 credits for quote 2

Note: It is possible to establish a system default machine, project or user to be used in
job functions (charge, reserve or quote) when left unspecified (see Server Configuration).

Making Job Reservations
A job reservation can be used to place a hold on the user’s account before a job starts
to ensure that the credits will be there when it completes.

To create a job reservation use the command greserve:

greserve [-p project_name] [-u user_name] [-m machine_name] [-P proces-
sors] [-M memory] [-D disk] [-Q QOS] [-t wallclock_time] [-q quote_id] [-
d description] [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {[-J]
job_id }

Example 7-6. Creating a reservation

$ greserve -J PBS.1234.0 -p chemistry -u amy -m colony -P 2 -t
3600

Successfully reserved 7200 credits for job PBS.1234.0

Note: It is possible to establish a system default machine, project or user to be used in
job functions (charge, reserve or quote) when left unspecified (see Server Configuration).

Charging Jobs
A job charge debits the appropriate allocations based on the user, project and ma-
chine associated with the job. The charge is calculated based on factors including
the resources used, the job run time, and other quality-based factors (See Managing
Charge Rates).

To charge for a job use the command gcharge:

gcharge [-p project_name] [-u user_name] [-m machine_name] [-P proces-
sors] [-N nodes] [-M memory] [-D disk] [-Q QOS] [-t wallclock_time] [-S job_state] [-
T job_type] [—application application] [—executable executable] [-C queue] [-

41

Chapter 7. Managing Jobs

s start_time] [-e end_time] [-q quote_id] [—debug] [-? | —help] [—man] [—quiet] [-
v | —verbose] {[-J] job_id }

Example 7-7. Issuing a job charge

$ gcharge -J PBS.1234.0 -p chemistry -u amy -m colony -P 2 -t 1234

Successfully charged job PBS.1234.0 for 2468 credits
1 reservations were removed

Note: It is possible to establish a system default machine, project or user to be used in
job functions (charge, reserve or quote) when left unspecified (see Server Configuration).

Issuing Job Refunds
A job can be refunded in part or in whole by issuing a job refund. This action attempts
to lookup the referenced job to ensure that the refund does not exceed the original
charge and so that the charge entry can be updated. If multiple matches are found
(such as the case when job ids are non-unique), this command will return the list of
matched jobs with unique ids so that the correct job can be specified for the refund.

To issue a refund for a job, use the command grefund:

grefund [-J job_id] [[-j] gold_job_id] [-z amount] [-a account_id] [-d de-
scription] [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose]

Example 7-8. Issuing a job refund

$ grefund -J PBS.1234.0

Successfully refunded 19744 credits for job PBS.1234.0

42

Chapter 8. Managing Reservations

A reservation is a hold placed against an account. Before a job runs, a reservation
(or hold) is made against one or more of the requesting user’s applicable account(s).
Subsequent jobs will also post reservations while the available balance (active alloca-
tions minus reservations) allows. When a job completes, the reservation is removed
and the actual charge is made to the account(s). This procedure ensures that jobs will
only run so long as they have sufficient reserves.

Associated with a reservation is the name of the reservation (often the job id requiring
the reservation), the user, project, and machine as applicable, an expiration time, and
an amount. Operations include creating, querying, modifying and deleting reserva-
tions.

Creating Reservations
Most reservations are normally created by the resource management system with the
greserve command (See Making Job Reservations).

However, reservations can also be manually created using the command gmkres:

gmkres {-a account_id } {-z amount } [-n reservation_name] [-u user_name] [-p
project_name] [-m machine_name] [-e expiration_time] [-d description] [—de-
bug] [-? | —help] [—man] [—quiet] [-v | —verbose]

Example 8-1. Placing a hold against an account

$ gmkres -a 1 -z 3600 -n "Interactive.789654" -u bob -p chemistry
-m blue -e "2004-08-07"

Successfully created 1 Reservation

Querying Reservations
To display reservation information, use the command glsres:

glsres [-A | -I] [-n reservation_name | job_id_pattern] [-p project_name] [-
u user_name] [-m machine_name] [—show attribute_name [,attribute_name ...]...] [—showHid-
den] [-l | —long] [-w | —wide] [—raw] [—debug] [-? | —help] [—man] [—quiet] [[-
r] reservation_id]

