
Allocation Manager Requirements
Document

 (Draft 04/25/02 by Scott Jackson)

1 Introduction

1.1 Purpose

This document details the functionality requirements for the Allocation Manager

component to be produced by the Scalable Systems Software (SSS) Center.

1.2 Intended Audience

This document is primarily intended for SSS developers (particularly those responsible

for aspects of the resource management system) as well as managers and system
administrators of terascale computer centers around the nation (particularly those at DOE
sites).

1.3 Scope

The creation of this requirements document has several objectives. It is useful for

project management, both in schedule planning and to provide a progress metric. It is
useful for other component developers to understand what the key features are and how
to interact with the Allocation Manager. Furthermore, it can be presented to the
customers and reviewed to ensure core requirements are satisfied and to elicit feedback
with respect to desired capabilities and interface specifications.

1.4 Overview

We propose to develop a dynamic allocation manager which will interoperate within a

resource management system (composed of a resource manager, a scheduler, and
optionally a meta-scheduler) to manage the allocation of CPU and other resources to
projects and users. The target operating environment is that of UNIX-based high-
performance computing systems.

1.5 Organizational Context

This effort is funded by the U.S. Department of Energy (DOE) as part of the Scientific

Discovery through Advanced Computing (SciDAC) Initiative. The software
infrastructure vision of SciDAC is for a comprehensive, scalable, robust, portable, and

fully integrated suite of systems software and tools for the effective management and
utilization of terascale computational resources by SciDAC applications. The Scalable
Systems Software Center for its part is responsible to provide an integrated suite of
components including resource scheduling, usage accounting and user interfaces.

2 General Description

2.1 System Functionality

An allocation management system provides a means to fairly distribute computing

resources (processors, memory, disk) to the various users or projects that need them.
Much like a bank an allocation manager (or allocation bank) associates a cost to
computing resources and allows resource tokens to be allocated to users and projects.
Debits are made (in the form of withdrawals) against these allocations when compute
resources are used. An allocation manager provides an administrative interface
supporting familiar operations such as deposits, withdrawals, transfers and refunds. Full
accounting is made of resource utilization. It must provide balance and usage feedback to
users, managers, and administrators.

A dynamic allocation manager interfaces with other allocation managers, schedulers,

resource managers, meta-schedulers, information services and other external services.
Figures 1a and 1b show examples of two typical interaction sequences.

Resource
Manager
(PBS, LL)

Scheduler
(Maui)

Allocation
Manager
(QBank)

0

2

1

4

3

5

6

0. Create accounts, make deposits, etc.
1. User submits a job to the resource manage
2. A balance check is made at queue time
3. A hold or reservation is placed
4. The job is started
5. The job completes
6. The reservation is removed and a final
withdrawal is made against the user’s allocation.

Figure 1a. Local site allocations and job
scheduling flow.

Resource
Manager
(PBS, LL)

Allocation
Manager
(QBank)

0

2

1

5

3

3

7

Meta-
Scheduler
(Silver)

Scheduler
(Maui)

6 8

4

0. Create accounts, make deposits, etc.
1. User submits a job to the meta scheduler
2. A quote could guarantee a given rate
3. The job is staged to the local scheduler
4. A balance check is made at queue time
5. A hold or reservation is placed
6. The job is started
7. The job completes
8. The reservation is removed and a final
withdrawal is made against the user’s allocation.

Figure 1b. Remote site allocations and
job scheduling flow.

The allocation management system should be secure, scalable, portable, fault tolerant,
reliable, and easy to use. It must maintain a persistent and queriable record of resource
consumption and bank transactions. It should support flexible charging algorithms,
reservations, expiring allocations, machine access controls, and multi-level authorization.
It should also facilitate and enable meta-computing.

2.2 Similar Systems

2.2.1 QBank

QBank is a dynamic project accounting and allocation management system developed

at PNNL. It provides a versatile means of fairly distributing an organization’s
computational resources (processors, memory, disk) to the various users or projects that
have access to them. It supports a reservation mechanism allowing a hold to be placed on
a user’s resource tokens at the beginning of a job, thereby preventing overdrafts on the
account. Resource allocations can have activation and expiration dates, and may be valid
toward arbitrary users, and machines. It is written in Perl and uses Perl DBI to interface
with a RDBMS backend.

