Resource Management Interface Specs

Scott Jackson

Draft Initial Release v. 2.0.4

Brett Bode

2 MAR 2003

David Jackson

Scalable Systems Software Resource Management and Accounting Protocol (SSSRMAP)

Status of this Memo

This is a draft form of the initial resource management interface specification. Much of what is expressed is still in active discussion and virtually nothing within it has been definitively decided. One purpose of this document at this stage is to propose a set of protocol characteristics that can then be tested in prototypes and compared against alternative approaches.

Abstract

This document is a draft specification describing a connection-oriented XML-based application layer client-server protocol for the interaction of resource management and accounting software components developed as part of the Scalable Systems Software Center. The SSSRMAP protocol defines a request-response syntax supporting the query and update of extensible objects. The protocol is specified in XML Schema Definition and rides on the HTTP protocol.

Table of Contents

21
Introduction

32
Conventions Used in this Document

32.1
Keywords

32.2
XML Case Conventions

43
Encoding

43.1
SSSRMAP Message Types

43.1.1
Schema Header and Namespaces

53.1.2
The Envelope Element

53.1.3
The Request Element

63.1.4
The Get Element

73.1.5
The Set Element

73.1.6
The Where Element

83.1.7
The Option Element

93.1.8
The Data Element

103.1.9
The File Element

113.1.10
The Count Element

113.1.11
The Response Element

123.1.12
The Status Element

133.1.13
The Code Element

133.1.14
The Message Element

133.1.15
The Notify Element

143.1.16
The Ack Element

143.2
Examples

143.2.1
Sample Requests

153.2.2
Sample Responses

163.2.3
Sample Notification

163.2.4
Sample Acknowledgement

164
Error Reporting

175
Transport Layer

176
Framing

186.1
Message Header Requirements

186.2
Message Payload Format

186.3
Reply Header Requirements

196.4
Reply Payload Format

196.5
Examples

196.5.1
Sample SSSRMAP Message Embedded in HTTP Request

196.5.2
Sample SSSRMAP Reply Embedded in HTTP Response

197
Asynchrony

208
Security

208.1
Security Token

208.1.1
Security Token Element

218.1.2
Security Token Types

218.1.2.1
Symmetric Key

228.1.2.2
Asymmetric Key

228.1.2.3
Password

228.1.2.4
Cleartext

228.1.2.5
Kerberos

238.1.2.6
GSI (X.509)

238.1.3
Example

238.2
Authentication

248.2.1
The Signature Element

248.2.2
The DigestValue Element

258.2.3
The SignatureValue Element

268.2.4
Signature Example

268.3
Confidentiality

278.3.1
The EncryptedData Element

278.3.2
The EncryptedKey Element

288.3.3
The CipherValue Element

298.3.4
Encryption Example

309
Acknowledgements

3010
References

1 Introduction

A major objective of the Scalable Systems Software [SSS] Center is to create a scalable and modular infrastructure for resource management on terascale clusters including resource scheduling, meta-scheduling, node daemon support, comprehensive usage accounting and user interfaces emphasizing portability to terascale vendor operating systems. Existing resource management and accounting components feature disparate APIs (Application Programming Interfaces) requiring various forms of application coding to interact with other components.

This document proposes a wire level protocol expressed in an XML request-response syntax to be considered as the foundation of a standard for communications between and among resource management and accounting software components. In this document this standard is expressed in two levels of generality. The features of the core SSSRMAP protocol common to all resource management and accounting components in general are described in the main body of this document. The aspects of the syntax specific to individual components are described in the Appendix.

2 Conventions Used in this Document

2.1 Keywords

The keywords “MUST”, “MUST NOT”, “REQUIIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC2119 [RFC2119].

2.2 XML Case Conventions

In order to enforce a consistent capitalization and naming convention across all SSSRMAP specifications “Upper Camel Case” (UCC) and “Lower Camel Case” (LCC) Capitalization styles shall be used. UCC style capitalizes the first character of each word and compounds the name. LCC style capitalizes the first character of each word except the first word. [XML_CONV][FED_XML]

1. SSSRMAP XML Schema and XML instance documents SHALL use the following conventions:

· Element names SHALL be in UCC convention (example: <UpperCamelCaseElement/>.

· Attribute names SHALL be in LCC convention (example: <UpperCamelCaseElement lowerCamelCaseAttribute=”Whatever”/>.

2. General rules for all names are:

· Acronyms SHOULD be avoided, but in cases where they are used, the capitalization SHALL remain (example: XMLSignature).

· Underscores (_), periods (.) and dashes (-) MUST NOT be used (example: use JobId instead of JOB.ID, Job_ID or job-id).

3 Encoding

Encoding tells how a message is represented when exchanged. SSSRMAP data exchange messages SHALL be defined in terms of XML schema [XML_SCHEMA].

3.1 SSSRMAP Message Types

The SSSRMAP protocol provides four general message types: requests, responses, notifications and acknowledgements.

When a session is established and the client authenticated, the protocol allows two styles of data exchange between the client and server. [XRP]

1. request/response – the client sends a “request” message requesting the server to perform the task, the server performs the task and returns a “response” reply. [XRP]

2. notify/ack – the server notifies clients about certain events in the system, and receives an “ack” reply as an acknowledgement. [XRP]

Both styles are one-to-one synchronous exchanges wherein a single message is sent from the client to the server, and a corresponding reply is sent from the server to the client.

