SSS Job Object Specification

Draft Release Version 3.0.1

29 MAR 2004

Scott Jackson, PNNL

David Jackson, Ames Lab

Brett Bode, Ames Lab


Scalable Systems Software Job Object Specification

Status of this Memo

This document describes the job object to be used by Scalable Systems Software compliant components. It is envisioned for this specification to be used in conjunction with the SSSRMAP protocol with the job object passed in the Data field of Requests and Responses. Queries can be issued to a job-cognizant component in the form of modified XPATH expressions to the Get field to extract specific information from the job object as described in the SSSRMAP protocol. 

Abstract

This document describes the syntax and structure of the SSS job object. A job model is described that is flexible enough to support the specification of very simple jobs as well as jobs with elaborate and complex specification requirements in a way that avoids complex structures and syntax when it is not needed. The basic assumption is that a solitary job specification should be usable for all phases of the job lifecycle and can be used at submission, queuing, staging, reservations, quotations, execution, charging, accounting, etc. This job specification provides support for multi-step jobs, as well as jobs with disparate task descriptions. It takes into account the aspects necessary to operate within a grid or meta-scheduled environment where the job might be executed at one (or more) destination among a variety of different administrative domains and resource management systems.

Table of Contents

1Scalable Systems Software Job Object Specification


1Table of Contents


31.
Introduction


31.1
Goals


31.2
Non-Goals


41.3
Examples


41.3.1
Very Simple Example


41.3.2
Moderate Example


51.3.3
Elaborate Example


72.
Conventions used in this document


72.1
Keywords


72.2
Table Column Interpretations


82.3
Element Syntax Cardinality


83.
The Job Model


104.
JobGroup Element


104.1
JobGroup Properties


114.1.1
Simple JobGroup Properties


114.1.2
Job


114.1.3
JobDefaults


115.
Job and JobDefaults Element


125.1
Job Properties


125.1.1
Simple Job Properties


165.1.2
Credentials


165.1.3
Environment Element


175.1.3.1
Variable Element


175.1.4
NodeList Element


175.1.4.1
Node Element


185.1.5
TaskDistribution Element


185.1.6
Dependency Element


195.1.7
Consumable Resources


205.1.8
Resource Element


205.1.9
NodeProperties Element


215.1.9.1
Node Properties


215.1.10
Extension Element


225.1.11
TaskGroup


225.1.12
TaskGroupDefaults


226.
TaskGroup and TaskGroupDefaults Element


236.1
TaskGroup Properties


236.1.1
Simple TaskGroup Properties


236.1.2
Task


246.1.3
TaskDefaults


247.
Task and TaskDefaults Element


247.1
Task Properties


247.1.1
Simple Task Properties


258.
Property Categories


258.1
Requested Element


278.2
Utilized Element


288.3
Dedicated Element


299.
AwarenessPolicy Attribute


3010.
References


31Appendix A


31Units of Measure Abbreviations




1. Introduction

This specification proposes a standard XML representation for a job object for use by the various components in the SSS Resource Management System. This object will be used in multiple contexts and by multiple components. It is anticipated that this object will be passed via the Data Element of SSSRMAP Requests and Responses.

1.1 Goals

There are several goals motivating the design of this representation.

It needs to be inherently flexible. We recognize we will not be able to exhaustively include the ever-changing job properties and capabilities that constantly arise.

The same job object should be used at all stages of its lifecycle. This object will be used at job submission, queuing, scheduling, charging and accounting, hence it needs to distinguish between requested, utilized and dedicated properties.

Its design must take into account the properties and structure required to function in a meta or grid environment. It needs to include the capability to support local mapping of properties, global namespaces, etc.

The equivalent of multi-step jobs must be supported. Each step (job) can have multiple logical task descriptions.

Many potential users of the specification will not be prepared to implement the complex portions or fine-granularity that others need. There needs to be a way to allow the more complicated structure to be added as needed while leaving more straightforward cases simple.

There needs to be guidance for how to understand a given job object when higher order features are not supported by an implementation, and which parts are required, recommended and optional for implementors to implement.

It needs to support composite resources. 

It should include the ability to specify preferences or fuzzy requirements.

1.2 Non-Goals

The following topics are outside the scope of the job object

This specification does not attempt to specify namespaces or even naming conventions for most property values.

1.3 Examples

1.3.1 Very Simple Example

This example shows that a very simple and direct representation can be used when more complex features of this specification are not needed.

<Job>


<JobId>PBS.1234.0</JobId>


<JobState>Idle</JobState>


<UserId>scottmo</UserId>


<Executable>/bin/hostname</Executable>


<Processors>16</Processors>


<WallDuration>3600</WallDuration>

</Job>

1.3.2 Moderate Example

This example shows a single job of medium complexity that makes use of features such as required versus utilized properties.