Example 8-2. Listing all info about all reservations for bob

$ glsres -u bob

Id Account Amount Name User Project Machine ExpirationTime De-
scription
-- ------- ------ ------------------ ---- --------- ------- ----------
------------ -----------
1 1 3600 Interactive.789654 bob chemistry blue 2004-08-07 00:00:00-
07

43

Chapter 8. Managing Reservations

Example 8-3. Listing all info about all reservations that impinge against amy’s bal-
ance

$ glsres -u amy --option name=UseRules value=True

Id Account Amount Name User Project Machine ExpirationTime De-
scription
-- ------- ------ ------------------ ---- --------- ------- ----------
------------ -----------
1 1 3600 Interactive.789654 bob chemistry blue 2004-08-07 00:00:00-
07
2 1 7200 PBS.1234.0 amy chemistry colony 2004-08-02 17:59:09-
07

Modifying Reservations
To modify a reservation, use the command gchres:

gchres [-e expiration_time] [-d description] [—debug] [-? | —help] [—man] [—quiet] [-
v | —verbose] {[-r] reservation_id }

Example 8-4. Changing the expiration time of a reservation

$ gchres -e "2004-08-07 14:43:02" 1

Successfully modified 1 Reservation

Deleting Reservations
To delete a reservation, use the command grmres:

grmres [—debug] [-? | —help] [—man] [-q | —quiet] [-v | —verbose] {-I | -n reser-
vation_name | job_id | [-r] reservation_id }

Example 8-5. Deleting a reservation by name (JobId)

$ grmres -n PBS.1234.0

Successfully deleted 1 Reservation

Example 8-6. Deleting a reservation by ReservationId

$ grmres 1

Successfully deleted 1 Reservation

44

Chapter 8. Managing Reservations

Example 8-7. Purging stale reservations

$ grmres -I

Successfully deleted 2 Reservations

45

Chapter 8. Managing Reservations

46

Chapter 9. Managing Quotations

A quotation provides a way to determine beforehand how much would be charged
for a job. When a quotation is requested, the charge rates applicable to the job request-
ing the quote are saved and a quote id is returned. When the job makes a reservation
and the final charge, the quote can be referenced to ensure that the saved chargerates
are used instead of current values. A quotation has an expiration time after which it
cannot be used. A quotation may also be used to verify that the given job has suffi-
cient funds and meets the policies necessary for the charge to succeed.

Operations include creating, querying, modifying and deleting quotations.

Creating Quotations
Quotations are normally created by the resource management system with the gquote
command (See Making Job Quotations).

Querying Quotations
To display quotation information, use the command glsquote:

glsquote [-A | -I] [-p project_name] [-u user_name] [-m machine_name] [—show
attribute_name [,attribute_name ...]...] [—showHidden] [-l | —long] [-w | —wide] [—raw] [—de-
bug] [-? | —help] [—man] [—quiet] [[-q] quote_id]

Example 9-1. Listing all info about all quotes for user amy on machine colony

$ glsquote -u amy -m colony

Id Project User Machine Amount ExpirationTime WallDuration Used Charg-
eRates Description
-- --------- ---- ------- ------ ---------------------- ------------ --
-- --------------------- -----------
1 chemistry amy colony 57600 2004-08-10 17:02:44-07 3600 0 Resource:Processors:1

Modifying Quotations
To modify a quotation, use the command gchquote:

gchquote [-e expiration_time] [-d description] [—debug] [-? | —help] [–man] [—quiet] [-
v | —verbose] {[-q] quote_id }

Example 9-2. Changing the expiration time of a quotation

$ gchquote -e "2005-03-01" 1

Successfully modified 1 Quotation

47

Chapter 9. Managing Quotations

Deleting Quotations
To delete a quotation, use the command grmquote:

grmquote [—debug] [-? | —help] [—man] [—quiet] [-v | —verbose] {-I | [-q] quote_id }