3.1.1 Schema Header and Namespaces

The header of the schema definition is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<schema

 xmlns=”http://www.w3.org/2001/XMLSchema”

 xmlns:sssrmap=”http://www.scidac.org/ScalableSystems/SSSRMAP”

 targetNamespace=”http://www.scidac.org/ScalableSystems/SSSRMAP”

 elementFormDefault="qualified">

3.1.2 The Envelope Element

SSSRMAP messages and replies are encapsulated in the Envelope element. This element MUST contain one or more Request, Response, Notify or Ack elements. It MAY contain namespace and other xsd-specific information necessary to validate the document against the schema. In addition, it MAY have any of the following attributes which may serve as processing clues to the parser:

· type – A message type such as “Request” or “Notification”

· actor – The authenticated user sending the message

· count – A positive integer indicating the number of messages in the batch

· component – A component type such as “QueueManager” or “LocalScheduler”

· name – A component name such as “OpenPBS” or “Maui”

· version – A component version such as “2.2p12” or “3.2.2”

Schema Definition:

<complexType name="EnvelopeType">

 <choice minOccurs="1" maxOccurs="unbounded">

 <element ref="sssrmap:Request" minOccurs="0" maxOccurs="unbounded"/>

 <any minOccurs="0" maxOccurs="unbounded" namespace="##other"/>

 </choice>

 <attribute name="type" type=”string” use="optional"/>

 <attribute name="actor" type=”string” use="optional"/>

 <attribute name="count" type=”integer” use="optional"/>

 <attribute name="component" type=”string” use="optional"/>

 <attribute name="name" type=”string” use="optional"/>

 <attribute name="version" type=”string” use="optional"/>

</complexType>

<element name="Envelope" type="sssrmap:EnvelopeType"/>

3.1.3 The Request Element

The Request element specifies an individual request. Depending on context, it MAY contain one or more Get elements or one or more Set elements as well as a Count element and any number of Where or Data elements.

It MUST have both an object and action attribute and MAY have an id attribute.

· object – specifies the object class to be acted upon such as “job” or “node”

· action – specifies the action to be performed on the object such as “create”, “query”, “modify” or “delete”

· id -- uniquely maps the request to the appropriate response

Schema Definition:

<complexType name="RequestType">

 <choice minOccurs="0" maxOccurs="unbounded">

 <choice minOccurs="0" maxOccurs="1">

 <element ref="sssrmap:Get" minOccurs="1" maxOccurs="unbounded"/>

 <element ref="sssrmap:Set" minOccurs="1" maxOccurs="unbounded"/>

 </choice>

 <element ref="sssrmap:Where" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="sssrmap:Data" minOccurs="0" maxOccurs="unbounded"/>

 <element ref="sssrmap:Count" minOccurs="0" maxOccurs="1"/>

 <any namespace=”##other” minOccurs="0" maxOccurs="unbounded"/>

 </choice>

 <attribute name="object" type="string" use="required"/>

 <attribute name="action" type="string" use="required"/>

 <attribute name="id" type="string" use="optional"/>

</complexType>

<element name="Request" type="sssrmap:RequestType"/>

3.1.4 The Get Element

The Get element is used to indicate the data fields to be returned in a query. Get is typically used within requests with action=”query”. Multiple Get elements cause the fields to be returned in the order specified. If no Get elements are specified, the query will return a default set of fields.

The valid attributes are:

· name – the name of the data field to be returned

· op – the operator to be used to aggregate or perform an operation on the returned values.

· An op attribute of “sort” specifies an ascending sort operation

· An op attribute of “tros” specifies a descending sort operation

· An op attribute of “sum” returns the sum (only valid for numeric values)

· An op attribute of “max” returns the maximum value

· An op attribute of “min” returns the minimum value

· An op attribute of “count” returns the number of values

· An op attribute of “groupby” signifies that aggregates are grouped by this field

· units – the units in which to return the value (if applicable)

Schema Definition:

<complexType name="GetType">

 <attribute name="name" type=”string” use="required"/>

 <attribute name="units" type=”string” use="optional"/>

</complexType>

<element name="Get" type="sssrmap:GetType"/>

3.1.5 The Set Element

The Set element is used to specify the object data fields to be assigned values. Set is typically used within requests with action=”create” or action=”modify”. The use of Get or Set elements within a request are mutually exclusive.

The valid attributes are:

· name – the name of the field being assigned a value

· value – the new value for the field being changed

· op – the operator to be used in assigning a new value to the name. If an op attribute is not specified and a value is specified, the specified value will be assigned to the named field (“assign”).

· An op attribute of “assign” assigns value to the named field

· An op attribute of “inc” increments the named field by the value

· An op attribute of “dec” decrements the named field by the value

· units – the units corresponding to the value being set

A Set element without a value may be used as an assertion flag.

Schema Definition:

<complexType name="SetType">

 <attribute name="name" type=”string” use="required"/>

 <attribute name="value" type=”string” use="optional"/>

 <attribute name="units" type=”string” use="optional"/>

</complexType>

<element name="Set" type="sssrmap:SetType"/>

3.1.6 The Where Element

A Request element may contain one or more Where elements that specify the search conditions for which objects the action is to be performed on or supply constraints or options to the request.

Only a name attribute is required. All other fields are optional.

· name – the name of the data field to be tested

· value – the value against which the objects data value is tested

· op – the operator to be used to test the name against the value. If an op attribute is not specified and a value is specified, the field will be tested whether it is equal to the value (“eq”).

· An op attribute of “eq” specifies an equality comparison

· An op attribute of “lt” specifies a “less than” comparison

· An op attribute of “gt” specifies a “greater than” comparison

· An op attribute of “le” specifies a “less than or equal to” test

· An op attribute of “ge” specifies a “greater than or equal to” test

· An op attribute of “ne” specifies a “not equal to” test

· An op attribute of “like” specifies a regular expression matching comparison

· conj -- indicates whether this test is to be anded or ored with the immediately preceding where condition

· A conj attribute of “and” specifies an “and” conjunction

· A conj attribute of “or” specifies an “or” condition

· A conj attribute of “andnot” specifies an “and not” conjunction

· A conj attribute of “ornot” specifies an “or not” condition

· group – indicates an increase or decrease of parentheses grouping depth

· A positive number indicates the number of left parentheses to precede the condition, i.e. group=”2” represents “((condition”.