2.2.2 SNUPI

SNUPI, the System, Network, Usage and Performance Interface, was created by

NPACI/SDSC to provide an interface for resource utilization reporting for heterogeneous
computer systems, including Linux clusters. SNUPI provides data collection tools,
recommended RDBMS schema design, and Perl-DBI scripts suitable for portal services
to deliver reports at the system, user, and job level for heterogeneous systems across the
enterprise. Data collection can be enabled for process accounting (pacct), system activity
reporting (sar), batch system accounting, and project accounting in a periodic post-
processing fashion.

2.2.3 NIM

NIM, the NERSC Information Management System, is a resource allocation and

tracking system developed by NERSC to manage account creation and usage tracking. It
is a distributed, fault-tolerant web-based system implemented via PHP as a front end to a
RDBMS. It is notable for it’s nice web-based query interface, its role-based
authorization, its implementation of a formal electronic process to request allocations,
and the ability to delegate management responsibility to the organization owning the
resource. Like SNUPI, there is a lag between resource usage and account updates.

2.3 User Characteristics

The primary intended users of the Allocation Manager will be the managers, system

administrators and users of terascale computing facilities. It is expected that the system

administrators will have a good understanding of resource management system concepts
and require sophisticated functionality while the users will be more focused on utilizing
the computational systems to achieve scientific results and will be more interested in an
easy to use interface.

2.4 User Objectives

This section will describe the set of objectives and requirements for the system from

the user’s perspective. It will include feedback from surveys and a “wish list” of desirable
characteristics, along with more feasible solutions that are in line with the business
objectives.

• Provide a simple, flexible interface for users to track their allocation and

administrators to adjust allocations on both a per user and arbitrarily defined per
group basis – Brett Bode (Ames)

• Must allow tracking and accounting on a per job basis and on a per process basis
– Brett Bode (Ames)

• Must allow for site dependent charging schemes for the full spectrum of resources
– Brett Bode (Ames)

• Accounting system: logs job info – start, stop, resources requested vs used, exit
status, project info – ANL

• User DB: Account information, allocations for users, project allocation – ANL
• Usage Reports: Summary of usage by various parameters – ANL
• Hierarchical accounts (nestable projects) – CHPC, ORNL
• Integrate with DCE – ORNL
• For auditability must be able to disable any ability to modify or remove

transaction records (bank.accounting = strict) – ORNL
• It might be that an account can have an “income” associated with it and it is

automatically credited with this amount at the beginning of each funding cycle –
though this would not be necessary with validity periods – ORNL

• Perhaps there should be a separate job table, updateable from sources such as
llsummary and rmsquery – ORNL

• The ability to request allocations through a formal process and provision of an
electronic interface so that funding managers can access and participate in the
allocation process online – ORNL/NERSC

• The ability to delegate management responsibility to the organization which owns
the resource -- NERSC

3 Functional Requirements

3.1 Usage Accounting / Resource Utilization Tracking

The allocation manager must be able to track the resources used by each job and store
this information in a persistent data store for later retrieval. By utilizing the query
interface, managers should be able to produce reports detailing the system resources used
by users and projects on their systems over arbitrary time intervals.

The accounting system should be able to accurately track the full spectrum of

consumable resources such as node or I/O wall hours and also the use of specialized
resources such as graphics or software licenses

3.1.1 Reports

Periodic reports should be able to be generated showing project allocations and

resource utililization for that period.

3.1.2 Audit log (transaction log)

An audit record should be logged every time a class(table) is modified. There should

also be a capability for a user to add an explicit comment to the audit table.

It may also be desirable to be able to preserve the historical state of the bank. This

could be used to generate bank statements indicating past balances. Previous state can be
compared with the transaction history to identify and correct database corruption. It could
even be used to revert to a previous state of the bank (unless installed with
accounting=strict). This could be enabled or disabled (for performance and storage space
reasons).

3.2 Support familiar bank operations

It should support familiar operations such as deposits, withdrawals, transfers, and

refunds. It should provide balance and usage feedback to users, managers and
administrators.

