SSS Job Object Specification

Release Version 2.0.1

May 5, 2003

Scott Jackson, PNNL

David Jackson, Ames Lab

Brett Bode, Ames Lab

Scalable Systems Software Job Object Specification

Status of this Memo

This is an initial draft of the job object to be used by Scalable Systems Software compliant components. It is envisioned for this specification to be used in conjunction with the SSSRMAP protocol with the job object passed in the Data field of Requests and Responses. Queries can be issued to a job-cognizant component in the form of modified XPATH expressions to the Get field to extract specific information from the job object as described in the SSSRMAP protocol.

Abstract

This document describes the syntax and structure of the SSS job object. A job model is described that is flexible enough to support the specification of very simple jobs as well jobs with elaborate and complex specification requirements in a way that avoids complex structures and syntax when it is not needed. The basic assumption is that a solitary job specification should be usable for all phases of the job lifecycle and can be used at submission, queuing, staging, reservations, quotations, execution, charging, accounting, etc. This job specification provides support for multi-step jobs, as well as steps with multiple task descriptions. It takes into account the aspects necessary to operate within a grid or meta-scheduled environment where the job might be executed at one (or more) destination among a variety of different administrative domains and resource management systems.

1. Introduction

This specification proposes a standard XML representation for a job object for use by the various components in the SSS Resource Management System. This object will be used in multiple contexts and by multiple components. It is anticipated that this object will be passed via the Data Element of SSSRMAP Requests and Responses.

1.1 Goals

There are several goals motivating the design of this representation.

It needs to be inherently flexible. We recognize we will not be able to exhaustively include the ever-changing job properties and capabilities that constantly arise.

The same job object should be used at all stages of its lifecycle. This object will be used at job submission, queuing, scheduling, and usage charging and accounting, hence it needs to distinguish between requested, utilized and allocated properties.

Its design takes into account the properties and structure required to function in a meta or grid environment. It needs to include the capability to support local mapping of properties, global namespaces, etc.

This job object must support multi-step jobs. Each step can have multiple logical task descriptions.

Many potential users of the specification will not be prepared to implement the complex portions or fine-granularity that others need. There needs to be a way to allow the more complicated structure to be added as needed while leaving more straightforward cases simple.

Not all implementers will be interested in supporting properties at as fine-grained level. It would be useful if the specification allowed the properties to appear at the level an implementer considers them to vary at.

There needs to be guidance for how to understand a given job object when higher order features are not supported by an implementation, and which parts are required, recommended and optional for implementors to implement.

Needs to support composite resources,

Ability to specify preferences or fuzzy requirements.

1.2 Non-Goals

The following topics are outside the scope of the job object

This specification does not attempt to specify namespaces or even naming conventions for most property values.

1.3 Examples

1.3.1 Very Simple Example

This example shows that a very simple and direct representation can be used when more complex features of this specification are not needed.

<Job>

<JobId>PBS.1234</JobId>

<UserName>scottmo</UserName>

<Executable>/bin/hostname</Executable>

<Processors>16</Processors>

</Job>

1.3.2 Moderate Example

This example shows a single step job of medium complexity that makes use of features such as an explicit step and required versus utilized properties.

<Job>

<JobId>PBS.1234</JobId>

<JobName>Heavy Water</JobName>

<AccountName>nwchemdev</AccountName>

<UserId>peterk</UserId>

<Application>NWChem</Application>

<Executable>/usr/local/nwchem/bin/nwchem</Executable>

<Arguments>-input basis.in</Arguments>

<InitialWorkingDirectory>/home/peterk</InitialWorkingDirectory>

<Step>

<StepId>PBS.1234.0</StepId>

<MachineName>Colony</MachineName>

<QualityOfService>BottomFeeder</QualityOfService>

<Queue>batch_normal</Queue>

<StepState>Completed</StepState>

<StartTime>1051557713</StartTime>

<CompletionTime>1051558868</CompletionTime>

<Charge>25410</Charge>

<Requested>

<Processors op=”ge”>12</Processors>

<Memory op=”ge” units=”GB”>2</Memory>

<WallDuration>3600</WallDuration>

</Requested>

<Utilized>

<Processors>16</Processors>

<Memory metric=”Average” units=”GB”>1.89</Memory>

<WallDuration>1155</WallDuration>

</Utilized>

<Environment>

<Variable name=”PATH”>/usr/bin:/home/peterk</Variable>

</Environment>

</Step>

</Job>

1.3.3 Elaborate Example

This example shows that complex capabilities are expressible through this specification when such capabilities are needed. Not all components will care about this level of detail and components that use this specification can include or discard the information that is relevant to their function. Superfluous information can be ignored by the component or filtered out (by XSLT for example).