· A negative number indicates the number of right parentheses to follow the condition, i.e. group=”-2” represents “condition))”.

· units – indicates the units to be used in the value comparison

Schema Definition:

<complexType name="WhereType">

 <attribute name="name" type=”string” use=”required”/>

 <attribute name="value" type="string" use="optional"/>

 <attribute name="op" type="sssrmap:OperatorType" use="optional"/>

 <attribute name="conj" type="sssrmap:ConjunctionType" use="optional"/>

 <attribute name="group" type="integer" use="optional"/>

 <attribute name="units" type="string" use="optional"/>

</complexType>

<element name="Where" type="sssrmap:WhereType"/>

3.1.7 The Option Element

The Option element is used to indicate processing options for the command. An option might be used to indicate that command usage or special formatting is desired, or that the command is to be invoked with particular options.

The valid attributes are:

· name – the name of the field being assigned a value

· value – the new value for the field being changed

· op – the operator to be used to disassert the option

· An op attribute of “not” specifies that the option is not asserted

· conj -- indicates whether this test is to be anded or ored with the immediately preceding where condition

· A conj attribute of “and” specifies an “and” conjunction

· A conj attribute of “or” specifies an “or” condition

· A conj attribute of “andnot” specifies an “and not” conjunction

· A conj attribute of “ornot” specifies an “or not” condition

An Option element without a value may be used as an assertion flag.

Schema Definition:

<complexType name="OptionType">

 <attribute name="name" type=”string” use="required"/>

 <attribute name="value" type=”string” use="optional"/>

</complexType>

<element name="Option" type="sssrmap:OptionType"/>

3.1.8 The Data Element

A Request or Response element may have one or more Data elements that allow the supplying of context-specific data. A request might pass in a structured object via a Data element to be acted upon. Typically a query will result in a response with the data encapsulated within a Data element.

The following attributes are optional:

· name – object name describing the contents of the data

· type – describing the form in which the data is represented

· A type attribute of “xml” indicates the data has internal xml structure and can be recursively parsed by an XML parser

· A type attribute of “binary” indicates the data is an opaque dataset consisting of binary data

· A type attribute of “string” indicates the data is an ASCII string

· A type attribute of “int” indicates the data is an integer

· A type attribute of “text” indicates the data is in formatted human-readable text

· A type attribute of “html” indicates the data is represented in HTML

Schema Definition:

<complexType name="DataType">

 <sequence>

 <any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="name" type=”string” use="optional"/>

 <attribute ref="sssrmap:Type" use="optional"/>

</complexType>

<element name="Data" type="sssrmap:DataType"/>

3.1.9 The File Element

A Request or Response element may have one or more File elements of type String that allow the inclusion of files. The files may be either text or binary and may be referenced by objects inside the Data element. A file may be compressed using the gzip algorithm [ZIP]. A binary file or a compressed file must be base64 encoded as defined in XML Digital Signatures (“http://www.w3.org/2000/09/xmldsig#base64”). Metadata describing the modes and properties of the resulting file are passed as parameters. The text or base64 encoded file data forms the string content of the File element.

The following attributes are optional:

· id -- specifies an identifier that allows the file to be referenced from within another object. If more than one File elements are specified, this attribute is REQUIRED in each of them.

· name -- specifies the name to give the file upon creation on the target system. This can be an absolute or relative pathname (relative to the InitialWorkingDirectory).

· owner – indicates what owner the file should be changed to. By default it will be changed to the UserId that the authenticated actor maps to on the target system. Note that this function should succeed only if the requestor has the privileges to do so (i.e. authenticated as root).

· group – indicates what group the file should be changed to. By default it will be set to the primary groupid of the UserId that the authenticated actor maps to on the target system. Note that this function should succeed only if the requestor has the proper privileges.

· mode – indicates the permissions the file should possess. By default it will be set according to the default umask for the UserId that the authenticated actor maps to on the target system. Note that this function should not set permissions for the file that exceed the privileges for the actor. These permissions can be specified using either an octal number or symbolic operations (as accepted by the GNU chmod(1) command).

· compressed – indicates whether the file has been compressed

· A compressed attribute of “true” indicates the file has been compressed.

· A compressed attribute of “false” indicates the file has not been compressed. This is the default.

· encoded – indicates whether the file has been base64 encoded

· An encoded attribute of “true” indicates the file has been compressed.

· An encoded attribute of “false” indicates the file has not been encoded. This is the default.

Schema Definition:

<complexType name="FileType">

 <sequence>

 <any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="name" type=”string” use="optional"/>

 <attribute name="owner" type=”string” use="optional"/>

 <attribute name="group" type=”string” use="optional"/>

 <attribute name="mode" type=”string” use="optional"/>

 <attribute name="compressed" type=”boolean” use="optional"/>

 <attribute name="encoded" type="boolean" use="optional"/>

</complexType>

<element name="File" type="sssrmap:FileType"/>

3.1.10 The Count Element

A single Count element may be included within a Request or Response and is context-specific. This can be used to represent the number of objects acted upon.

Schema Definition:

<element name="Count" type="positiveInteger"/>

3.1.11 The Response Element

The Response element specifies an individual response. It MUST contain Status and Code elements. It MAY also contain Message, Count and any number of Data elements.

It MAY have an object and action attribute as well as an id attribute.