Example 9-3. Deleting a quotation

$ grmquote 1

Successfully deleted 1 Quotation

Example 9-4. Purging stale quotations

$ grmquote -I

Successfully deleted 2 Quotations

48

Chapter 10. Managing Charge Rates

Charge Rates establish how much it costs to use your resources. There are two main
categories of charge rates, consumable resources and quality-based charge rates. Re-
source charge rates define how much it costs per unit of time to use a consumable
resource like processors, memory, telescope time, etc. Quality-based charge rates ap-
ply a multiplicative charge factor related to the quality or class of service obtained
such as QOS, nodetype, backlog, primetime, etc.

By default, charges are calculated according to the following formula: For each con-
sumable resource used, a resource charge is calculated by multiplying the amount of
the resource used by the amount of time it was used, multiplied by the charge rate
for that resource. These resource charges are added together. Then, for each quality-
based charge rate, a charge factor is looked-up based on the type and name of the
charge rate. The sum of the resource charges is multiplied by each of the applicable
charge factors.

Creating ChargeRates
To create a new charge rate, use the command gold ChargeRate Create:

gold ChargeRate Create Type=<Charge Rate Type > Name=<Charge Rate Name >
Rate=<Floating Point Multiplier > [Description=<Description >] [ShowUsage:=True]

Example 10-1. Creating a resource charge rate

$ gold ChargeRate Create Type=Resource Name=Processors Rate=1

Successfully created 1 ChargeRate

Example 10-2. Creating another resource charge rate

$ gold ChargeRate Create Type=Resource Name=Memory Rate=0.001

Successfully created 1 ChargeRate

Example 10-3. Creating a quality-based charge rate

$ gold ChargeRate Create Type=QualityOfService Name=BottomFeeder
Rate=0.5

Successfully created 1 ChargeRate

Example 10-4. Creating another quality-based charge rate

$ gold ChargeRate Create Type=QualityOfService Name=Premium Rate=2

Successfully created 1 ChargeRate

49

Chapter 10. Managing Charge Rates

Querying ChargeRates
To display charge rate information, use the command gold ChargeRate Query:

gold ChargeRate Query [show:=<"Field1,Field2,..." >] [Type==<Charge Rate
Type>] [Name==<Charge Rate Name >] [Rate==<Floating Point Multiplier >] [De-
scription==<Description >] [ShowUsage:=True]

Example 10-5. Listing all charge rates

$ gold ChargeRate Query

Type Name Rate Description
---------------- ------------ ----- -----------
Resource Processors 1
QualityOfService BottomFeeder 0.5
QualityOfService Normal 1
QualityOfService Premium 2
Resource Memory 0.001

Modifying Charge Rates
To modify a charge rate, use the command gold ChargeRate Modify:

gold ChargeRate Modify [Rate=<Floating Point Multiplier >] [Description=<Description >] [Type==<Charge
Rate Type >] [Name==<Charge Rate Name >] [Rate==<Floating Point Multiplier >] [ShowUsage:=True]

Caution
The gold control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in
the inadvertant modification of all charge rates.

Example 10-6. Changing a charge rate

$ gold ChargeRate Modify Type==Resource Name==Memory Rate=0.05

Successfully modified 1 ChargeRate

Deleting Charge Rates
To delete a charge rate, use the command gold ChargeRate Delete:

gold ChargeRate Delete [Name==<Charge Rate Name >] [Rate==<Floating Point
Multiplier >]

50

Chapter 10. Managing Charge Rates

Caution
The gold control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in
the inadvertant deletion of all charge rates.

Example 10-7. Deleting a charge rate

$ gold ChargeRate Delete Type==Resource Name==Memory

Successfully deleted 1 ChargeRate

51

Chapter 10. Managing Charge Rates

52

Chapter 11. Managing Time Periods

A Time Period represents a named time frame with a specific start and end time. An
active flag is maintained that indicates whether the current time is within the time
period. Time Periods are associated with resource credits (as allocations) to define
the period during which the charges may be made against the credits.