<Job>

<JobId>fr15n05.1234</JobId>

<JobState>Active</JobState>

<JobName>ShuttleTakeoff</JobName>

<GlobalJobId>http://www.doesciencegrid.org/LBNL#12345678</GlobalJobId>

<StagedTime>1051557859</StagedTime>

<SubmitHost>asteroid.lbl.gov</SubmitHost>

<SubmissionTime>1051556734</SubmissionTime>

<AccountName>GrandChallenge18</AccountName>

<GlobalUserId>C=US,O=LBNL,CN=Keith Jackson</GlobalUserId>

<UserId>keith</UserId>

<Environment>

<Variable name=”LD_LIBRARY_PATH”>/usr/lib</Variable>

<Variable name=”PATH”>/usr/bin:~/bin:</Variable>

<Environment>

<Step>

<StepId>fr15n05.1234.0</StepId>

<StepName>Launch Vector Initialization</StepName>

<Executable>/usr/local/gridphys/bin/lvcalc</Executable>

<Queue>batch</Queue>

<StepState>Completed</StepState>

<MachineName>SMP2.emsl.pnl.gov</MachineName>

<StartTime>1051557713</StartTime>

<CompletionTime>1051558868</CompletionTime>

<QuoteId>http://www.pnl.gov/SMP2#654321</QuoteId>

<Charge units=”USD”>12.75</Charge>

<Requested>

<WallDuration>3600</WallDuration>

<Processors>2</Processors>

<Memory>1024</Memory>

</Requested>

</Utilized>

<WallDuration>1155</WallDuration>

<Processors consumptionRate=”0.78”>2</Processors>

<Memory metric=”max”>975</Memory>

</Utilized>

<TaskGroup>

<TaskCount>2</TaskCount>

<TaskDistribution type=”TasksPerNode”>1</TaskDistribution>

<Task>

<Node>node1</Node>

<ProcessId>99353</ProcessId>

</Task>

<Task>

<Node>node12</Node>

<ProcessId>80209</ProcessId>

</Task>

</TaskGroup>

</Step>

<Step>

<StepId>fr15n05.1234.1</StepId>

<StepName>3-Phase Ascension</StepName>

<Queue>batch_normal</Queue>

<StepState>Idle</StepState>

<MachineName>Colony.emsl.pnl.gov</MachineName>

<Priority>1032847</Priority>

<Hold>System</Hold>

<StatusMessage>Insufficient funds to start job</StatusMessage>

<Requested>

<WallDuration>43200</WallDuration>

</Requested>

<TaskGroup>

<TaskCount>1</TaskCount>

<TaskName>Master</TaskName>

<Executable>/usr/local/bin/stage-coordinator</Executable>

<Memory>2048<Memory>

<Resource name=”License” type=”ESSL2”>1</Resource>

<NodeProperties>

<Feature>Jumbo-Frame</Feature>

</NodeProperties>

</TaskGroup>

<TaskGroup>

<TaskName>Slave</TaskName>

<TaskDistribution type=”Rule”>RoundRobin</TaskDistribution>

<Executable>/usr/local/bin/stage-slave</Executable>

<NodeCount>4</NodeCount>

<Requested>

<Processors group=”-1”>12</Processors>

<Processors conj=”or” group=”1”>16</Processors>

<Memory>512</Memory>

<NodeProperties>

<Name op=”match”>fr15n.*</Name>

</NodeProperties>

</Requested>

</TaskGroup>

</Step>

</Job>

2. Conventions used in this document

2.1 Keywords

The keywords “MUST”, “MUST NOT”, “REQUIIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC2119.

2.2 Table Column Interpretations

In the property tables, the columns are interpreted to have the following meanings:

Element Name:
Name of the XML element (xsd:element)

Type:

Data type defined by xsd (XML Schema Definition) as:

String

xsd:string (a finite length sequence of printable characters)

Integer

xsd:integer (a signed finite length sequence of decimal digits)

Float

xsd:float (single-precision 32-bit floating point)

Boolean
xsd:boolean (consists of the literals “true” or “false”)

DateTime
xsd:int
(a 32-bit unsigned long in GMT seconds since the EPOCH)

Description:

Brief description of the meaning of the property

Appearance:
This column indicates whether the given property has to appear within the parent element. It assumes the following meanings:

MUST

This property is REQUIRED when the parent is specified.

SHOULD
This propterty is RECOMMENDED when the parent is specified.

MAY

This property is OPTIONAL when the parent is specified.

Compliance:
The column indicates whether a compliant implementation has to support the given property.

MUST

A compliant implementation MUST support this property.

SHOULD
A compliant implementation SHOULD support this property.

 MAY

A compliant implementation MAY support this property.

Categories:
Some properties may be categorized into one of several categories. Letters in this column indicate that the given property can be classified in the the following property categories.

R

This property can be encompassed in a Requested element.

U

This property can be encompassed in a Utilized element.

D

This property can be encompassed in a Dedicated element.

2.3 Element Syntax Cardinality

The cardinality of elements in the element syntax sections may make use of regular expression wildcards with the following meanings:

*

Zero or more occurrences

+

One or more occurrences

?

Zero or one occurrences

The absence of one of these symbols implies one and only one occurrence.

3. The Job Model

The primary element within the job model is a job. A job can be considered as an interdependent set of schedulable work entities. A job is usually submitted at a single time and can consist of multiple execution steps. A job step is a single schedulable entity and will be the object normally seen in job queues. Job steps form a DAG (directed acyclic graph) of dependencies on the status of previous jobs steps.