· object – specifies the object class to be acted upon such as “job” or “node”

· action – specifies the action to be performed on the object such as “create”, “query”, “modify” or “delete”

· id -- uniquely maps the response to the corresponding request

Schema Definition:

<complexType name="ResponseType">

 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="sssrmap:Status" minOccurs="1" maxOccurs="1"/>

 <element ref="sssrmap:Code" minOccurs="1" maxOccurs="1"/>

 <element ref="sssrmap:Message" minOccurs="0" maxOccurs="1"/>

 <element ref="sssrmap:Count" minOccurs="0" maxOccurs="1"/>

 <element ref="sssrmap:Data" minOccurs="0" maxOccurs="unbounded"/>

 <any minOccurs="0" maxOccurs="unbounded" namespace="##other"/>

 </choice>

 <attribute name="object" type="string" use="optional"/>

 <attribute name="action" type="string" use="optional"/>

 <attribute name="id" type="string" use="optional"/>

</complexType>

<element name="Response" type="sssrmap:ResponseType"/>

3.1.12 The Status Element

A Response element must contain a single Status element that indicates whether the reply represents a success or a failure. The Status element MUST have a value of “Success” or “Failure”.

Schema Definition:

<simpleType name="SuccessType">

 <restriction base="string">

 <enumeration value="Success"/>

 <enumeration value="Failure"/>

 </restriction>

</simpleType>

<element name="Status" type="sssrmap:StatusType"/>

3.1.13 The Code Element

A Response element must contain a single Code element that specifies the 3-digit status code for the response.

Schema Definition:

<simpleType name="CodeType">

 <restriction base="string">

 <pattern value="[0-9]{3}"/>

 </restriction>

</simpleType>

<element name="Code" type="sssrmap:CodeType"/>

3.1.14 The Message Element

A Response element may contain a single Message element that is context specific to the success or failure response. The message should be an error message if status is false. If present for a successful response, it may be used as a human readable message for a user interface.

Schema Definition:

<element name="Message" type="string"/>

3.1.15 The Notify Element

The Notify element may have one or more Data elements that carry the context-specific data with the event notification.

It must have a name attribute while the others are optional:

· name – the name of the event that was triggered

· value – the value for the object that was changed

· id – uniquely maps the notification to its acknowledgement

Schema Definition:

<complexType name="NotifyType">

 <choice minOccurs="0" maxOccurs="unbounded">

 <element ref="sssrmap:Data" minOccurs="0" maxOccurs="unbounded"/>

 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

 </choice>

 <attribute name="name" type="string" use="required"/>

 <attribute name="value" type="string" use="optional"/>

 <attribute name="id" type="string" use="optional"/>

</complexType>

<element name="Notify" type="sssrmap:NotifyType"/>

3.1.16 The Ack Element

The Ack element may have a name attribute:

· name – the name of the event that was triggered

· id – uniquely maps the acknowledgement to the corresponding notification

Schema Definition:

<complexType name="AckType">

 <attribute name="name" type="string" use="optional"/>

 <attribute name="id" type="string" use="optional"/>

</complexType>

<element name="Ack" type="sssrmap:AckType"/>

3.2 Examples

3.2.1 Sample Requests

Requesting a list of nodes with a certain configured memory threshold (batch format):

<Envelope component=”NodeMonitor” count=”1”>

<Request object=”Node” action=”Query” id=”1”>

<Get name=”Name” />

<Get name=”ConfiguredMemory” />

<Where name=”ConfiguredMemory” op=”ge” unit=”MB” value=”512”/>

</Request>

</Envelope>

Activating a couple of users:

<Envelope actor=”root”>

<Request object=”User” action=”Modify”>

<Set name=”Active” value=”true”/>

<Where name=”Name” value=”scott”/>

<Where name=”Name” value=”brett” conj=”or”/>

</Request>

</Envelope>

Submitting a simple job:

<Envelope>

<Request object=”Job” action=”Submit”>

<Data type=”xml”>

<Job>

<User>xdp</User>

<Account>youraccount</Account>

<Command>myprogram</Command>

<Cwd>/usr/home/scl/xdp</Cwd>

<RequestedNodes>4</RequestedNodes>

<RequestedWCTime>100</RequestedWCTime>

</Job>

</Data>

</Request>

</Envelope>

3.2.2 Sample Responses

A response to the available memory nodes query (batch format)

<Envelope count=”1”>

<Response object=”node” action=”query” id=”1”>

<Status>true</Status>

<Code>000</Code>

<Count>2</Count>

<Data name=”NodeList” type=”xml”>

<Node>

<Name>fr01n01</Name>

<ConfiguredMemory>512</ConfiguredMemory>

</Node>

<Node>

<Name>fr12n04</Name>

<ConfiguredMemory>1024</ConfiguredMemory>

</Node>

</Data>

</Response>

</Envelope>

Two users successfully activated

<Envelope>

<Response>

<Status>true</Status>

<Code>000</Code>

<Count>2</Count>

<Message>Two users were successfully modified</Message>

</Response>

</Envelope>

A failed job submission:

<Envelope>

<Response>

<Status>false</Status>

<Code>711</Code>

<Message>Invalid account specified. The job was not submitted.</Message>

</Response>

</Envelope>

3.2.3 Sample Notification

A change in available memory triggers a notification:

<Envelope>

<Notify name=”AvailableMemory” value=”952” id=”47327”/>

</Envelope>

3.2.4 Sample Acknowledgement

An event subscriber acknowledges receipt of the notification

<Envelope>

<Ack id=”47327”/>

</Envelope>

4 Error Reporting

SSSRMAP requests will return a status and a 3-digit response code to signify success or failure conditions. When a request is successful, a corresponding response is returned with the status element set to true and the code element set to “000”. When a request results in an error detected by the server, a response is returned with the status element set to false and a 3-digit error code in the code element. An optional human-readable message may also be include in a failure response providing context-specific detail about the failure. The default message language is US English. (The status flag makes it easy to signal success or failure and allows the receiving peer some freedom in the amount of parsing it wants to do on failure [BXXP]).