<Job>


<JobId>PBS.1234.0</JobId>


<JobName>Heavy Water</JobName>


<ProjectId>nwchemdev</ProjectId>


<UserId>peterk</UserId>


<Application>NWChem</Application>


<Executable>/usr/local/nwchem/bin/nwchem</Executable>


<Arguments>-input basis.in</Arguments>


<InitialWorkingDirectory>/home/peterk</InitialWorkingDirectory>


<MachineName>Colony</MachineName>


<QualityOfService>BottomFeeder</QualityOfService>

<Queue>batch_normal</Queue>

<JobState>Completed</JobState>


<StartTime>1051557713</StartTime>

<EndTime>1051558868</EndTime>

<Charge>25410</Charge>

<Requested>

<Processors op=”ge”>12</Processors>

<Memory op=”ge” units=”GB”>2</Memory>

<WallDuration>3600</WallDuration>


</Requested>


<Utilized>



<Processors>16</Processors>



<Memory metric=”Average” units=”GB”>1.89</Memory>

<WallDuration>1155</WallDuration>


</Utilized>


<Environment>



<Variable name=”PATH”>/usr/bin:/home/peterk</Variable>


</Environment>

</Job>

1.3.3 Elaborate Example

This example uses a job group to encapsulate a multi-step job. It shows that complex capabilities are expressible through this specification when such capabilities are needed. Not all components will care about this level of detail and components that use this specification can include or discard the information that is relevant to their function. Superfluous information can be ignored by the component or filtered out (by XSLT for example).

<JobGroup>


<JobGroupId>fr15n05.1234</JobGroupId>


<JobGroupState>Active</JobGroupState>


<JobGroupName>ShuttleTakeoff</JobGroupName>


<JobDefaults>



<StagedTime>1051557859</StagedTime>



<SubmitHost>asteroid.lbl.gov</SubmitHost>



<SubmissionTime>1051556734</SubmissionTime>



<ProjectId>GrandChallenge18</ProjectId>



<GlobalUserId>C=US,O=LBNL,CN=Keith Jackson</GlobalUserId>



<UserId>keith</UserId>



<Environment>




<Variable name=”LD_LIBRARY_PATH”>/usr/lib</Variable>




<Variable name=”PATH”>/usr/bin:~/bin:</Variable>



<Environment>


</JobDefaults>


<Job>



<JobId>fr15n05.1234.0</JobId>



<JobName>Launch Vector Initialization</JobName>



<Executable>/usr/local/gridphys/bin/lvcalc</Executable>



<Queue>batch</Queue>



<JobState>Completed</JobState>



<MachineName>SMP2.emsl.pnl.gov</MachineName>



<StartTime>1051557713</StartTime>



<EndTime>1051558868</EndTime>



<QuoteId>http://www.pnl.gov/SMP2#654321</QuoteId>



<Charge units=”USD”>12.75</Charge>



<Requested>




<WallDuration>3600</WallDuration>




<Processors>2</Processors>




<Memory>1024</Memory>



</Requested>



</Utilized>




<WallDuration>1155</WallDuration>




<Processors consumptionRate=”0.78”>2</Processors>




<Memory metric=”max”>975</Memory>



</Utilized>



<TaskGroup>




<TaskCount>2</TaskCount>




<TaskDistribution type=”TasksPerNode”>1</TaskDistribution>




<Task>





<Node>node1</Node>





<ProcessId>99353</ProcessId>




</Task>




<Task>





<Node>node12</Node>





<ProcessId>80209</ProcessId>




</Task>



</TaskGroup>


</Job>


<Job>



<JobId>fr15n05.1234.1</JobId>



<JobName>3-Phase Ascension</JobName>



<Queue>batch_normal</Queue>



<JobState>Idle</JobState>



<MachineName>Colony.emsl.pnl.gov</MachineName>



<Priority>1032847</Priority>



<Hold>System</Hold>



<StatusMessage>Insufficient funds to start job</StatusMessage>



<Requested>




<WallDuration>43200</WallDuration>



</Requested>



<TaskGroup>




<TaskCount>1</TaskCount>




<TaskName>Master</TaskName>




<Executable>/usr/local/bin/stage-coordinator</Executable>




<Memory>2048<Memory>




<Resource name=”License” type=”ESSL2”>1</Resource>




<NodeProperties>





<Feature>Jumbo-Frame</Feature>




</NodeProperties>



</TaskGroup>



<TaskGroup>




<TaskName>Slave</TaskName>




<TaskDistribution type=”Rule”>RoundRobin</TaskDistribution>




<Executable>/usr/local/bin/stage-slave</Executable>




<NodeCount>4</NodeCount>




<Requested>





<Processors group=”-1”>12</Processors>





<Processors conj=”or” group=”1”>16</Processors>





<Memory>512</Memory>





<NodeProperties>






<Name op=”match”>fr15n.*</Name>





</NodeProperties>




</Requested>




</TaskGroup>


</Job>

</JobGroup>

2. Conventions used in this document

2.1 Keywords

The keywords “MUST”, “MUST NOT”, “REQUIIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC2119.

2.2 Table Column Interpretations

In the property tables, the columns are interpreted to have the following meanings:

Element Name:
Name of the XML element (xsd:element) see [DATATYPES]

Type:


Data type defined by xsd (XML Schema Definition) as:

String

xsd:string (a finite length sequence of printable characters)


Integer

xsd:integer (a signed finite length sequence of decimal digits)


Float

xsd:float (single-precision 32-bit floating point)


Boolean
xsd:boolean (consists of the literals “true” or “false”)


DateTime
xsd:int
(a 32-bit unsigned long in GMT seconds since the EPOCH)

Duration
xsd:int (a 32-bit unsigned long measured in seconds) 

Description:

Brief description of the meaning of the property

Appearance:
This column indicates whether the given property has to appear within the parent element. It assumes the following meanings:


MUST

This property is REQUIRED when the parent is specified.