Job steps may consist of multiple tasks, which are the finest grained work unit and represent an endpoint for executing a given process instance. For example, a step that requests 3 nodes and 4 processors will have 4 tasks, two on one node and one on each of two nodes. Tasks may be grouped into TaskGroups, which are logical aggregations of tasks and their common properties. Submit filters, prologs, epilogs, notification scripts, etc. run once only for each step. Whereas taskgroups function as logical descriptions of tasks and their properties, they also describe the number of such tasks and the nodes that they run on. As an example, a master taskgroup (consisting of a single task) might ask for a node with a MATLAB license, 2GB of memory and an internet connected network adapter while a slave taskgroup (consisting of 12 tasks) could be targeted for nodes with more CPU bandwidth -- all within the same step and utilizing a common MPI ring. Tasks (and hence taskgroups) can have different executables or environments, specify different consumable resources or node properties.

A job will consist of at least one step, which will have at least one taskgroup, which will have at least one task. Only the job has to be specified explicitly. The others in the trivial cases (where there is only one) can be implicit.

Default step properties, job-wide default taskgroup properties and job-wide default task properties can be specified at the same level as the job properties. In the case where a job has only one step and no steps are explicitly specified, the default step properties are taken to be the step properties. When one or more steps are specified, the specified step properties within the steps override the default step properties. If steps are not supported by an implementation, the step properties are taken to be job properties.

Default taskgroup properties, and step-wide default task properties for a particular step can be specified at the step level. In the case where a step has only one taskgroup and no taskgroups are explicitly specified the default taskgroup properties are taken to be the taskgroup properties. When one or more taskgroups are specified, the specified taskgroup properties within the taskgroup override the default taskgroup properties for the step and job. If taskgroups are not supported by an implementation, the taskgroup properties are taken to be step properties.

Default task properties for a particular taskgroup can be specified at the taskgroup level. In the case where a taskgroup has only one task and no tasks are explicitly specified the default task properties are taken to be the task properties. When one or more tasks are specified, the specified task properties within the task override the default task properties for the taskgroup, step and job. If tasks are not supported by an implementation, the task properties are taken to be taskgroup properties.

4. Job Element

The root element of the Job object is the Job element and is used to encapsulate a job.

· A job object MUST have exactly one job element.

· A compliant implementation MUST support this element.

· A job MUST specify one or more Job Properties.

· Any Step Property MAY appear at this level as a Default Step Property.

· Any TaskGroup Property MAY appear at this level as a job-wide Default TaskGroup Property.

· Any Task Property MAY appear at this level as a Job-wide Default Task Property

· One or more Step elements can appear at this level as default steps (technically as a job property).

· If no steps are explicitly specified, the job is implicitly defined to have one step, with its properties taken from the Default Step Properties.

· A TaskGroup element MAY appear at this level as a job-wide default taskgroup (technically as a step property).

· A Task element MAY appear at this level as a job-wide default task (technically a taskgroup property).

The following illustrates the syntax of this element:

<Job>

<!-- Job Properties -->+

<!-- Default Step Properties -->*

<!-- Default TaskGroup Properties -->*

<!-- Default Task Properties -->*

<Step/>*

These are redundant and here for clarity

<TaskGroup/>*

Perhaps they add confusion and

<Task/>*

should be stripped out

</Job>

The following describes the attributes and elements for the example above:

/Job

This required element is the root element encapsulating a job.

/Job/<Job Property>

Job properties appear at this level.

/Job/<Step Property>

Default step properties may be included at this level.

/Job/<TaskGroup Property>

Job-wide default taskgroup properties may be included at this level.

/Job/<Task Property>

Job-wide default task properties may be included at this level.

/Job/Step

This optional element encapsulates steps (technically a job property).

A job may specify zero or more steps.

/Job/TaskGroup

This optional element encapsulates taskgroups (technically a step property).

A taskgroup might appear at this level if it is a default taskgroup inherited by all steps, if one or more taskgroups are specified explicitly while the step is implied, or if steps are not defined for the implementation but taskgroups are.

A job may specify zero or more taskgroups.

/Job/Task

This optional element encapsulates tasks (technically a taskgroup property).

A task may appear at this level if it is a default task inherited by all taskgroups, if one or more tasks are specified explicitly at this level while the step and taskgroup are implied, or if steps or taskgroups are not defined for the implementation but tasks are.

/Job/{any}

This is a mechanism to allow extensible job properties to be specified.

/Job/@{any}

This is a mechanism to allow extensible attributes to be specified for the job.

4.1 Job Properties

Job Properties are properties that always apply to the job as a whole. These include the job id, any explicit job steps, and other simple optional job properties.

4.1.1 Simple Job Properties

Simple (unstructured) job properties are enumerated in Table 1.