3.2.1 Manage accounts (projects)

Add, query, modify or remove accounts. Accounts may be deactivated.

3.2.2 Manage users

Add, query, modify or remove users.

3.2.3 Manage account members (subaccounts).

Add, query, modify or remove account members. Subaccounts may be individually

disabled such that no scheduler transactions (reservations, withdrawals) can be made to
that account on behalf of that user.

3.2.4 Manage allocations

Make deposits, withdrawals, refunds and transfers against the resource allocations.

Users, managers and administrators will need to obtain the account balance, machine
access lists, expiration times and other information about the allocations.

3.2.5 Manage groups

Add, query, modify or remove groups and group members. User and machine groups

will almost certainly be required. Accounts might also be grouped.

3.2.6 Manage machines (systems)

Add, query, modify or remove machines. Allocations can be valid toward machines or

groups of machines.

3.3 Multiple users per account and multiple accounts per user

Users may given separate allocations under different projects with different resource

access privileges.

3.4 Default Accounts

Each user may be assigned a default account to which withdrawals and reservations

will be made when no account is specified.

3.5 Machine access lists

Users within an account may be given different allocations valid toward arbitrary

groups of machines.

3.6 Allocation validity periods (Expiring allocations)

All allocations may be given an activation date and expiration date to define the period

in which they may be consumed (implementing a use it or lose it policy). Multiple
allocations with different validity periods may exist simultaneously. This feature can be
used to assist users to meet a target usage distribution and prevent year-end resource
exhaustion.

3.7 Reservations

The allocation manager should support the concept of reservations to prevent
overdrafts on the account. Before a job runs, the bank will attempt to place a reservation

or hold (make a pending withdrawal) on the account in behalf of the requesting user.
Subsequent jobs will also place reservations while the available balance (balance-
reservations) allows. When a job completes, the reservation is removed and the actual
withdrawal is made to the account. This procedure ensures that jobs will only run as long
as they have sufficient reserves. If the user does not have sufficient funds, the job may be
deferred until additional funds are deposited into the user's account. This capability
requires that when a job is submitted, the user must specify how much of the resources he
expects the job to use and an upper limit for the duration of the job as well as the account
which should be debited. Using reservations is optional.

3.8 Quotations

The ability to obtain a quote is important to support a meta-scheduling environment

where it may be useful to determine how much it will "cost" to run a particular job with
the specified requirements. A quote request can guarantee a charge rate based on the
projected wallclock time and other parameters. Support will be build into the allocation
manager to support a guaranteed quote mechanism.

3.9 Earliest credit expenditure

An account containing resource tokens with varying expiration dates will

automatically satisfy all debit requests using the tokens with the earliest expiration date.

3.10 Shared allocations

The allocation bank should support the capability to have all users within an account

jointly share a common resource pool. This may be implemented as a pool common to all
members within an account (KITTY) or as arbitrarily defined groups of users.

3.11 Multi-level administration

It will be necessary to give different functional access privileges to different users.

Bank administrators, account administrators, and regular users will require different
authorization levels to perform various tasks. There should probably be view only
permissions grantable to managers or user services personnel.

3.12 Flexible charging

The allocation manager should support a flexible and customizable mechanism for

charging for resource utilization. By default, the withdrawal amount will be calculated by
multiplying the number of processors used by the number of wallclock seconds taken by
the job. Besides CPU, a resource supplier may charge based on the amount of memory,
disk, network bandwidth used, or virtually any other consumable resource. When
resources are shared, such as multiple jobs sharing CPUs on an SMP system,
consumption rate charging can be used to prorate the charges according to the percentage

of actual shared resources consumed. A job can be charged different static multipliers
depending on quality of service requested, class, node type, or which machine it ran on.
The charge algorithm should be externalized, permitting dynamic charging to be applied
such as charging different rates according to time of day or week, dynamic price
adjustment according to load or queue backlog, a query to an external information
service, or a cached second-price auction result.

3.13 Peer to peer communications

A peer-to-peer communication mechanism should be implemented to carry out the

exchange interactions necessary when dealing with external sites and systems.