SHOULD
This property is RECOMMENDED when the parent is specified.


MAY

This property is OPTIONAL when the parent is specified.

Compliance:
The column indicates whether a compliant implementation has to support the given property.

MUST

A compliant implementation MUST support this property.

SHOULD
A compliant implementation SHOULD support this property.


 MAY

A compliant implementation MAY support this property.

Categories:
Some properties may be categorized into one of several categories. Letters in this column indicate that the given property can be classified in the the following property categories.


R

This property can be encompassed in a Requested element.


U

This property can be encompassed in a Utilized element.


D

This property can be encompassed in a Dedicated element.

2.3 Element Syntax Cardinality

The cardinality of elements in the element syntax sections may make use of regular expression wildcards with the following meanings:


*

Zero or more occurrences


+

One or more occurrences


?

Zero or one occurrences

The absence of one of these symbols implies exactly one occurrence.

3. The Job Model

The primary object within the job model is a job. A job can be thought of as a single schedulable entity and will be the object normally seen in job queues. 

Jobs with dependencies on other jobs may be submitted in a job group. Jobs within a job group form a DAG (directed acyclic graph) where the nodes are jobs and the edges represent dependencies on the status of previous jobs. A job group will consist of at least one job. A job group can optionally specify job defaults which are a set of job properties to be assumed by all jobs within the job group unless overridden within the job. 

A job may consist of multiple tasks, which are the finest grained work unit and represent an endpoint for executing a given process instance. For example, a job that requests 3 nodes and 4 processors will have 4 tasks, two on one node and one on each of two nodes. Tasks may be grouped into task groups, which are logical aggregations of tasks and their common properties. Submit filters, prologs, epilogs, notification scripts, etc. run once only for each job. Whereas task groups function as logical descriptions of tasks and their properties, they also describe the number of such tasks and the nodes that they run on. As an example, a master task group (consisting of a single task) might ask for a node with a MATLAB license, 2GB of memory and an internet connected network adapter while a slave task group (consisting of 12 tasks) could be targeted for nodes with more CPU bandwidth -- all within the same job and utilizing a common MPI ring. Tasks (and hence taskgroups) can have different executables or environments, specify different consumable resources or node properties. A job, therefore, may specify one or more task group. A job that does not specify an explicit task group is considered as having a single implicit task group. A job can optionally specify task group defaults which are a set of task group properties to be assumed by all task groups within the job unless overridden within a task group. 

A task group may specify one or more tasks. A task group that does not specify an explicit task is considered as having a single implicit task. A task group can optionally specify task defaults which are a set of task properties to be assumed by all tasks within the task group unless overridden within a task.

4. JobGroup Element

A JobGroup is an optional element used to aggregate one or more interdependent jobs. Some resource managers allow for the submission of job groups (multi-step jobs) and allow for queries on the status of an entire job group.

· A compliant implementation MAY support this element.

· A JobGroup MUST specify one or more JobGroup Properties.

· A JobGroup MUST contain one or more Jobs.

· A JobGroup MAY contain zero or more JobsDefaults.

The following illustrates the syntax of this element:

<JobGroup>


<!-- JobGroup Properties -->+


<Job/>+


<JobDefaults/>?

</Job>

4.1 JobGroup Properties

JobGroup Properties are properties that always apply to the job group as a whole. These include the job group id, jobs and job defaults, and other simple optional job properties.

4.1.1 Simple JobGroup Properties

Simple (unstructured) job group properties are enumerated in Table 1.

Table 1
Simple JobGroup Properties

	Element Name
	Type
	Description
	Appearance
	Compliance
	Categories

	CreationTime
	DateTime
	Date and time that the job group was instantiated
	MAY
	MAY
	

	Description
	String
	Description of the job group
	MAY
	MAY
	

	JobGroupId
	String
	Job group identifier
	MUST
	MUST
	

	JobGroupName
	String
	Name of the job group
	MAY
	SHOULD
	

	JobGroupState
	String
	State of the job as a whole. Valid states may include “NotQueued”, “Unstarted”, “Active”, “Completed”.
	MAY
	SHOULD
	


4.1.2 Job

A job group MUST contain one or more jobs.

See the next section for element details.

4.1.3 JobDefaults

A job group MAY contain zero or one job defaults.

See the next section for element details.

5. Job and JobDefaults Element

The Job and JobDefaults elements are of the same structure. A Job element encapsulates a job and may be expressed as a standalone object. A JobDefaults element may only appear within a JobGroup and represents the defaults to be taken by all jobs within the job group. Job properties in Job elements override any properties found in a sibling JobDefaults element. 

· A compliant implementation MUST support the Job element.

· A compliant implementation MAY support the JobDefaults element only if it supports the JobGroup element.

· A job MUST specify one or more Job Properties.

· One or more TaskGroup elements MAY appear at this level.

· Zero or one TaskGroupDefaults elements MAY appear at this level.

The following illustrates the syntax of this element:

<Job>


<!-- Job Properties -->+


<TaskGroup/>*


<TaskGroupDefaults/>?