Creating Time Periods
To create a new time period, use the command gold TimePeriod Create:

gold TimePeriod Create Name=<Time Period Name > [StartTime=YYYY-MM-DD
[hh:mm:ss]|-infinity|infinity (-infinity)] [EndTime=YYYY-MM-DD [hh:mm:ss]|-
infinity|infinity (-infinity)] [Description=<Description >] [ShowUsage:=True]

Example 11-1. Creating a time period

$ TimePeriod Create Name=FY2005 StartTime="2004-10-01" EndTime="2005-
10-01" Description="Fiscal Year 2005"

Successfully created 1 TimePeriod

Querying Time Periods
To display time period information, use the command gold TimePeriod Query:

gold TimePeriod Query [show:=<"Field1,Field2,..." >] [Name==<Time Pe-
riod Name >] [Active==True|False] [ShowUsage:=True]

Example 11-2. Listing all time periods

$ gold TimePeriod Query

Name StartTime EndTime Active Descrip-
tion
-------- ---------------------- ---------------------- ------ --------

Eternity -infinity infinity True Always Active
1Q04 2004-01-01 00:00:00-08 2004-04-01 00:00:00-08 False First Quar-
ter Calendar Year 2004
2Q04 2004-04-01 00:00:00-08 2004-07-01 00:00:00-07 False Second Quar-
ter Calendar Year 2004
3Q04 2004-07-01 00:00:00-07 2004-10-01 00:00:00-07 True Third Quar-
ter Calendar Year 2004
4Q04 2004-10-01 00:00:00-07 2005-01-01 00:00:00-08 False Fourth Quar-
ter Calendar Year 2004
FY2004 2003-10-01 00:00:00-07 2004-10-01 00:00:00-07 True Fiscal Year 2004
FY2005 2004-10-01 00:00:00-07 2005-10-01 00:00:00-07 False Fiscal Year 2005

53

Chapter 11. Managing Time Periods

Modifying Time Periods
To modify a time period, use the command gold TimePeriod Modify:

gold TimePeriod Modify [StartTime=YYYY-MM-DD [hh:mm:ss]|-infinity|infinity] [End-
Time=YYYY-MM-DD [hh:mm:ss]|-infinity|infinity] [Description=<Description >] Name==<Time
Period Name > [ShowUsage:=True]

Caution
The gold control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in
the inadvertant modification of all time periods.

Example 11-3. Changing a time period

$ gold TimePeriod Modify Name==FY2005 StartTime="2004-10-01" EndTime="2005-
10-01"

Successfully modified 1 TimePeriods

Deleting Time Periods
To delete a time period, use the command gold TimePeriod Delete:

gold TimePeriod Delete [Name==<Time Period Name >] [Active==True|False]

Caution
The gold control program allows you to make powerful and sweeping
modifications to gold objects. Misuse of this command could result in
the inadvertant deletion of all time periods (including all associated al-
locations).

Example 11-4. Deleting a time period

$ gold TimePeriod Delete Name==FY2005

Successfully deleted 1 TimePeriods

54

Chapter 12. Managing Usage Records

Usage records are generated as a side-effect of a Job Charge. At the end of a job, a
usage record is created for each resource used by the job.

Querying Usage Records
To display usage information, use the command glsusage:

glsusage [-J job_id_pattern] [-m machine_name] [-T resource_type] [-s start_time] [-
e end_time] [—show attribute_name [,attribute_name ...]...] [—showHidden] [—raw] [—de-
bug] [-? | —help] [—man] [—quiet] [usage_id]

Example 12-1. Listing all usage on machine colony

$ glsusage -m colony

Id JobId Resource Amount Machine WallDuration ConsumptionRate Charg-
eRate Multiplier Charge Description
-- ---------- ---------- ------ ------- ------------ --------------- --
-------- ---------- ------ -----------
1 PBS.1234.0 Processors 16 colony 1234 1 1 19744

55

Chapter 12. Managing Usage Records

56

Chapter 13. Managing Transactions

Gold logs all modifying transactions in a detailed transaction journal (queries are not
recorded). Previous transactions can be queried but not modified or deleted.