Category

Code
Response Message in US English

---------------------------+-------+---

Success

000
Request completed successfully

Unknown Failure
999
Request failed

---------------------------+-------+---

1xx

---------------------------+-------+---

Protocol Syntax
2xx

---------------------------+-------+---

Object Management
3xx

---------------------------+-------+---

Authentication Error
4xx

---------------------------+-------+---

Connection Problem
5xx

---------------------------+-------+---

Server Side Failure
6xx

---------------------------+-------+---

Client Side Failure
7xx

---------------------------+-------+---

Business Logic
8xx

---------------------------+-------+---

5 Transport Layer

This protocol will be built over the connection-oriented reliable transport layer TCP/IP. Support for other transport layers could also be considered, but native support for TCP/IP can be found on most terascale clusters and automatically handles issues such as reliability and connectionfullness for the application developer implementing the SSSRMAP protocol.

6 Framing

Framing specifies how the beginning and ending of each message is delimited. Given that the encoding will be expressed as one or more XML documents, clients and servers need to know when an XML document has been fully read in order to be parsed and acted upon.

SSSRMAP will use the HTTP 1.1 [HTTP] protocol for framing. HTTP uses a byte-counting mechanism to delimit the message body. HTTP chunking can be used to delimit batched messages and for persistent connections.

6.1 Message Header Requirements

The HTTP request line (first line of the HTTP request header) begins with POST and is followed by a URI and the version of the HTTP protocol that the client understands. It is suggested for this protocol that the URI consist of a single slash, followed by the protocol name in uppercase (i.e. /SSSRMAP), though this field is not specified and could be empty, a single slash or any URI.

The Content-Type must be specified as test/xml. Charset may be optionally specified and defaults to US-ASCII. It is recommended that charset be specified as “utf-8” for maximum interoperability.

The Content-Length must be specified and must be correct for the payload.

Other properties such as User-Agent, Host and Date are strictly optional.

6.2 Message Payload Format

The message payload is in XML and consists of a single XML document having a root element of Elements.

6.3 Reply Header Requirements

The HTTP response line (first line of the HTTP response header) begins with HTTP and a version number, followed by a numeric code and a message indicating what sort of response is made. These response codes and messages indicate the status of the entire response and are as defined by the HTTP standard. The most common response is 200 OK, indicating that the message was received and an appropriate response is being returned.

The Content-Type must be specified as test/xml. Charset may be optionally specified and defaults to US-ASCII. It is recommended that charset be specified as “utf-8” for maximum interoperability.

The Content-Length must be specified and must be correct for the payload.

For HTTP 1.1, the Connection should be specified as close if a persistent connection is not required.

Other properties such as Server, Host and Date are strictly optional.

6.4 Reply Payload Format

The reply payload is in XML and consists of a single XML document having a root element of Envelope.

6.5 Examples

6.5.1 Sample SSSRMAP Message Embedded in HTTP Request

POST /SSSRMAP HTTP/1.1

Content-Type: text/xml; charset=”utf-8”

Content-Length: 321

<Envelope …/>

6.5.2 Sample SSSRMAP Reply Embedded in HTTP Response

HTTP/1.1 200 OK

Connection: close

Content-Type: text/xml; charset=”utf-8”

Content-Length: 456

<Envelope …/>

7 Asynchrony

Asynchrony (or multiplexing) allows for the handling of independent exchanges over the same connection. A widely-implemented approach is to allow pipelining (or boxcarring) by aggregating requests or responses within the body of the message or via persistent connections and chunking in HTTP 1.1. Pipelining helps reduce network latency by allowing a client to make multiple requests of a server, but requires the requests to be processed serially [RFC3117]. Parallelism could be employed to further reduce server latency by allowing multiple requests to be processed in parallel by multi-threaded applications.

Segmentation may become necessary if the messages are larger than the available window. With support for segmentation, the octet-counting requirement that you need to know the length of the whole message before sending it can be relaxed – and you can start sending segments before the whole message is available. Segmentation is facilitated via “chunking” in HTTP 1.1.

The current SSSRMAP strategy supports pipelining of requests and responses in batches contained within the Envelope element. Later versions of the protocol could introduce parallelism such as that found in the BEEP protocol [BEEP] which allows independent parallel exchanges via multiple channels.

8 Security

SSSRMAP security features include capabilities for integrity, authentication, confidentiality, and non-repudiation. The absence or presence of the various security features depend upon the type of security token used and the protection methods you choose to specify in the request.

For compatibility reasons, SSSRMAP specifies six supported security token types. Extensibility features are included allowing an implementation to use alternate security algorithms and security tokens. It is also possible for an implementation to ignore security features if it is deemed nonessential for the component. However, it is highly RECOMMENDED that an implementation support at least the default security token type in both authentication and encryption.

8.1 Security Token

A security token may be included in either the Signature block, and/or in the EncryptedData block (both described later) as an implicit or explicit cryptographic key.

8.1.1 Security Token Element

This element is of type String. If the security token conveys an explicit key, this element’s content is the value of the key. If the key is natively expressed in a binary form, it must be converted to base64 encoding as defined in XML Digital Signatures (“http://www.w3.org/2000/09/xmldsig#base64”). If the type is not specified, it is assumed to be of type “Symmetric”.

It may have any of the following optional attributes:

· type – the type of security token (described subsequently)

· A type attribute of “Symmetric” specifies a shared secret key between the client and server. This is the default.

· A type attribute of “Asymmetric” specifies the use of public private key pairs between the client and server.