</Job>

5.1 Job Properties

Job Properties are properties that apply to a particular job or as default properties to all jobs. These properties include the job id, job credentials, task groups, task group defaults, and other simple optional job properties.

5.1.1 Simple Job Properties

Simple (unstructured) job properties are enumerated in Table 2.

Table 2
Simple Job Properties

	Element Name
	Type
	Description
	Appearance
	Compliance
	Categories

	Application
	String
	Type of application such as “Gaussian” or “Nwchem”.
	MAY
	MAY
	

	Arguments
	String
	The arguments for the executable.
	MAY
	SHOULD
	

	EligibleTime
	DateTime
	Date and time that a job became eligible to run.
	MAY
	MAY
	

	EndTime
	DateTime
	Date and time that a job ended (independent of success or failure).
	MAY
	MUST
	RU

	Executable
	String
	Executable. This may be an absolute or relative path or a URI.*
	MAY
	MUST
	

	GlobalJobId
	String
	Globally unique job identifier (possibly in the form of a URI).
	MAY
	SHOULD
	

	Hold
	String
	Hold(s) on the job if any.
	MAY
	SHOULD
	

	InitialWorkingDirectory
	String
	Initial working directory
	MAY
	SHOULD
	

	JobId
	String
	A local job identifier assigned to the job by the local resource manager.
	MUST 
	MUST
	

	JobName
	String
	Name of the job
	MAY
	SHOULD
	

	JobState
	String
	State of the sjob. Valid states may include “Idle”, “Hold”, “Running”, “Suspended”, “Completed”.
	MAY
	MUST
	

	MachineName
	String
	Name of the system or cluster that the job runs on.
	MAY
	MUST
	RU

	NodeCount
	Integer
	Number of nodes used by the job.
	MAY
	MUST
	RU

	Priority
	Integer
	Current queue priority (or rank) for the job.
	MAY
	SHOULD
	

	QualityOfService
	String
	Name of the Quality of Service (QOS).
	MAY
	SHOULD
	RU

	Queue
	String
	Name of the Queue (or class) that the job job runs in.
	MAY
	SHOULD
	RU

	QuoteId
	String
	Identifier for a guaranteed charge rate quote obtained by the job.
	MAY
	MAY
	

	ReservationTime
	DateTime
	Date and time that a reservation was placed for the job.
	MAY
	MAY
	

	StagedTime
	DateTime
	Date and time that a job was staged to the local resource management system.
	MAY
	MAY
	

	StartCount
	Integer
	Number of times the scheduler tried to start the job.
	MAY
	MAY
	

	StartTime
	DateTime
	Date and time that the job started.
	MAY
	MUST
	RU

	StatusMessage
	String
	Natural language message that can be used to provide detail on why a job failed, isn’t running, etc.
	MAY
	SHOULD
	

	SubmissionTime
	DateTime
	Date and time that a job was submitted.
	MAY
	SHOULD
	

	SubmitHost
	String
	FQDN of host where the job was submitted from.
	MAY
	SHOULD
	

	SuspendDuration
	Integer
	Number of seconds the job was in the “Suspended” state.
	MAY
	MAY
	

	TimeCategory
	String
	This allows the specification of shifts like “PrimeTime” for charging purposes.
	MAY
	MAY
	

	Type
	String
	Type of job. Meaning of this extension property is context specific.
	MAY
	MAY
	

	WallDuration
	Duration
	Number of seconds the job was in the “Running” state.
	SHOULD
	MUST
	RU


* The Executable may be a script or a binary executable. If it is already on the target system it may be referenced by an absolute or relative pathname (relative to InitialWorkingDirectory). If it is passed along with the job in a File object (see SSSRMAP), it can be referenced by an absolute or relative URI. An absolute URI would specify a URL where the file can be downloaded (like with wget). A relative URI is specified by preceding an identifier by a pound sign as in <Executable>#Script</Executable> and will be found in a File object included along with the Job object with the Script as an identifier as in <File id=”Script”>echo hello world</File>. 

5.1.2 Credentials

Credentials are a special group of job properties that relate to some kind of authenticated token or id and are also distinct in the fact that they can be categorized in both requested and utilized forms.

Credential job properties are enumerated in Table 3.

Table 3
Credential Job Properties

	Element Name
	Type
	Description
	Appearance
	Compliance
	Categories

	ProjectId
	String
	Name of the Project or Charge Account
	MAY
	SHOULD
	RU

	GlobalUserId
	String
	Globally unique user identifier. This may be an X.509 DN for example.
	MAY
	SHOULD
	RU

	GroupId
	String
	Name of the local group id.
	MAY
	MAY
	RU

	UserId
	String
	Name of the local userid for the job.
	MAY
	MUST
	RU


5.1.3 Environment Element

The Environment element is used to encapsulate environment variables.

· A compliant implementation SHOULD support this element.

· An Environment element MAY appear zero or one times within a given set of Job (or TaskGroup) Properties.

· An Environment element MUST contain one or more Variable elements.

The following illustrates the syntax of this element:

<Environment>


<Variable/>+

</Environment>

5.1.3.1 Variable Element

The Variable element represents an environment variable with its name and value.