Querying Transactions
To display transaction information, use the command glstxn:

glstxn [-O object] [-A action] [-n name_or_id] [-U actor] [-u user_name] [-p
project_name] [-m machine_name] [-J job_id] [-s start_time] [-e end_time] [-
T transaction_id] [-R request_id] [—show attribute_name [,attribute_name ...]...] [—showHid-
den] [—raw] [—debug] [-? | —help] [—man] [—quiet]

Example 13-1. List all deposits made in 2004

$ glstxn -A Deposit -s 2004-01-01 -e 2005-01-01

Example 13-2. List everything done by amy since the beginning of 2004

$ glstxn -U amy -s 2004-01-01

Example 13-3. List all transactions affecting Job Id PBS.1234.0

$ glstxn -J PBS.1234.0

Example 13-4. List all transactions affecting charge rates

$ glstxn -O ChargeRate

57

Chapter 13. Managing Transactions

58

Chapter 14. Integration with the Resource Management
System

Dynamic versus Delayed Accounting

Delayed Accounting
In the absence of a dynamic system, some sites enforce allocations by periodically
(weekly or nightly) parsing resource manager job logs and then applying debits
against the appropriate project accounts. Although Gold can easily support this type
of system by the use of the qcharge command in post-processing scripts, this ap-
proach will allow a user or project to use resources significantly beyond their desig-
nated allocation and generally suffers from stale accounting information.

Dynamic Accounting
Gold’s design allows it to interact dynamically with your resource management sys-
tem. Charges for resource utilization can be made immediately when the job finishes
(or even incrementally throughout the job). Additionally, reservations can be issued
at the start of a job to place a hold against the user’s account, thereby ensuring that
a job will only start if it has sufficient reserves to complete. The remainder of this
document will describe the interactions for dynamic accounting.

Interaction Points

Job Quotation @ Job Submission Time [Optional — Recommended]
When a job is submitted to a grid scheduler or resource broker, it may be useful to
determine how much it will cost to run on a particular resource by requesting a job
quote. If the quote succeeds, it will return a quote id along with the quoted amount
for the job. This quote id may be used later to guarantee that the same charge rates
used to form the quote will also be used in the final job charge calculation.

Even when a job is exclusively scheduled locally, it is useful to obtain a quote at the
time of submission to the local resource manager to ensure the user has sufficient
funds to run the job and that it meets the access policies necessary for the charge to
succeed. A warning can be issued if funds are low or the job might be rejected with
an informative message in the case of insufficient funds or any other problems with
the account. Without this interaction, the job might wait in the queue for days only
to fail when it tries to start.

To make a job quotation with Gold at this phase requires that:

• the grid scheduler has built-in Gold allocation manager support {Silver}, or

• the resource manager supports a submit filter {LoadLeveler(SUBMIT_FILTER), LSF(esub)},
or

• a wrapper could be created for the submit command {PBS(qsub)}.

59

Chapter 14. Integration with the Resource Management System

Job Reservation @ Job Start Time [Optional — Highly Recommended]
Just before a job starts, a hold (reservation) is made against the appropriate account(s),
temporarily reducing the user’s available balance by an amount based on the re-
sources requested and the estimated wallclock limit. If this step is ommitted, it would
be possible for users to start more jobs than they have funds to support.

If the reservation succeeds, it will return a message indicating the amount reserved
for the job. In the case where there are insufficient resources to run the job or some
other problem with the reservation, the command will fail with an informative mes-
sage. Depending on site policy, this may or may not prevent the job from starting.

To make a job reservation with Gold at this phase requires that:

• the scheduler or resource manager has built-in Gold allocation manager support
{Maui(AMCFG)}, or

• the resource manager is able to run a script at job start time {LoadLeveler(prolog),
PBS(prologue), LSF(pre_exec)}.

Job Charge @ Job End Time [Required]
When a job ends, a charge is made to the user’s account(s). Any associated reserva-
tions are automatically removed as a side-effect. Depending on site policy, a charge
can be elicited only in the case of a successful completion, or for all or specific fail-
ure cases as well. Ideally, this step will occur immediately after the job completes
(dynamic accounting). This has the added benefit that job run times can often be re-
constructed from Gold job reservation and charge timestamps in case the resource
management job accounting data becomes corrupt.