Table 1
Simple Job Properties

	Element Name
	Type
	Description
	Appearance
	Compliance
	Categories

	CreationTime
	DateTime
	Date and time that the job was submitted
	MAY
	MAY
	

	Description
	String
	Description of the job
	MAY
	MAY
	

	GlobalJobId
	String
	Globally unique job identifier
	MAY
	SHOULD
	

	JobId
	String
	Local job identifier assigned to the job by the local resource manager.
	MUST
	MUST
	

	JobName
	String
	Name of the job
	MAY
	MAY
	

	JobState
	String
	State of the job as a whole. Valid states may include “NotQueued”, “Unstarted”, “Active”, “Completed”.
	MAY
	MAY
	

	StagedTime
	DateTime
	Date and time that a job was staged to the local resource management system.
	MAY
	MAY
	

	SubmitHost
	String
	FQDN of host where the job was submitted from.
	MAY
	SHOULD
	

	SubmissionTime
	DateTime
	Date and time that a job was submitted.
	MAY
	SHOULD
	

4.1.2 Credentials

Credentials are a special group of job properties that relate to some kind of authenticated token or id and are also distinct in the fact that they can be categorized in both requested and utilized forms.

Credential job properties are enumerated in Table 2.

Table 2
Credential Job Properties

	Element Name
	Type
	Description
	Appearance
	Compliance
	Categories

	AccountName
	String
	Name of the Project or Charge Account
	MAY
	SHOULD
	RU

	GlobalUserId
	String
	Globally unique user identifier. This may be an X.509 DN for example.
	MAY
	SHOULD
	RU

	GroupId
	String
	Name of the local group id.
	MAY
	MAY
	RU

	UserId
	String
	Name of the local userid for the job.
	MAY
	MUST
	RU

4.1.3 Step

A step is a job property.

· A job MAY specify zero or more steps.

See the next section for element details.

5. Step Element

The Step element is used to encapsulate a step.

· A compliant implementation SHOULD support this element.

· A step MUST specify one or more Step Properties.

· Any TaskGroup Property MAY appear at this level as a Default TaskGroup Property.

· One or more TaskGroup elements MAY appear at this level as default taskgroups (technically as a Step Property).

· If no taskgroups are explicitly specified, the step is implicitly defined to have one taskgroup, with its properties taken from the Default TaskGroup Properties.

· Default step properties are located as children of the encapsulating Job element.

· A Task element MAY appear at this level as a step-wide default task (technically a taskgroup property).

· If an implementation does not support the Step element, the Step Properties described in this section are used as Job Properties.

· An implementation MAY choose to support individual properties defined in this section (Step Properties) as properties of a higher level only (Job Properties).

The following illustrates the syntax of this element:

<Step>

<!-- Step Properties -->+

<!-- Default TaskGroup Properties -->*

<!-- Step-wide Default Task Properties -->*

<TaskGroup/>*

Redundant

<Task/>*

Perhaps?

</Step>

The following describes the attributes and elements for the example above:

/Step

This element is used to encapsulate the step.

/Step/<Step Property>

Step properties appear at this level.

/Step/<TaskGroup Property>

Default taskgroup properties for the step may be included at this level.

/Step/<Task Property>

Step-wide default task properties may be included at this level.

/Step/TaskGroup

This optional element encapsulates taskgroups (technically a step property)

A step may specify zero or more taskgroups.

/Step/Task

This optional element encapsulates tasks (technically a taskgroup property).

A task may appear at this level if it is a default task inherited by all tasks within the step, if one or more tasks are specified explicitly at this level while the taskgroup is implied, or if taskgroups are not defined for the implementation but tasks are. A step may specify zero or more tasks.

/Step/{any}

This is a mechanism to allow extensible step properties to be specified.

/Step/@{any}

This is a mechanism to allow extensible attributes to be specified for the step.

5.1 Step Properties

Step Properties are properties that apply to a particular step or as default properties to all steps. These properties include the step id, any explicit taskgroups, and other simple optional step properties.

5.1.1 Simple Step Properties

Simple (unstructured) step properties are enumerated in Table 3.

Table 3
Simple Step Properties

	Element Name
	Type
	Description
	Appearance
	Compliance
	Categories

	Charge
	Float
	Amount charged for the step.
	MAY
	SHOULD
	RU

	CompletionTime
	DateTime
	Date and time that a step completed (independent of success or failure).
	MAY
	MUST
	RU

	EligibleTime
	DateTime
	Date and time that a step became eligible to run.
	MAY
	MAY
	

	Hold
	String
	Hold(s) on the job if any.
	MAY
	SHOULD
	

	MachineName
	String
	Name of the system or cluster that the step runs on.
	MAY
	MUST
	RU

	NodeCount
	Integer
	Number of nodes used by the step.
	MAY
	MUST
	RU

	Priority
	Integer
	Current queue priority (or rank) for the step.
	MAY
	SHOULD
	

	QualityOfService
	String
	Name of the Quality of Service (QOS).
	MAY
	SHOULD
	RU

	Queue
	String
	Name of the Queue (or class) that the job step runs in.
	MAY
	SHOULD
	RU

	QuoteId
	String
	Identifier for a guaranteed charge rate quote obtained by the step.
	MAY
	MAY
	

	ReservationTime
	DateTime
	Date and time that a reservation was placed for the job step.
	MAY
	MAY
	

	StartCount
	Integer
	Number of times the scheduler tried to start the step.
	MAY
	MAY
	