3.14 Hierarchical accounts

It should support nested account hierarchies where accounts may have parent-child
relationships with other accounts. In such a configuration, a deposit mask may be used to
trickle-down deposits from higher level accounts to lower level accounts. There may also
be mechanisms whereby withdrawals and reservations will trickle-up via special
subaccounts in the parent accounts.

3.15 Debit and credit allocations

An allocation may be of type debit or credit. By default, allocations are debit-based

where credits are deposited in advance and used until they are gone. This might be
grants-based or based on a pay first, use later basis. A credit allocation may be used to
establish an overdraft buffer or used as a credit account on a use first, pay later basis.
Credit-based allocations have a credit limit, supporting a negative balance up to some
limit, where subsequent deposits may be made to balance the account.

4 Nonfunctional Requirements

4.1 Scalability

Our target is the high-end systems for 2006 which we expect to have tens of thousands

of processors, thousands of simultaneous jobs and hundreds of simultaneous users.
Serialization must be avoided in favor of parallelization and distribution of data and
services. Network accesses should be kept to a minimum while using aggregation and
compression where possible. The design could consider a distributed approach to help
mitigate scalability and fault tolerance issues.

4.2 Security

The allocation manage should utilize strong authentication (no clear text passwords) to
prevent unauthorized access and support optional data encryption to prevent information
from being sniffed. The authentication routines should be modularized to be able to use
alternate delegation-based security mechanisms (such as PKI or Kerberos 5) and support
the underlying system security infrastructure where possible.

4.3 Robustness/Fault Tolerance

Provide some redundancy to avoid a single point of failure. A distributed design could

be considered.

4.4 Reliability/Fault Recovery

Database performs automatic rollbacks on failed transactions. (Possibly try to do

reconciliation allowing post-processing of transactions (withdrawals, reservations) which
were allowed to succeed while the database is down).

4.5 Verifiability

By providing an option for maintaining the historical state of the bank, previous state

can be compared with the transaction history to identify and correct database corruption.

4.6 Portability

The allocation manager should be machine and operating system independent

wherever possible. It will be developed to a reference Linux platform with the goal of
supporting portability to UNIX-based vendor operating systems and architectures,
particularly those flavors for which there is a large supercomputing base. It will be
written in an architecturally neutral programming language (such as Java).

4.7 Heterogeneity

It must support clusters and systems containing nodes with heterogeneous

architectures, operating systems and versions, processor number/types/speeds, memory
capacity/speed, disk capacity/throughput, swap, network types/throughput, etc.

4.8 Logging/Debugging

Consistent, aggregated and “standard format” logging of information

Multiple levels (debugging, information, errors, etc.)

4.9 Single point Administration (by multiple parties)

Multiple systems can be administered from single interface. It should be also possible
to support accounts nested in a hierarchical arrangement if this would be useful to a large
contingency of sites. If a multi-organizational hierarchy was to be supported, it would
also be critical to support the ability to delegate management responsibility to the
organization which owns the resource.

4.10 Performance

As part of the scalability improvements necessary to support thousands of processors,

we propose to implement in-memory data-caching for time-critical read-only queries like
quotes and balance checks. Also a method to break up large tables would need to be
devised in order to ensure good performance for accounting queries.

4.11 Modularity

The allocation manager will be written in a modular, object-oriented design making it

easier to adapt, update and maintain, in order to adapt to changes in hardware or software
requirements.

4.12 Usability/Manageability/Ease of use

A web interface with flexible query and update options is envisioned. A command-line

interface, both prompt based and individual clients, will precede the web interface so that
commands can be scripted.

4.13 Interoperability

Using standardized interfaces defined by the Scalable Systems Software Center will

promote interoperability, portability and long-term usability. Integrates with batch
schedulers and resource management systems.

4.14 Extensibility

This system will allow for future change: increase in computer resources, number of

users, projects, charging algorithms, currency bases. It will be open source and thus will
be able to be modified by the sites to support additional attributes in the accounts,
transactions, support new kinds of resources to be managed, etc.