If the charge succeeds, it will return a message indicating the amount charged for the
job.

To make a job charge with Gold at this phase requires that:

• the scheduler or resource manager has built-in Gold allocation manager support
{Maui(AMCFG)}, or

• the resource manager is able to run a script at job start time {LoadLeveler(epilog),
PBS(epilogue), LSF(post_exec)}, or

• the resource manament system supports some kind of feedback or notification
machanism occurring at the end of a job (an email can be parsed by a mail filter).

Methods of interacting with Gold
There are essentially six ways of programatically interacting with Gold. Let’s con-
sider a simple job charge in each of the different ways.

Configuring an application that already has hooks for Gold
The easiest way to use Gold is to use a resource management system with built-in
support for Gold. For example, the Maui Scheduler and Silver Grid Scheduler can

60

Chapter 14. Integration with the Resource Management System

be configured to directly interact with Gold to perform the quotes, reservations and
charges by setting the appropriate parameters in the config file.

Example 14-1. Configuring maui.cfg to use Gold

AMCFG[bank] TYPE=GOLD HOST=control_node1 PORT=7112 SOCKETPROTOCOL=HTTP WIRE-
PROTOCOL=XML CHARGEPOLICY=DEBITALLWC JOBFAILUREACTION=NONE TIMEOUT=15

Using the appropriate command-line client
From inside a script, or by invoking a system command, you can use a command line
client (one of the "g" commands in gold’s bin directory).

Example 14-2. To issue a charge at the completion of a job, you would use gcharge:

gcharge -J PBS.1234.0 -p chemistry -u amy -m colony -P 2 -t 1234

Using the Gold control program
The Gold control program, gold, will issue a charge for a job expressed in xml (SSS
Job Object).

Example 14-3. To issue a charge you must invoke the Charge action on the Job
object:

gold Data:=" <Job><JobId >PBS.1234.0 </JobId ><ProjectId >chemistry </ProjectId >
<UserId >amy</UserId ><MachineName>colony </MachineName >
<Processors >2</Processors ><WallDuration >1234</WallDuration >"

Use the Perl API
If your resource management system is written in Perl or if it can invoke a Perl script,
you can access the full Gold functionality via the Perl API.

Example 14-4. To make a charge via this interface you might do something like:

use Gold;

my $request = new Gold::Request(object => "Job", action => "Charge");
my $job = new Gold::Datum("Job");
$job->setValue("JobId", "PBS.1234.0");
$job->setValue("ProjectId", "chemistry");
$job->setValue("UserId", "amy");
$job->setValue("MachineName", "colony");
$job->setValue("Processors", "2");
$job->setValue("WallDuration", "1234");
$request->setDatum($job);
my $response = $request->getResponse();

61

Chapter 14. Integration with the Resource Management System

print $response->getStatus(), ": ", $response->getMessage(), "\n";

Use the Java API
If your resource management system is written in Java or if it can invoke a Java
executable, you can access the full Gold functionality via the Java API.

Example 14-5. To make a charge via this interface you might do something like:

import java.util.*;
import gold.*;

public class Test
{

public static void main(String [] args) throws Exception
{

Gold.initialize();
Request request = new Request("Job", "Charge");
Datum job = new Datum("Job");
job.setValue("JobId", "PBS.1234.0");
job.setValue("ProjectId", "chemistry");
job.setValue("UserId", "amy");
job.setValue("MachineName", "colony");
job.setValue("Processors", "2");
job.setValue("WallDuration", "1234");
request.setDatum(job);
Response response = request.getResponse();
System.out.println(response.getStatus() + ": " + response.getMessage() + "\n");

}
}

Communicating via the SSSRMAP Protocol
Finally, it is possible to interact with Gold by directly using the SSSRMAP Wire Proto-
col and Message Format over the network (see SSS Resource Management and Account-
ing Documentation1). This will entail building the request body in XML, appending an
XML digital signature, combining these in an XML envelope framed in an HTTP
POST, sending it to the server, and parsing the similarly formed response. The Maui
Scheduler communicates with Gold via this method.