	StartTime
	DateTime
	Date and time that the step started.
	MAY
	MUST
	RU

	StatusMessage
	String
	Natural language message that can be used to provide detail on why a job failed, isn’t running, etc.
	MAY
	SHOULD
	

	StepId
	String
	A local step identifier assigned to the job by the local resource manager.
	SHOULD * A step id can be omitted in the trivial (single step) case if a rule exists for canonically generating the step id from the job id.
	SHOULD
	

	StepName
	String
	Name of the step
	MAY
	SHOULD
	

	StepState
	String
	State of the step. Valid states may include “Idle”, “Hold”, “Running”, “Suspended”, “Completed”.
	MAY
	MUST
	

	SuspendDuration
	Integer
	Number of seconds the job was in the “Suspended” state.
	MAY
	MAY
	

	TimeCategory
	String
	This allows the specification of shifts like “PrimeTime” for charging purposes.
	MAY
	MAY
	

	Type
	String
	Type of step (job). Meaning of this extension property is context specific.
	MAY
	MAY
	

	WallDuration
	Integer
	Number of seconds the job was in the “Running” state.
	MAY
	MUST
	RU

5.1.2 Dependency Element

The Dependency element allows steps to have execution dependencies on the status of previous steps. In a multi-step job, some steps may delay execution until the failure or success of other steps creating in general a Directed Acyclic Graph relationship between the steps. This content of this element is of type String and represents the StepId that the step is dependent upon. A step may have more than one dependencies so this element may appear more than once in a given step scope. A compliant implementation SHOULD support this element if steps are supported. This element MAY have a type attribute that is of type String which indicates what basis is used to determine the execution of the current step in relation to the specified step. The default basis (if the type attribute is omitted) is to allow the current step to run if the specified step completes successfully (this is specified explicitly with a value of “OnSuccess”). The type attribute MAY be present and have values including “OnSuccess” and “OnFailure”. A compliant implementation MUST support this attribute if this element is supported.

The following is an example of a Dependency element:

<Dependency type=”OnSuccess”>PBS.1234.0</Dependency>

5.1.3 TaskGroup

A taskgroup is a step property.

· A step MAY specify zero or more taskgroups.

See the next section for element details.

6. TaskGroup Element

The TaskGroup element is used to encapsulate a taskgroup.

· A compliant implementation MAY support this element.

· A taskgroup MUST specify one or more TaskGroup Properties.

· Default taskgroup properties are located as children of the encapsulating Step element or as children of the encapsulating Job element.

· If an implementation does not support the TaskGroup element, the TaskGroup Properties described in this section are used as Step Properties if it is supported, or as Job Properties otherwise.

· An implementation MAY choose to support individual properties defined in this section (TaskGroup Properties) as properties of a higher level only (Step or Job Properties).

The following illustrates the syntax of this element:

<TaskGroup>

<!-- TaskGroup Properties -->+

<Task>+

</TaskGroup>

The following describes the attributes and elements for the example above:

/TaskGroup

This element is used to encapsulate the taskgroup.

/TaskGroup/<TaskGroup Property>

TaskGroup properties appear at this level.

/TaskGroup/<Task Property>

Default task properties may appear at this level.

/TaskGroup/Task

This optional element encapsulates tasks (technically a taskgroup property).

A taskgroup may specify one or more tasks.

/TaskGroup/{any}

This is a mechanism to allow extensible taskgroup properties to be specified.

/TaskGroup/@{any}

This is a mechanism to allow extensible attributes to be specified for the taskgroup.

6.1 TaskGroup Properties

TaskGroup Properties are properties that apply to a particular taskgroup or as default properties to encompassed taskgroups. These properties include the taskgroup id, its tasks, and other taskgroup properties.

6.1.1 Simple TaskGroup Properties

Simple (unstructured) taskgroup properties are enumerated in Table 4.

Table 4
Simple TaskGroup Properties

	Element Name
	Type
	Description
	Appearance
	Compliance
	Categories

	SessionId
	Integer
	Session id for the taskgroup or step.
	MAY
	MAY
	

	TaskCount
	Integer
	Number of tasks in this taskgroup
	MAY
	MUST
	

	TaskGroupId
	String
	A taskgroup identifier unique within the step.
	MAY
	MAY
	

	TaskGroupName
	String
	A taskgroup name (such as “Master”).
	MAY
	MAY
	

6.1.2 NodeList Element

The NodeList element is used to encapsulate nodes.

· A compliant implementation SHOULD support this element.

· This element MAY appear zero or one times within a given set of TaskGroup Properties.

· This element MUST contain one or more Node elements.

· This element MAY be categorized as a requested or utilized property by being encompassed by the appropriate element.

The following illustrates the syntax of this element:

<NodeList>

<Node/>+

</NodeList>

The following describes the attributes and elements for the example above:

/NodeList

This element is used to encapsulate nodes.

/NodeList/Node

A named node.

/NodeList/{any}

This is a mechanism to allow extensible NodeList properties to be specified.

/NodeList/@{any}

This is a mechanism to allow extensible attributes to be specified for the NodeList.