5 Software Development Requirements

“Long term maintenance and supportability is of high importance to us”
Lifecycle software development plan

5.1 Open Source

In order to be of maximum benefit to the high performance technical community, this

software should be open source, allow free distribution, allow sites to make local
modifications, customizations and derived works, and promote the sharing of patches,
ports, and enhancements from the user community.

5.2 Documentation

 Proper documentation will be created and made available from a public website. At a

minimum, there should be a User Guide, an Administration Guide, an installation Guide,
a technical paper, and man pages.

5.3 Revision Control

The allocation will be placed under the CVS revision control system.

5.4 Test suites

A tests harness will be written for the allocation management system that allows

regression testing of its functionality and performance whenever changes are made to the
code. It is anticipated to use a test framework like dejaGnu.

5.5 Modular design

The code will be written in an object oriented language, with classes for each object

type. Additionally, the communication layers will be written as replaceable modules
(extension of an abstract/base class) allowing different framing, data-representation and
security modules to be selected at runtime.

5.6 Packaging

It is anticipated that this will be packaged as a gzipped tarball. It might also be

packaged into RPM format.

5.7 Installation/Update procedure

It is anticipated that this will utilize the configure, make, make install methodology for

installation (or rpm). There should be a mechanism whereby patches may be applied
simply, as well as semi-automatic database schema updates between major revisions.

6 Interface Requirements

6.1 Component Interface

XML Schema validation
Written according to public API to allow easy replacement of components such as the

accounting system or the meta-scheduler
Well defined API allows the site to replace or augment individual components as

needed

6.1.1 Request Types (Transaction Types)

createAccount
queryAccount
modifyAccount
deleteAccount

createUser
queryUser
modifyUser
deleteUser

createMachine
queryMachine
modifyMachine
deleteMachine

createMember
queryMember
modifyMember
deleteMember

createAllocation
queryAllocation
modifyAllocation
deleteAllocation
depositAllocation
withdrawAllocation
transferAllocation
refundAllocation
balanceAllocation

createReservation
queryReservation
modifyReservation
deleteReservation

createQuotation

queryQuotation
deleteQuotation

queryBank
modifyBank
purgeBank
revertBank

createTransaction
queryTransaction
modifyTransaction
deleteTransaction

6.1.2 Usage Record Format (Transaction Record Fields)

Name Data Type Description
Object String The object which was operated on, such as

account, user, allocation, machine, quotation,
etc.

Action String This field indicates the action performed
against the object, such as create, modify,
delete, withdraw, transfer, etc.

TimeStamp Timestamp Time the transaction was recorded
AuthName String Authorized userid performing the

transaction
Name String “Unique” name/identifier/key indicating

the “name” of the object acted upon, such as
account, user, allocation, job_id, session_id,
reservation_id, quote_id, allocation_id, etc
according to context

Type String Indicates child object type when action
involves an association table

Account String Used to specify project name to which
charges are applied when recording resource
usage or when account is the child of object

User String UNIX/DCE user name specified when
recording resource usage or when user is the
child of object (like when dealing with user
subaccounts)

Machine String Machine name (This could be a list of
machines (systems) for a job which spans
clusters and each machine could be a
composite name composed of the host,
partition, cluster, site, and/or enterprise)

StartTime Timestamp Time when job starts or

allocation/reservation/quotation becomes
active

EndTime Timestamp Time when job ends or
allocation/reservation/quotation expires

QueueTime Timestamp Time when job was initially queued to
batch system

Wallclock Int Wallclock time (how long job ran --
withdrawals) or wallclock limit (max
timelimit for job to run -- reservations) in
seconds. This time does not include queue
wait time, or periods where job is suspended,
etc.