· A type attribute of “Password” encrypts and authenticates with a user password known to both the client and server.

· A type attribute of “Cleartext” allows the passing of a cleartext username and password and depends on the use of a secure transport (such as SSL or IPSec).

· A type attribute of “Kerberos5” specifies a kerberos token.

· A type attribute of “X509v3” specifies an X.509 certificate.

· name – the name of the security token which serves as an identifier for the actor making the request (useful when the key is a password, or when the key value is implicit as when a public key is named but not included)

Schema Definition:

<complexType name="SecurityTokenType" mixed=”true”>

 <attribute name="type" type="string" use="optional"/>

 <attribute name="name" type="string" use="optional"/>

</complexType>

<element name=”SecurityToken" type="sssrmap:SecurityTokenType"/>

8.1.2 Security Token Types

SSSRMAP defines six standard security token types:

8.1.2.1 Symmetric Key

The default security token specifies the use of a shared secret key. The secret key is up to 128-bits long and known by both client and server. When using a symmetric key as a security token, it is not necessary to specify the type attribute with value “Symmetric” because this is assumed when the attribute is absent. The name attribute should be specified indicating the actor issuing the request. If the user provides a password to be sent to the server for authentication, then the password is encrypted with the secret key using a default method=”rsa-1_5” (XML ENCRYPTION http://www.w3.org/2001/04/xmlenc#rsa-1_5), base64 encoded and included as the string content of the SecurityToken element. If the client authenticated the user, then the SecurityToken element is empty .The same symmetric key is used in both authentication and encryption.

8.1.2.2 Asymmetric Key

Public and private key pairs can be used to provide non-repudiation of the client (or server). The client and the server must each have their own asymmetric key pairs. This mode is indicated by specifying the type attribute as “Asymmetric”. The name attribute should be specified indicating the actor issuing the request. If the user provides a password to be sent to the server for authentication, then the password is encrypted with the server’s public key using a default method=”rsa-1_5” (XML ENCRYPTION http://www.w3.org/2001/04/xmlenc#rsa-1_5), base64 encoded and included as the string content of the SecurityToken element. If the client authenticated the user, then the SecurityToken element is empty .The sender’s private key is used in authentication (signing) while the recipient’s public key is used for encryption.

8.1.2.3 Password

This mode allows for a username password combination to be used under the assumption that the server also knows the password for the user. This security token type is indicated by specifying a value of “Password” for the type attribute. The password itself is used as the cryptographic key for authentication and encryption. The name attribute contains the user name of the actor making the request. The SecurityToken element itself is empty.

8.1.2.4 Cleartext

This security mode is equivalent to passing the username and password in the clear and depends upon the use of a secure transport (such as SSL or IPSec). The purpose of including this security token type is to enable authentication to occur from web browsers over SSL or over internal LANs who use IPSec to encrypt all traffic. The password (or a hash of the password like in /etc/passwd) would have to be known by the server for authentication to occur. In this mode, neither encryption or signing of the hash is performed at the application layer. This mode is indicated by specifying a value of “Cleartext” for the type attribute. The name attribute contains the user name of the actor making the request and the string content of the SecurityToken element is the unencrypted plaintext password.

8.1.2.5 Kerberos

The use of a Kerberos version 5 token is indicated by specifying “Kerberos5” in the type attribute. The name attribute is used to contain the kerberos user id of the actor making the request. The SecurityToken element contains two subelements. The Authenticator element contains the authenticator encoded in base64. A Ticket element contains the service-granting ticket, also base64 encoded.

8.1.2.6 GSI (X.509)

The Grid Security Infrastructure (GSI) which is based on public key encryption, X.509 certificates, and the Secure Sockets Layer (SSL) communication protocol can be indicated by specifying a type attribute of “X509v3”. The name attribute contains the userid used that the actor was mapped to in the local system. The string content of the SecurityToken element is the GSI authentication message including the X.509 identity of the sender encoded in base64.

8.1.3 Example

<SecurityToken type=”Asymmetric” name=”scottmo”>

MIIEZzCCA9CggAwIBAgIQEmtJZc0rqrKh5i...

</SecurityToken>

8.2 Authentication

Authentication entails how the peers at each end of the connection are identified and verified. Authentication is optional in an SSSRMAP message or reply. SSSRMAP uses a digital signature scheme for authentication that borrows from concepts in XML Digital Signatures [XML_DSIG]. In addition to authentication, the use of digital signatures also ensures integrity of the message, protecting exchanges from third-party modification.

When authentication is used, a Signature element is prepended as the first element within the Envelope element. All of the security modes will create a digest of the data for integrity checking and store this in base64 encoding in a DigestValue element as a child of the Signature element. The digital signature is created by encrypting the hash with the appropriate security token and storing this value in a SignatureValue element as a child of the Signature element. The security token itself is included as a child of the Security element within a SecurityToken element.

There are a number of procedural practices that must be followed in order to standardize this approach. The digest (or hash) is created over the contents of the Envelope element (not including the Element tag or its attributes). This might be over one or more Request or Notify elements (or Response or Ack elements) and necessarily excludes the Signature Element itself. (Note that any data encryption is performed after the creation of the digital signature and any decryption is performed before authenticating so the EncryptedData element will not interfere with this process. Hence, the signature is always based on the (hashed but) unencrypted data). For the purposes of generating the digest over the same value, it is assumed that the data is first canonicalized to remove extraneous whitespace, comments, etc according to the XML Digital Signature algorithm (“http://www.w3.org/TR/2001/REC-xml-c14n-20010315”) and a transform is applied to remove namespace information. As a rule, any binary values are always transformed into their base64 encoded values when represented in XML.