6.1.2.1 Node Element

The Node element represents a node.

· This element is of type String.

The following is an example of a Node element:

<Node>node1</Node>

6.1.3 TaskDistribution Element

The TaskDistribution element describes how tasks are to be mapped to nodes.

This may be a rule name, a task per node ratio or an arbitrary geometry.

· A compliant implementation SHOULD support this element.

· This element MAY appear zero or one times within a given set of TaskGroup Properties.

· This element is of type String.

· This element MAY have a type attribute of type String that provides a hint as to the type of mapping guidance provided. It may have values including “Rule”, “TasksPerNode”, “ProcessorsPerTask” or “Geometry”. A compliant implementation MAY support this attribute if this element is supported.

· It is possible when specifying a task distribution along with Processors, NodeCount or TaskCount to encounter a contradiction. The components are responsible for resolving the contradictions.

The following are three examples of a TaskDistribution element:

<TaskDistribution type=”TasksPerNode”>2</TaskDistribution>

<TaskDistribution type=”Rule”>RoundRobin</TaskDistribution>

<TaskDistribution type=”Geometry”>{1,4}{2}{3,5}</TaskDistribution>

6.1.4 Task

A task is a taskgroup property.

· A taskgroup MAY specify one or more tasks.

See the next section for element details.

7. Task Element

The Task element is used to encapsulate a task.

· A compliant implementation MUST support this element if it supports the TaskGroup element.

· A task MUST specify one or more Task Properties.

· Default task properties are located as children of the encapsulating Task element or as or as children of the encapsulating Step or Job element.

· If an implementation does not support the Task element, the Task Properties described in this section are used as TaskGroup Properties if it is supported, else as Step Properties if it is supported, or as Job Properties otherwise.

· An implementation MAY choose to support individual properties defined in this section (Task Properties) as properties of a higher level only (TaskGroup, Step or Job Properties).

The following illustrates the syntax of this element:

<Task>

<!-- Task Properties -->+

</Task>

The following describes the attributes and elements for the example above:

/Task

This element is used to encapsulate the task.

/Task/<Task Property>

Task properties appear at this level.

/Task/{any}

This is a mechanism to allow extensible task properties to be specified.

/Task/@{any}

This is a mechanism to allow extensible attributes to be specified for the task.

7.1 Task Properties

Task Properties are properties that apply to a particular task or as default properties to encompassed tasks. These properties include the task id and other task properties.

7.1.1 Simple Task Properties

Simple (unstructured) task properties are enumerated in Table 5.

Table 5
Simple Task Properties

	Element Name
	Type
	Description
	Appearance
	Compliance
	Categories

	Application
	String
	Type of application such as “Gaussian” or “Nwchem”.
	MAY
	MAY
	

	Arguments
	String
	The arguments for the executable.
	MAY
	SHOULD
	

	Executable
	String
	Executable. This may be an absolute or relative path or a URI.*
	MAY
	MUST
	

	InitialWorkingDirectory
	String
	Initial working directory
	MAY
	SHOULD
	

	Node
	String
	Name of the node this task ran on.
	MAY
	MUST
	

	ProcessId
	Integer
	Parent or group process id for the task.
	MAY
	MAY
	

	TaskId
	String
	A task identifier unique within the taskgroup.

	MAY
	MAY
	

* The Executable may be a script or a binary executable. If it is already on the target system it may be referenced by an absolute or relative pathname (relative to InitialWorkingDirectory). If it is passed along with the job in a File object (see SSSRMAP), it can be referenced by an absolute or relative URI. An absolute URI would specify a URL where the file can be downloaded (like with wget). A relative URI is specified by preceding an identifier by a pound sign as in <Executable>#Script</Executable> and will be found in a File object included along with the Job object with the Script as an identifier as in <File id=”Script”>echo hello world</File>.

7.1.2 Environment Element

The Environment element is used to encapsulate environment variables.

· A compliant implementation SHOULD support this element.

· An Environment element MAY appear zero or one times within a given set of Task Properties.

· An Environment element MUST contain one or more Variable elements.

The following illustrates the syntax of this element:

<Environment>

<Variable/>+

</Environment>

The following describes the attributes and elements for the example above:

/Environment

This element is used to encapsulate environment variables.

/Environment/Variable

A variable and its value.

/Environment/{any}

This is a mechanism to allow extensible environment properties to be specified.

/Environment/@{any}

This is a mechanism to allow extensible attributes to be specified for the environment.

7.1.2.1 Variable Element

The Variable element represents an environment variable with its name and value.

This element MUST have a name attribute that is of type String. A compliant implementation MUST support this attribute if this element is supported.

The character content of this element is the value of the environment variable.

The following is an example of a Variable element:

<Variable name=”PATH”>/usr/bin:/home/sssdemo</Variable>

7.1.3 Consumable Resources

Consumable Resources are a special group of properties that can have additional attributes and can be used in multiple contexts. In general a consumable resource is a resource that can be consumed in a measurable quantity.

· A consumable resource MAY have a units attribute that is of type String that specifies the units by which it is being measured. If this attribute is omitted, a default unit is implied. A compliant implementation SHOULD support this attribute if the element is supported.