Processors Int Number of processors used (withdrawals)
or requested (reservations) by job

Nodes Int Number of nodes used (withdrawals) or
requested (reservations) by job

Memory String Memory used (withdrawals) or requested
(reservations) by job [could be composite of
AVG and/or MAX and have K or M
qualifiers]

Disk String Disk storage used (withdrawals) or
requested (reservations) by job

IO String IO Bytes transferred (withdrawals) or IO
throughput requested (reservations)

Network Int Network used (withdrawals) or requested
(reservations) by job [could be AVG, TOT, or
MAX]

Class String Class of job (batch, interactive, etc.)
Queue String Job Queue name
JobType String Here you could distinguish between RMS

job types, NQS, PBS, LSF, LL, etc.
NodeType String Type of node might factor into

performance and charge rate
QOS String Quality of Service
CPUTime int CPU Time (for all processes of job) in

seconds
ProcConsumptionRate Float Percentage of Total CPU used for prorating

charge – a decimal number between 0 and 1
ApplicationType String Presents a way to categorize use of systems

by application type (may be unenforceable
and therefore unnecessary)

Executable String
JobName String Job or application name
Status String Completion Status
Active Boolean May indicate activation or deactivation of a

particular user, account, allocation, etc.

Amount Int Amount debited or credited to account or
allocation/reservation/quotation

Debit Boolean True if this transaction is a debit, false if
this is a credit, and null if it is neither

Details String Addition details of the transaction
key,op,value tuples which don’t otherwise fit
into existing fields

Description String Description/Reason for transaction

6.2 User/Admin Interface

Should be remotely accessible
Command line followed by Web-based GUI.

6.3 Web-based graphical Interface

A web-based GUI will be developed which will give users, managers and
administrators a simple interface in which to perform common tasks such as obtaining
balance and usage information, making transfers, deposits and refunds, generating bank
statements, performing account administration, etc.

6.4 API Interface

A public API (Application Programming Interface) will be created which will allow

schedulers, meta-schedulers and other allocation managers and services to interface to the
bank and make dynamic reservations, withdrawals, quotations, queries, etc.

6.5 Protocol Interface

A public wire protocol interface will be developed based on XML according to an SSS

standard specification. Other components can communicate directly with the allocation
manager over this protocol without having to link in to libraries, modules etc. This will
be a flexible request/response syntax which allows for pipelining of requests/responses,
and a powerful querying capability supporting the functionality of an SQL backend. The
protocol will use support the capacity to validate the XML against the specified XML
schema, thereby establishing its comformity to the specification. Validation can be
disabled to enhance performance.

7 Persistent Data Requirements

7.1 Database backend

The allocation manager will take advantage of the powerful querying capabilities of a
relational database to store and retrieve the resource utilization information and current
balance and state information. This provides concurrency and transactions to prevent data
corruption. It also provides better performance than flat-file solutions. Sites can use built-
in report utilities or create their own that use bank API’s or query the database directly.

7.2 Principal tables

Account (manage projects)
User (manage persons)
Machine (manage computing systems)
Subaccount (user_account membership)
Allocation (mapping of resources to individuals, projects, machines and timeframes)
Reservation (temporary holds or pending withdrawals)
Quotation (guaranteed resource quotes)
Transaction (audit_log)
Group (groups of users, machines, or accounts)
Bank (version, bank-wide properties)

8 Preliminary Schedule

1 JUN 2002 Release initial (V1) XML interface specifications
1 DEC 2002 QBank adapted to V1 XML interface and security protocols and

bundled disabled with SSS_RMS (key must be obtained)
1 FEB 2003 Release version 2 of the interface specification as well as beta

version of new project allocation manager conforming to version 1
of the SSS_RMS interface spec

1 JUN 2003 TRU64 and AIX initial support
1 DEC 2003 Release production version of allocation manager, fully integrated

and tested with other SSS resource management system
components based on V2 of XML interface specs.

1 DEC 2003 User-oriented problem response system
1 JUN 2004 Fully integrated with Silver metascheduler
1 DEC 2004 Fault tolerance supporting 25% cluster loss
1 JUN 2005 Maintain problem reporting website and mailing lists
1 DEC 2005 Support parallel checkpoint/restart jobs
1 JUN 2006 Fault tolerance support loss of 50% of cluster
1 JUN 2006 Scalability adequate for largest DOE system

9 Validation/Testing Criteria

9.1 Test Harness

A test harness will be created and used to perform regression tests on the software so
that changes can be quickly verified to not break the code.

9.2 List of Reviewers

 SDSC – Victor Hazlewood
 CHPC – Brian Haymore
 ORNL – Stephen Scott
 NCSA – Rob Pennington
 PNNL – Scott Studham
 NERSC – Francesca Verdier