This element MUST have a name attribute that is of type String. A compliant implementation MUST support this attribute if this element is supported.

The character content of this element is the value of the environment variable.

The following is an example of a Variable element:

<Variable name=”PATH”>/usr/bin:/home/sssdemo</Variable>

5.1.4 NodeList Element

The NodeList element is used to aggregate nodes.

· A compliant implementation SHOULD support this element.

· This element MAY appear zero or one times within a given set of Job Properties.

· This element MUST contain one or more Node elements.

· This element MAY be categorized as a requested or utilized property by being encompassed by the appropriate element.

The following illustrates the syntax of this element:

<NodeList>


<Node/>+

</NodeList>

5.1.4.1 Node Element

The Node element represents a node.

· This element is of type String.

The following is an example of a Node element:

<Node>node1</Node>

5.1.5 TaskDistribution Element

The TaskDistribution element describes how tasks are to be mapped to nodes.

This may be a rule name, a task per node ratio or an arbitrary geometry.

· A compliant implementation SHOULD support this element.

· This element MAY appear zero or one times within a given set of Job (or TaskGroup) Properties.

· This element is of type String.

· This element MAY have a type attribute of type String that provides a hint as to the type of mapping guidance provided. It may have values including “Rule”, “TasksPerNode”, “ProcessorsPerTask” or “Geometry”. A compliant implementation MAY support this attribute if this element is supported.

· It is possible when specifying a task distribution along with Processors, NodeCount or TaskCount to encounter a contradiction. The components are responsible for resolving conflicting requirements. 

The following are three examples of a TaskDistribution element:

<TaskDistribution type=”TasksPerNode”>2</TaskDistribution>

<TaskDistribution type=”Rule”>RoundRobin</TaskDistribution>

<TaskDistribution type=”Geometry”>{1,4}{2}{3,5}</TaskDistribution>

5.1.6 Dependency Element

The Dependency element allows jobs to have execution dependencies on the status of previous jobs. In a job group (multi-step job), some jobs may delay execution until the failure or success of other jobs creating in general a Directed Acyclic Graph relationship between the jobs. This content of this element is of type String and represents the JobId that the job is dependent upon. A job may have more than one dependencies so this element may appear more than once in a given job scope. A compliant implementation SHOULD support this element if job groups are supported. This element MAY have a type attribute that is of type String that indicates what basis is used to determine the execution of the current job in relation to the specified job. The default basis (if the type attribute is omitted) is to allow the current job to run if the specified job completes successfully (this is specified explicitly with a value of “OnSuccess”). The type attribute MAY be present and have values including “OnSuccess” and “OnFailure”. A compliant implementation MUST support this attribute if this element is supported.

The following is an example of a Dependency element:

<Dependency type=”OnSuccess”>PBS.1234.0</Dependency>

5.1.7 Consumable Resources

Consumable Resources are a special group of properties that can have additional attributes and can be used in multiple contexts. In general a consumable resource is a resource that can be consumed in a measurable quantity.

· A consumable resource MAY have a units attribute that is of type String that specifies the units by which it is being measured. If this attribute is omitted, a default unit is implied. A compliant implementation MAY support this attribute if the element is supported.

· A consumable resource MAY have a metric attribute that is of type String that specifies the type of measurement being described. For example, the measurement may be a Total, an Average, a Min or a Max. A compliant implementation MAY support this attribute if the element is supported.

· A consumable resource MAY have a wallDuration attribute of type Duration that indicates the amount of time for which that resource was used. This need only be specified if the resource was used for a different amount of time than the wallDuration for the job. A compliant implementation MAY support this attribute if the element is supported.

· A consumable resource MAY have a consumptionRate attribute of type Float that indicates the average percentage that a resource was used over its wallDuration. For example, an overbooked SMP running 100 jobs across 32 processors may wish to scale the usage and charge by the average fraction of processor usage actually delivered. A compliant implementation MAY support this attribute if the element is supported.

A list of simple consumable resources is listed in Table 4.

Table 4
Simple Consumable Resources

	Element Name
	Type
	Description
	Appearance
	Compliance
	Categories

	Disk
	Float
	Amount of disk.
	MAY
	SHOULD
	RUD

	Memory
	Float
	Amount of memory.
	MAY
	SHOULD
	RUD

	Network
	Float
	Amount of network.
	MAY
	MAY
	RUD

	Processors
	Integer
	Number of processors.
	MAY
	MUST
	RUD

	Swap
	Float
	Amount of virtual memory.


	MAY
	MAY
	RUD


The following are two examples for specifying a consumable resource:

<Memory metric=”Max” units=”GB”>483</Memory>

<Processors wallDuration=”1234” consumptionRate=”0.63”>4</Processors>

5.1.8 Resource Element

In addition to the consumable resources enumerated in the above table, an extensible consumable resource is defined by the Resource element.

· A compliant implementation SHOULD support this element.

· This element MAY appear zero or more times within a given set of job (or task group) properties.

· Like the other consumable resources, this property MAY be categorized as a requested, utilized or dedicated property by being encompassed in the appropriate element.

· This element is of type Float.

· It shares the other same properties and attributes as the other consumable resources but it requires an additional name (and optional type) attribute to describe it.

· This element MUST have a name attribute of type String that indicates the type of consumable resource being measured. A compliant implementation MUST support this attribute if the element is supported.