Example 14-6. The message might look something like:

POST /SSSRMAP HTTP/1.1
Content-Type: text/xml; charset="utf-8"
Transfer-Encoding: chunked

190
<?xml version="1.0" encoding="UTF-8"?>
<Envelope>
<Body actor="scottmo" chunking="True">
<Request action="Charge" object="Job">
<Data>
<Job>

62

Chapter 14. Integration with the Resource Management System

<JobId>PBS.1234.0</JobId>
<ProjectId>chemistry</ProjectId>
<UserId>amyh</UserId>
<MachineName>colony</MachineName>
<Processors>2</Processors>
<WallDuration>1234</WallDuration>
</Job>
</Data>
</Request>
<//Body>
<Signature>
<DigestValue>azu4obZswzBt89OgATukBeLyt6Y=</DigestValue>
<SignatureValue>YXE/C08XX3RX4PMU1bWju+5/E5M=</SignatureValue>
<SecurityToken type="Symmetric"></SecurityToken>
</Signature>
</Envelope>
0

Notes
1. http://sss.scl.ameslab.gov/docs.shtml

63

Chapter 14. Integration with the Resource Management System

64

Chapter 15. Configuration Files

Gold uses two configuration files: one for the server (goldd.conf) and one for the
clients (gold.conf). For configuration parameters that have hard-coded defaults, the
default value is specified within brackets.

Server Configuration
The following configuration parameters may be set in the server configuration file
(goldd.conf).

• database.datasource [DBI:Pg:dbname=gold;host=localhost] — The Perl DBI data source
name for the database you wish to connect to.

• database.password — The password to be used for the database connection (if any).

• database.user — The username to be used for the database connection (if any).

• log4perl.appender.Log.filename — Used by log4perl to set the base name of the log
file.

• log4perl.appender.Log.max — Used by log4perl to set the number of rolling backup
logs.

• log4perl.appender.Log.size — Used by log4perl to set the size the log will grow to
before it is rotated.

• log4perl.appender.Log.Threshold — Used by log4perl to set the debug level written
to the log. The logging threshold can be one of TRACE, DEBUG, INFO, WARN,
ERROR and FATAL.

• log4perl.appender.Screen.Threshold — Used by log4perl to set the debug level written
to the screen. The logging threshold can be one of TRACE, DEBUG, INFO, WARN,
ERROR and FATAL.

65

Chapter 15. Configuration Files

• machine.autogen [false] — If set to true, Gold will automatically create new ma-
chines when they are first encountered in a job function (charge, reserve, or quote).

• machine.default [NONE] — If not set to NONE, Gold will use the specified default
for the machine in a job function (charge, reserve, or quote) in which a machine
was not specified.

• project.autogen [false] — If set to true, Gold will automatically create new projects
when they are first encountered in a job function (charge, reserve, or quote).

• project.default [NONE] — If not set to NONE, Gold will use the specified default
for the project in a job function (charge, reserve, or quote) in which a project was
not specified and no default project can be found for the user.

• security.authentication [true] — Indicates whether incoming message authentication
is required.

• security.encryption [false] — Indicates whether incoming message encryption is re-
quired.

• server.host [localhost] — The hostname on which the gold server runs.

• server.port [7112] — The port the gold server listens on.

• super.user [root] — The primary gold system admin which by default can perform
all actions on all objects. The super user is sometimes used as the actor in cases
where an action is invoked from within another action.

• user.autogen [false] — If set to true, Gold will automatically create new users when
they are first encountered in a job function (charge, reserve, or quote).

• user.default [NONE] — If not set to NONE, Gold will use the specified default for
the user in a job function (charge, reserve, or quote) in which a user was not speci-
fied.

66

Chapter 15. Configuration Files

Client Configuration
The following configuration parameters may be set in the client configuration file
(gold.conf).

• log4perl.appender.Log.filename — Used by log4perl to set the base name of the log
file.