8.2.1 The Signature Element

The Signature element MUST be included as the first child element in the Envelope element if SSSRMAP authentication is required. It MUST contain a DigestValue element that is used for integrity checking. It MUST also contain a SecurityToken element that is used to indicate the security mode and token type, and to verify the signature. It MUST contain a SignatureValue element that contains the base64 encrypted value of the signature wrought on the hash UNLESS the security token type indicates Cleartext mode where a signature would be of no value with the encryption key being sent in the clear -- in this case we use the password itself for authentication).

Schema Definition:

<complexType name="SignatureType">

 <choice minOccurs="0" maxOccurs="1">

 <element ref="sssrmap:DigestValue" minOccurs="1" maxOccurs="1"/>

 <element ref="sssrmap:SignatureValue" minOccurs="1" maxOccurs="1"/>

 <element ref="sssrmap:SecurityToken" minOccurs="0" maxOccurs="1"/>

 </choice>

</complexType>

<element name="Signature" type="sssrmap:SignatureType"/>

8.2.2 The DigestValue Element

The DigestValue element contains the cryptographic digest of the message data. As described above, the hash is generated over all children of the Envelope element, excluding the Signature element and its children. The data to be hashed must first be canonicalized and appropriately transformed before generating the digest since typically an application will read in the XML document into an internal binary form, then marshal (or serialize) the data into a string which is passed as input to the hash algorithm. Different implementations marshal the data differently so it is necessary to convert this to a well-defined format before generating the digest or the clients will generate different digest values for the same XML. The SHA-1 [SHA-1] message digest algorithm (http://www.w3.org/2000/09/xmldsig#sha1) SHALL be used as the default method for generating the digest. A method attribute is defined as an extensibility option in case an implementation wants to be able to specify alternate message digest algorithms.

It MAY have a method attribute:

· method – the message digest algorithm.

· A method attribute of “sha1” specifies the SHA-1 message digest algorithm. This is the default and is implied if this attribute is omitted.

Schema Definition:

<complexType name="DigestValueType">

 <attribute name="method" type="string" use="optional"/>

</complexType>

<element name="DigestValue" type="sssrmap:DigestValueType"/>

8.2.3 The SignatureValue Element

The SignatureValue element contains the digital signature that serves the authentication (and potentially non-repudiation) function. The string content of the SignatureValue element is a base64 encoding of the encrypted digest value. The HMAC algorithm [HMAC] based on the SHA1 message digest (http://www.w3.org/2000/09/xmldsig#hmac-sha1) SHALL be used as the default message authentication code algorithm for user identification and message integrity. A method attribute is defined as an extensibility option in case an implementation wants to be able to specify alternate digital signature algorithms.

It MAY have a method attribute:

· method – the digest signature algorithm.

· A method attribute of “hmac-sha1” specifies the HMAC SHA-1 digital signature algorithm. This is the default and is implied if this attribute is omitted.

Schema Definition:

<complexType name="SignatureValueType">

 <attribute name="method" type="string" use="optional"/>

</complexType>

<element name="SignatureValue" type="sssrmap:SignatureValueType"/>

8.2.4 Signature Example

Pre-authentication:

<Envelope>

<Request object=”User” action=”Query”>

<Get name=”EmailAddress” />

<Where name=”scottmo” />

</Request>

</Envelope>

Post-authentication:

<Envelope>

<Signature>

<DigestValue>

LyLsF0Pi4wPU...

</DigestValue>

<SignatureValue>

DJbchm5gK...

</SignatureValue>

<SecurityToken type=”Asymmetric” name=”kenneth”>

MIIEZzCCA9CggAwIBAgIQEmtJZc0rqrKh5i...

</SecurityToken>

</Signature>

<Request object=”User” action=”Query”>

<Get name=”EmailAddress” />

<Where name=”scottmo” />

</Request>

</Envelope>

8.3 Confidentiality

Confidentiality involves encrypting the sensitive data in the message, protecting exchanges against third-party interception and modification. Confidentiality is optional in an SSSRMAP message or reply. When confidentiality is required, SSSRMAP sessions use block cipher encryption with concepts borrowed from the emerging XML Encryption [XML_ENC] standard.

When confidentiality is used, encryption is performed over all child elements of the Envelope element, i.e. on the message data as well as any signature (The encrypted data is not signed -- rather the signature is encrypted). This data is replaced in-place within the envelope with an EncryptedData element. The data is first compressed using the gzip algorithm [ZIP]. Instead of encrypting this compressed data with the security token directly, a 128-bit random session key is generated by the sender and used to perform symmetric encryption on the compressed data. This key is itself encrypted with the security token and included with the encrypted data as the value of the EncryptedKey element as a child of the EncryptedData element. The ciphertext resulting from the data being encrypted with the session key is passed as the value of a CipherValue element (also a child of the EncryptedData element). As in the case with authentication, the security token itself is included as a child of the Security element within a SecurityToken element.

8.3.1 The EncryptedData Element

When SSSRMAP confidentiality is required, the EncryptedData element MUST appear as the only child element in the Envelope element. It directly replaces the contents of these elements including the data and any digital signature. It MUST contain an EncryptedKey element that is used to encrypt the data. It MUST contain a CipherValue element that holds the base64 encoded ciphertext. It MUST also contain a SecurityToken element that is used to indicate the security mode and token type, and to verify the signature. Confidentiality is not used when a security token type of “Cleartext” is specified since it would be pointless to encrypt the data with the encryption key in the clear.