· This element MAY have a type attribute of type String that distinguishes it within a general resource class. A compliant implementation SHOULD support this attribute if the element is supported.

The following are two examples for specifying a Resource element:

<Resource name=”License” type=”MATLAB”>1</Resource>

<Resource name=”Telescope” type=”Zoom2000” wallDuration=”750” metric=”KX”>10</Resource>

5.1.9 NodeProperties Element

The NodeProperties element is used to encapsulate node properties required of nodes selected for the job (or task group) to run on.

· A compliant implementation MAY support this element.

· This element MAY appear zero or one times within a given set of Job (or TaskGroup) Properties.

· This element MUST contain one or more Node Properties.

The following illustrates the syntax of this element:

<NodeProperties>


<!-- Node Properties -->+

</NodeProperties>

5.1.9.1 Node Properties

Node Properties allow a distinction to be made between the resources or properties you desire for a task, and the resources or properties you want the node than the task runs on to have. For example, you may want your task to only run on nodes that have a certain number of cpu’s, though you will not be using all of them and are still willing to share them with other jobs.

5.1.9.1.1 Consumable Resources

Any of the Consumable Resources described above may be included as node properties.

5.1.9.1.2 Other Optional Simple Node Properties

Other simple (unstructured) node properties are enumerated in Table 5.

Table 5
Optional Simple Node Properties

	Element Name
	Type
	Description
	Appearance
	Compliance
	Categories

	Feature
	String
	Arbitrary named feature of the node.
	MAY
	SHOULD
	

	Name
	String
	Node name or pattern.


	MAY
	MAY
	


5.1.10 Extension Element

The Extension element provides a means to pass extensible properties with the job object.

Some applications may find it easier to deal with a named extension property than discover and handle elements for which they do not understand or anticipate by name.

· A compliant implementation MAY support this element.

· This element MUST have a name attribute that is of type String and represents the name of the extension property. A compliant implementation MUST support this attribute if this element is supported.

· This element MAY have a type attribute that is of type String and provides a hint about the context within which the property should be understood. A compliant implementation SHOULD support this attribute if this element is supported.

· The character content of this element is of type String and is the value of the extension property.

The following is an example of an Extension element:

<Extension type=”Scheduler” name=”Restartable”>true</Extension>

5.1.11 TaskGroup

A job MAY specify one or more task groups.

See the next section for element details.

5.1.12 TaskGroupDefaults

A job MAY specify zero or more task group defaults.

See the next section for element details.

6. TaskGroup and TaskGroupDefaults Element

The TaskGroup and TaskGroupDefaults elements are of the same structure. A TaskGroup element aggregates tasks. A TaskGroupDefaults element may only appear within a Job (or JobDefaults) and represents the defaults to be taken by all task groups within the job. Task group properties in TaskGroup elements override any properties found in a sibling TaskGroupDefaults element. 

· A compliant implementation MAY support the TaskGroup element.

· A compliant implementation MAY support the TaskGroupDefaults element.

· A task group MUST specify one or more TaskGroup Properties.

· One or more Task elements MAY appear at this level.

· Zero or one TaskDefaults elements MAY appear at this level.

The following illustrates the syntax of this element:

<TaskGroup>


<!-- TaskGroup Properties -->+


<!-- Job Properties -->*


<Task>+


<TaskDefaults>?

</TaskGroup>

6.1 TaskGroup Properties

TaskGroup Properties are properties that apply to a particular task group or as default properties to encompassed task groups. These properties include the task group id, its tasks, task defaults, and other simple task group properties.

6.1.1 Simple TaskGroup Properties

Simple (unstructured) task group properties are enumerated in Table 6.

Table 6
Simple TaskGroup Properties

	Element Name
	Type
	Description
	Appearance
	Compliance
	Categories

	SessionId
	Integer
	Session id for the task group or job.
	MAY
	MAY
	

	TaskCount
	Integer
	Number of tasks in this taskgroup
	MAY
	MUST
	

	TaskGroupId
	String
	A task group identifier unique within the job.
	MAY
	MAY
	

	TaskGroupName
	String
	A task group name (such as “Master”).
	MAY
	SHOULD
	


6.1.2 Task

A task group MAY specify zero or more tasks.

See the next section for element details.

6.1.3 TaskDefaults

A task group MAY specify zero or more task defaults.

See the next section for element details.

7. Task and TaskDefaults Element

The Task and TaskDefaults elements are of the same structure. A Task element contains information specific to a task (like the process id or the host it ran on). A TaskDefaults element may only appear within a TaskGroup (or TaskGroupDefaults) element and represents the defaults to be taken by all tasks within the task group. Task properties in Task elements override any properties found in a sibling TaskDefaults element. 

· A compliant implementation MAY support the TaskGroup element.

· A compliant implementation MAY support the TaskGroupDefaults element.

· A task group MUST specify one or more TaskGroup Properties.

· One or more Task elements MAY appear at this level.

· Zero or one TaskDefaults elements MAY appear at this level.

The following illustrates the syntax of this element:

<Task>


<!-- Task Properties -->+


<!-- Job Properties -->*

</Task>

7.1 Task Properties

Task Properties are properties that apply to a particular task or as default properties to encompassed tasks. These properties include the task id and other task properties.