• log4perl.appender.Log.max — Used by log4perl to set the number of rolling backup
logs.

• log4perl.appender.Log.size — Used by log4perl to set the size the log will grow to
before it is rotated.

• log4perl.appender.Log.Threshold — Used by log4perl to set the debug level written
to the log. The logging threshold can be one of TRACE, DEBUG, INFO, WARN,
ERROR and FATAL.

• log4perl.appender.Screen.Threshold — Used by log4perl to set the debug level written
to the screen. The logging threshold can be one of TRACE, DEBUG, INFO, WARN,
ERROR and FATAL.

• response.chunking [true] — Indicates whether large responses should be segmented.

• response.chunkSize [1000] — Indicates the line length in the data response that will
trigger message segmentation.

• security.authentication [true] — Indicates whether outgoing message are signed.

• security.encryption [false] — Indicates whether outgoing messages are encrypted.

67

Chapter 15. Configuration Files

• security.token.type [Symmetric] — Indicates the default security token type to be
used in both authentication and encryption.

• server.host [localhost] — The hostname on which the gold server runs.

• server.port [7112] — The port the gold server listens on.

68

	Table of Contents
	Notice
	Chapter 1. Overview
	Background
	Features
	Interfaces
	Command Line Clients
	Interactive Control Program
	Web-based Graphical User Interface
	Perl API
	Java API
	SSSRMAP Wire Protocol

	Chapter 2. Getting Started
	Define Users
	Define Machines
	Define Projects
	Add Users and Machines to the Projects
	Create Accounts
	Define Time Periods
	Make Deposits
	Check The Balance
	Define Charge Rates
	Integrate Gold with your Resource Management System
	Obtain A Job Quote
	Make A Job Reservation
	Charge for a Job
	Refund a Job
	List Transactions
	List Jobs
	List Usage
	Examine Account Statement

	Chapter 3. Managing Users
	Creating Users
	Querying Users
	Modifying Users
	Deleting Users

	Chapter 4. Managing Machines
	Creating Machines
	Querying Machines
	Modifying Machines
	Deleting Machines

	Chapter 5. Managing Projects
	Creating Projects
	Querying Projects
	Modifying Projects
	Deleting Projects

	Chapter 6. Managing Accounts
	Creating Accounts
	Querying Accounts
	Modifying Accounts
	Making Deposits
	Querying The Balance
	Making Withdrawals
	Making Transfers
	Obtaining an Account Statement
	Deleting Accounts

	Chapter 7. Managing Jobs
	Creating Jobs
	Querying Jobs
	Modifying Jobs
	Deleting Jobs
	Obtaining Job Quotes
	Making Job Reservations
	Charging Jobs
	Issuing Job Refunds

	Chapter 8. Managing Reservations
	Creating Reservations
	Querying Reservations
	Modifying Reservations
	Deleting Reservations

	Chapter 9. Managing Quotations
	Creating Quotations
	Querying Quotations
	Modifying Quotations
	Deleting Quotations

	Chapter 10. Managing Charge Rates
	Creating ChargeRates
	Querying ChargeRates
	Modifying Charge Rates
	Deleting Charge Rates

	Chapter 11. Managing Time Periods
	Creating Time Periods
	Querying Time Periods
	Modifying Time Periods
	Deleting Time Periods

	Chapter 12. Managing Usage Records
	Querying Usage Records

	Chapter 13. Managing Transactions
	Querying Transactions

	Chapter 14. Integration with the Resource Management System
	Dynamic versus Delayed Accounting
	Delayed Accounting
	Dynamic Accounting

	Interaction Points
	Job Quotation @ Job Submission Time [Optional Recommended]
	Job Reservation @ Job Start Time [Optional Highly Recommended]
	Job Charge @ Job End Time [Required]

	Methods of interacting with Gold
	Configuring an application that already has hooks for Gold
	Using the appropriate command-line client
	Using the Gold control program
	Use the Perl API
	Use the Java API
	Communicating via the SSSRMAP Protocol

	Chapter 15. Configuration Files
	Server Configuration
	Client Configuration