· A consumable resource MAY have a metric attribute that is of type String that specifies the type of measurement being described. For example, the measurement may be a Total, an Average, a Min or a Max. A compliant implementation SHOULD support this attribute if the element is supported.

· A consumable resource MAY have a wallDuration attribute of type Integer that indicates the amount of time for which that resource was used. This need only be specified if the resource was used for a different amount of time than the wallDuration for the step. A compliant implementation MAY support this attribute if the element is supported.

· A consumable resource MAY have a consumptionRate attribute of type Float that indicates the average percentage that a resource was used over its wallDuration. For example, an overbooked SMP running 100 jobs across 32 processors may wish to scale the usage and charge by the average fraction of processor usage actually delivered. A compliant implementation MAY support this attribute if the element is supported.

A list of simple consumable resources is listed in Table 8.

Table 8
Simple Consumable Resources

	Element Name
	Type
	Description
	Appearance
	Compliance
	Categories

	Disk
	Float
	Amount of disk.
	MAY
	SHOULD
	RUD

	Memory
	Float
	Amount of memory.
	MAY
	SHOULD
	RUD

	Network
	Float
	Amount of network.
	MAY
	MAY
	RUD

	Processors
	Integer
	Number of processors.
	MAY
	MUST
	RUD

	Swap
	Float
	Amount of virtual memory.

	MAY
	MAY
	RUD

The following are two examples for specifying a consumable resource:

<Memory metric=”Max” units=”GB”>483</Memory>

<Processors wallDuration=”1234” consumptionRate=”0.63”>4</Processors>

7.1.4 Resource Element

In addition to the consumable resources enumerated in the above table, an extensible consumable resource is defined by the Resource element.

· A compliant implementation SHOULD support this element.

· This element MAY appear zero or more times within a given set of task properties.

· Like the other consumable resources, this property MAY be categorized as a requested, utilized or dedicated properties by being encompassed in the appropriate elements.

· This element is of type Float.

· It shares the other same properties and attributes as the other consumable resources but it requires an additional name (and optional type) attribute to describe it.

· This element MUST have a name attribute of type String that indicates the type of consumable resource being measured. A compliant implementation MUST support this attribute if the element is supported.

· This element MAY have a type attribute of type String that distinguishes it within a general resource class. A compliant implementation SHOULD support this attribute if the element is supported.

The following are two examples for specifying a Resource element:

<Resource name=”License” type=”MATLAB”>1</Resource>

<Resource name=”Telescope” type=”Zoom2000” wallDuration=”750” metric=”KX”>10</Resource>

7.1.5 NodeProperties Element

The NodeProperties element is used to encapsulate node properties.

· A compliant implementation MAY support this element.

· This element MAY appear zero or one times within a given set of Task Properties.

· This element MUST contain one or more Node Properties.

The following illustrates the syntax of this element:

<NodeProperties>

<!-- Node Properties -->+

</NodeProperties>

The following describes the attributes and elements for the example above:

/NodeProperties

This element is used to encapsulate nodes properties.

/NodeProperties/<Node Property>

A node property.

/NodeProperty/{any}

This is a mechanism to allow extensible node properties to be specified.

/NodeProperty/@{any}

This is a mechanism to allow extensible attributes to be specified for the NodeProperties.

7.1.5.1 Node Properties

Node Properties allow a distinction to be made between the resources or properties you desire for a task, and the resources or properties you want the node than the task runs on to have. For example, you may want your task to only run on nodes that have a certain number of cpu’s, though you will not be using all of them and are still willing to share them with other jobs.

7.1.5.1.1 Consumable Resources

Any of the Consumable Resources described above may be included as node properties.

7.1.5.1.2 Other Optional Simple Node Properties

Other simple (unstructured) node properties are enumerated in Table 8.

Table 8
Optional Simple Node Properties

	Element Name
	Type
	Description
	Appearance
	Compliance
	Categories

	Feature
	String
	Arbitrary named feature of the node.
	MAY
	SHOULD
	

	Name
	String
	Node name or pattern.

	MAY
	MAY
	

7.1.6 Extension Element

The Extension element provides a means to pass extensible properties with the job object.

Some applications may find it easier to deal with a named extension property than discover and handle elements for which they do not understand or anticipate by name.

· This element MUST have a name attribute that is of type String and represents the name of the extension property. A compliant implementation MUST support this attribute if this element is supported.

· This element MAY have a type attribute that is of type String and provides a hint about the context within which the property should be understood. A compliant implementation SHOULD support this attribute if this element is supported.

· The character content of this element is of type String and is the value of the extension property.

The following is an example of an Extension element:

<Extension type=”Scheduler” name=”Restartable”>true</Extension>

8. Property Categories

Certain properties need to be classified as being in a particular category. This is done when it is necessary to distinguish between a property that is requested versus a property that was utilized or dedicated. When no such distinction is necessary, it is recommended that the property not be enveloped in one of these elements. In general, a property should be enveloped in a category element only if it is expected that the property will need to be attributed to more than one property category, or if it needs to make use of some of the special attributes inherited from the category.