7.1.1 Simple Task Properties

Simple (unstructured) task properties are enumerated in Table 7.

Table 7
Simple Task Properties

	Element Name
	Type
	Description
	Appearance
	Compliance
	Categories

	Node
	String
	Name of the node this task ran on.
	MAY
	MUST
	

	ProcessId
	Integer
	Parent or group process id for the task.
	MAY
	MAY
	

	TaskId
	String
	A task identifier unique within the taskgroup.


	MAY
	MAY
	


8. Property Categories

Certain properties need to be classified as being in a particular category. This is done when it is necessary to distinguish between a property that is requested versus a property that was utilized or dedicated. When no such distinction is necessary, it is recommended that the property not be enveloped in one of these elements. In general, a property should be enveloped in a category element only if it is expected that the property will need to be attributed to more than one property category, or if it needs to make use of some of the special attributes inherited from the category.

8.1 Requested Element

A requested property reflects properties as they were requested. A disparity might occur between the requested value and the values utilized or dedicated if a preference was expressed, if multiple options were specified, or if ranges or pattern matching was specified.

· A compliant implementation SHOULD support this element.

The following illustrates the syntax of this element:

<Requested>


<!-- Requested Properties -->+

</Requested>

The following describes the attributes and elements for the example above:

/Requested


This element is used to encapsulate requested properties.

/Requested/<Requested Property>


Requested properties appear at this level.

Requested Properties inherit some additional attributes.

· A requested property MAY have an op attribute of type String that indicates a conditional operation on the value. A compliant implementation SHOULD support this attribute. Valid values for the op attribute include “eq” meaning equals (which is the default), “ne” meaning not equal, “lt” meaning less than, “gt” meaning greater than, “le” meaning less than or equal to, “ge” meaning greater than or equal to, “match” which implies the value is a pattern to be matched.

· A requested property MAY have a conj attribute of type String that indicates a conjunctive relationship with the previous element. A compliant implementation MAY support this attribute. Valid values for the conj attribute include “and” (which is the default), “or”, “nand” meaning and not, and “nor” meaning or not.

· A requested property MAY have a group attribute of type Integer that indicates expression grouping and operator precedence much like parenthetical groupings. A compliant implementation MAY support this attribute. A positive grouping indicates the number of nested expressions being opened with the property while a negative grouping indicates the number of nested expressions being closed with the property.

· A requested property MAY have a preference attribute of type Integer that indicates a preference for the property along with a weight (the weight are taken as a ratio to the sum of all weights in the same group). A compliant implementation MAY support this attribute. If a group of positive valued preference alternatives are specified, at least one of the preferences must be satisfied for the job to run. If a group of negative valued preferences are specified, the preferences will try to be met according to their weights but the job will still run even if it can’t satisfy any of the preferred properties. (Weight ranking can be removed by making all weights the same value (1 or -1 for example).

· A requested property MAY have a performanceFactor attribute of type Float that provides a hint to the scheduler of what performance tradeoffs to make in terms of resources and start time. A compliant implementation MAY support this attribute. 

The following are four examples of using Requested Properties:

<Requested>

<Processors op=”ge”>8</Processors>

<Processors op=”le”>16</Processors>

<WallDuration>3600</WallDuration>

</Requested>

<Requested>


<NodeCount>1</NodeCount>


<NodeProperties>



<Name op=”match”>fr15.*</Name>


</NodeProperties>

<Requested>

<Requested>


<UserId group=”1”>scottmo</UserId>


<AccountName group=”-1”>mscfops</AccountName>


<UserId conj=”or” group=”1”>monkeyboy</UserId>


<AccountName group=”-1”>junglehunt</AccountName>

</Requested>

<Requested>


<Memory preference=”2”>1024</Memory>


<Memory preference=”1”>512</Memory>

</Requested>

8.2 Utilized Element

A utilized property reflects properties as they were utilized, realized or consumed. It reflects the actual amounts or values that are used or currently allocated, as opposed to a limit, choice or pattern as may be the case with a requested property, or a dedicated amount that prevents sharing by other work requests.

· A compliant implementation SHOULD support this element.

The following illustrates the syntax of this element:

<Utilized>


<!-- Utilized Properties -->+

</Utilized>

The following describes the attributes and elements for the example above:

/Utilized


This element is used to encapsulate utilized properties.

/Utilized/<Utilized Property>


Utilized properties appear at this level.

Utilized Properties inherit some additional attributes.

· A requested property MAY have a group attribute of type Integer that indicates expression grouping and operator precedence much like parenthetical groupings. A compliant implementation MAY support this attribute. A positive grouping indicates the number of nested expressions being opened with the property while a negative grouping indicates the number of nested expressions being closed with the property. The purpose of this attribute would be to logically group utilized properties if they were used in certain aggregations (like a job that spanned machines).