Schema Definition:

<complexType name="EncryptionDataType">

 <choice minOccurs="0" maxOccurs="1">

 <element ref="sssrmap:EncryptedKey" minOccurs="1" maxOccurs="1"/>

 <element ref="sssrmap:CipherValue" minOccurs="1" maxOccurs="1"/>

 <element ref="sssrmap:SecurityToken" minOccurs="1" maxOccurs="1"/>

 </choice>

</complexType>

<element name="EncryptedData" type="sssrmap:EncryptedDataType"/>

8.3.2 The EncryptedKey Element

The EncryptedKey element is a random session key encrypted with the security token. This approach is used for a couple of reasons. In the case where public key encryption is used, asymmetric encryption is much slower than symmetric encryption and it makes sense to use a symmetric key for encryption and pass along it along by encrypting it with the recipient’s public key. It is also useful in that the security token which does not change very often (compared to the session key which changes for every connection) is used on a very small sampling of data (the session key), whereas if it was used to encrypt the whole message an attacker could more effectively exploit an attack against the ciphertext. The RSA stream cipher algorithm SHALL be used as the default method for encryption. This algorithm is specified by the XML Encryption [XML_ENC] URI “http://www.w3.org/2001/04/xmlenc#rsa-1_5”. The session key is encrypted using the security token, base64 encoded and specified as the string content of the EncryptedKey element. A method attribute is defined as an extensibility option in case an implementation wants to be able to specify alternate key encryption algorithms.

It is REQUIRED that an implementation use a cryptographically security Pseudo-Random number generator. It is RECOMMENDED that the session key be cryptographically generated (such as cyclic encryption, DES OFB, ANSI X9.17 PRNG, or ANSI X12.17 (used by PGP)).

It MAY have a method attribute:

· method – the key encryption algorithm.

· A method attribute of “rsa-1_5” specifies the RSA stream encryption algorithm. This is the default and is implied if this attribute is omitted.

Schema Definition:

<complexType name="EncryptedKeyType">

 <attribute name="method" type="string" use="optional"/>

</complexType>

<element name="EncryptedKey" type="sssrmap:EncryptedKeyType"/>

8.3.3 The CipherValue Element

The CipherValue element contains the message (and possibly signature) data encrypted with the random session key. The ciphertext is compressed using the gzip algorithm [ZIP], base64 encoded and included as the string content of the CipherValue element. The AES-128 (Advanced Encryption Standard with a 128 bit shared secret symmetric encryption key) with cipher block chaining feedback mode SHALL be used as the default method for encryption. This algorithm is specified by the XML Encryption [XML_ENC] URI identifier “http://www.w3.org/2001/04/xmlenc#aes128-cbc”. A method attribute is defined as an extensibility option in case an implementation wants to be able to specify alternate data encryption algorithms.

It MAY have a method attribute:

· method – the data encryption algorithm.

· A method attribute of “aes128-cbc” specifies the AES encryption algorithm with a 128-bit key and CBC feedback mode. This is the default and is implied if this attribute is omitted.

Schema Definition:

<complexType name="CipherValueType">

 <attribute name="method" type="string" use="optional"/>

</complexType>

<element name="CipherValue" type="sssrmap:CipherValueType"/>

8.3.4 Encryption Example

In this example, a simple request is demonstrated without a digital signature for the sake of emphasizing the encryption plaintext replacement.

Pre-encryption:

<Envelope>

 <Response>

 <Status>true</Status>

 <Code>000</Code>

 <Count>1</Count>

 <Data>

<User>

<EmailAddress>Scott.Jackson@pnl.gov</EmailAddress>

</User>

 </Data>

 </Response>

</Envelope>

Post-encryption:

<Envelope>

 <EncryptedData>

<EncryptedKey>

NAkE9iQofYhyOfiHZ29kkEFVJ30CAwEAAaMSM...

</EncryptedKey>

<CipherValue>

mPCadVfOMx1NzDaKMHNgFkR9upTW4kgBxyPW...

</CipherValue>

<SecurityToken type=”Asymmetric” name=”kenneth”>

MIIEZzCCA9CggAwIBAgIQEmtJZc0rqrKh5i...

</SecurityToken>

 </EncryptedData>

</Envelope>

9 Acknowledgements

10 References

[RFC2119] S. Bradner, “Key Words for Use in RFCs to Indicate Requirement Levels”, RFC 2119, March 1997.

 [BEEP] M. Rose, “The Blocks Extensible Exchange Protocol Core”, RFC 3080, March 2001.

[HMAC] H. Krawczyk, M. Bellare, R. Canetti, “HMAC, Keyed-Hashing for Message Authentication”, RFC 2104, February 1997.

[SHA-1] U.S. Department of Commerce/National Institute of Standards and Technology, “Secure Hash Standard”, FIPS PUB 180-1.

[SSS] “Scalable Systems Software”, http://www.scidac.org/ScalableSystems
[HTTP] “Hypertext Transfer Protocol – HTTP/1.1”, RFC 2616, June 1999.

[XML_CONV] “I-X and <I-N-CA> XML Conventions”.

[FED_XML] “U.S. Federal XML Guidelines”.

[RFC3117] M. Rose, “On the Design of Application Protocols”, Informational RFC 3117, November 2001.

[XML_DSIG] D. Eastlake, J. Reagle Jr., D. Solo, “XML Signature Syntax and Processing”, W3C Recommendation, 12 February 2002.

[XML_ENC] T. Imamura, B. Dillaway, E. Smon, “XML Encryption Syntax and Processing”, W3C Candidate Recommendation, 4 March 2002.

[XRP] E. Brunner-Williams, A. Damaraju, N. Zhang, “Extensible Registry Protocol (XRP)”, Internet Draft, expired August 2001.

[XML] Bray, T., et al, “Extensible Markup Language (XML) 1.0 (Second Edition)”, 6 October 2000.

[XML_SCHEMA] D. Beech, M. Maloney, N. Mendelshohn, “XML Schema Part 1: Structures Working Draft”, April 2000.

[ZIP] J. Gailly, M. Adler, “The gzip home page”, http://www.gzip.org/