The following are the same four examples distinguishing the utilized amounts and values:

<Utilized>

<Processors>12</Processors>

<WallDuration>1234</WallDuration>

</Utilized>

<Utilized>


<NodeList>



<Node>fr15n03</Node>


</NodeList>

<Utilized>

<Utilized>


<UserId>scottmo</UserId>


<AccountName>mscfops</AccountName>

</Utilized>

<Utilized>


<Memory>1024</Memory>

</Utilized>

8.3 Dedicated Element

A dedicated property refers to a resource dedicated during the job. For example, a job may request to restrict the usage of certain resources or the entire node thereby preventing it from being shared by other work requests even though the job only needs a portion of the resources to accomplish its work. This may be to avoid conflict introduced when the resource is shared, for confidentiality or any other reason. In such a case, the amount of a resource requested and the amount actually utilized may differ from the amount that was blocked. The dedicated amount might be used for charge purposes, the utilized amount for usage accounting, and requested amount for task assignment.

· A compliant implementation MAY support this element.

The following illustrates the syntax of this element:

<Dedicated>


<!-- Dedicated Properties -->+

</Dedicated>

The following describes the attributes and elements for the example above:

/Dedicated


This element is used to encapsulate dedicated properties.

/Dedicated/<Dedicated Property>


Dedicated properties appear at this level.

Dedicated Properties inherit some additional attributes.

· A requested property MAY have a group attribute of type Integer that indicates expression grouping and operator precedence much like parenthetical groupings. A compliant implementation MAY support this attribute. A positive grouping indicates the number of nested expressions being opened with the property while a negative grouping indicates the number of nested expressions being closed with the property. The purpose of this attribute would be to logically group utilized properties if they were used in certain aggregations (like a job that spanned machines).

The following is an example of specifying dedicated properties:

<Dedicated>

<Processors>16</Processors>

<Resource name=”NetworkAdapter” type=”ELAN4”>2</Resource>

</Dedicated>

9. AwarenessPolicy Attribute

A word or two should be said about compatibility mechanisms. With all the leeway in the specification allowing implementers to choose to implement or not implement various portions of the specification, problems might arise if an implementation simply ignores a portion of a job specification that is critical to the job function in certain contexts, so we might want to enforce a policy in which a job is rejected if any element or attribute contained in it was not supported by the implementation. On the other hand, in many cases jobs will want to interpret them the best they can and have the components implement a best-effort approach to operating on the portions they understand. Consequently, we define an awarenessPolicy attribute which can be added as an optional attribute to the Job element or any other containment or property element to indicate how the property (or the default action for the elements that the containment element encloses) must react when the implementation does not understand an element or attribute.

An awareness policy of “Reject” will cause the server to return a failure if it receives a client request in which it does not support an associated element name or attribute name or value. It is reasonable for an implementation to ignore (not even look for) an element or attribute that would not be critical to its function as long as ignoring this attribute or element would not cause an incorrect result. However, any element or attribute that was present that would be expected to be handled in a manner that the implementation does not support must result in a failure.

An awareness policy of “Warn” will accept the misunderstood element or attribute and continue to process the job object on a best effort basis. However a warning MUST be sent (if possible) to the requestor enumerating the elements and attributes that are not understood.

An awareness policy of “Ignore” will accept the unsupported element or attribute and continue to process the job object on a best effort basis. The action could be to simply ignore the attribute.

· This name of this attribute is awarenessPolicy.

· This attribute is of type String.

· This attribute can have values of “Reject”, “Warn” or “Ignore”.

· A compliant implementation MAY support this attribute.

· If an implementation does not support the attribute, it MUST adopt the policy of rejecting any job object which contains elements or attributes that it does not support. Furthermore, it SHOULD return a message to the requestor with an indication of the element or attribute name it did not understand. 

· This attribute MAY be present in a property or containment element.

· If an implementation does support the attribute, but it is absent, the default value of “Reject” is implied.

· Individual elements within the job object may override the containing object’s awareness policy default by including this attribute. For example, a job might specify an awarenessPolicy of “Reject” at its root (the Job element) but may want to allow a particular subset of elements or attributes to be ignored if not understood. Conversely, a job with a default awarenessPolicy of “Ignore” might want to classify a subset of its optional elements as “Reject” if they are indispensible to its correct interpretation. An implementation can opt to check or not check for this attribute at any level it wants but must assume a “Reject” policy for any elements it does not check.

10. References

ISO 8601 
ISO (International Organization for Standardization). Representations of dates and times, 1988-06-15. http://www.iso.ch/markete/8601.pdf 

DATATYPES 
XML Schema Part 2: Datatypes. Recommendation, 02 MAY 2001. http://www.w3.org/TR/xmlschema-2/
Appendix A

Units of Measure Abbreviations

	Abbreviation
	Definition
	Quantity

	B
	byte
	1 byte

	KB
	Kilobyte
	2^10 bytes

	MB
	Megabyte
	2^20 bytes

	GB
	Gigabyte
	2^30 bytes

	TB
	Terabyte
	 2^40 bytes

	PB
	Petabyte
	2^50 bytes

	EB
	Exabyte
	2^60 bytes

	ZB
	Zettabyte
	2^70 bytes

	YB
	Yottabyte
	2^80 bytes

	NB
	Nonabyte
	2^90 bytes

	DB
	Doggabyte
	2^100 bytes


TaskDefaults





Task




















TaskDefaults





Task





TaskGroupDefaults




















TaskGroup





JobDefaults











TaskDefaults





Task




















TaskDefaults





Task





TaskGroupDefaults




















TaskGroup





Job





JobGroup












