8.1 Requested Element

A requested property reflects properties as they were requested. A disparity might occur between the requested value and the values utilized or dedicated if a preference was expressed, if multiple options were specified, or if ranges or pattern matching was specified.

· A compliant implementation SHOULD support this element.

The following illustrates the syntax of this element:

<Requested>

<!-- Requested Properties -->+

</Requested>

The following describes the attributes and elements for the example above:

/Requested

This element is used to encapsulate requested properties.

/Requested/<Requested Property>

Requested properties appear at this level.

Requested Properties inherit some additional attributes.

· A requested property MAY have an op attribute of type String that indicates a conditional operation on the value. A compliant implementation SHOULD support this attribute. Valid values for the op attribute include “eq” meaning equals (which is the default), “ne” meaning not equal, “lt” meaning less than, “gt” meaning greater than, “le” meaning less than or equal to, “ge” meaning greater than or equal to, “match” which implies the value is a pattern to be matched.

· A requested property MAY have a conj attribute of type String that indicates a conjunctive relationship with the previous element. A compliant implementation MAY support this attribute. Valid values for the conj attribute include “and” (which is the default), “or”, “nand” meaning and not, and “nor” meaning or not.

· A requested property MAY have a group attribute of type Integer that indicates expression grouping and operator precedence much like parenthetical groupings. A compliant implementation MAY support this attribute. A positive grouping indicates the number of nested expressions being opened with the property while a negative grouping indicates the number of nested expressions being closed with the property.

· A requested property MAY have a preference attribute of type Integer that indicates a preference for the property along with a weight (the weight are taken as a ratio to the sum of all weights in the same group). A compliant implementation MAY support this attribute. If a group of positive valued preference alternatives are specified, at least one of the preferences must be satisfied for the job to run. If a group of negative valued preferences are specified, the preferences will try to be met according to their weights but the step will still run even if it can’t satisfy any of the preferred properties. (Weight ranking can be removed by making all weights the same value (1 or -1 for example).

The following are four examples of using Requested Properties:

<Requested>

<Processors op=”ge”>8</Processors>

<Processors op=”le”>16</Processors>

<WallDuration>3600</WallDuration>

</Reqested>

<Requested>

<NodeCount>1</NodeCount>

<NodeProperties>

<Name op=”match”>fr15.*</Name>

</NodeProperties>

<Requested>

<Requested>

<UserId group=”1”>scottmo</UserId>

<AccountName group=”-1”>mscfops</AccountName>

<UserId conj=”or” group=”1”>monkeyboy</UserId>

<AccountName group=”-1”>junglehunt</AccountName>

</Requested>

<Requested>

<Memory preference=”2”>1024</Memory>

<Memory preference=”1”>512</Memory>

</Requested>

8.2 Utilized Element

A utilized property reflects properties as they were utilized, realized or consumed. It reflects the actual amounts or values that are used or currently allocated, as opposed to a limit, choice or pattern as may be the case with a requested property, or a dedicated amount that prevents sharing by other work requests.

· A compliant implementation SHOULD support this element.

The following illustrates the syntax of this element:

<Utilized>

<!-- Utilized Properties -->+

</Utilized>

The following describes the attributes and elements for the example above:

/Utilized

This element is used to encapsulate utilized properties.

/Utilized/<Utilized Property>

Utilized properties appear at this level.

Utilized Properties inherit some additional attributes.

· A requested property MAY have a group attribute of type Integer that indicates expression grouping and operator precedence much like parenthetical groupings. A compliant implementation MAY support this attribute. A positive grouping indicates the number of nested expressions being opened with the property while a negative grouping indicates the number of nested expressions being closed with the property. The purpose of this attribute would be to logically group utilized properties if they were used in certain aggregations (like a job that spanned machines).

The following are the same four examples distinguishing the utilized amounts and values:

<Utilized>

<Processors>12</Processors>

<WallDuration>1234</WallDuration>

</Utilized>

<Utilized>

<NodeList>

<Node>fr15n03</Node>

</NodeList>

<Utilized>

<Utilized>

<UserId>scottmo</UserId>

<AccountName>mscfops</AccountName>

</Utilized>

<Utilized>

<Memory>1024</Memory>

</Utilized>

8.3 Dedicated Element

A dedicated property refers to a resource dedicated during the step. For example, a step may request to restrict the usage of certain resources or the entire node thereby preventing it from being shared by other work requests even though the step only needs a portion of the resources to accomplish its work. This may be to avoid conflict introduced when the resource is shared, for confidentiality or any other reason. In such a case, the amount of a resource requested and the amount actually utilized may differ from the amount that was blocked. The dedicated amount might be used for charge purposes, the utilized amount for usage accounting, and requested amount for task assignment.

· A compliant implementation MAY support this element.

The following illustrates the syntax of this element:

<Dedicated>

<!-- Dedicated Properties -->+

</Dedicated>

The following describes the attributes and elements for the example above:

/Dedicated

This element is used to encapsulate dedicated properties.

/Dedicated/<Dedicated Property>

Dedicated properties appear at this level.

Dedicated Properties inherit some additional attributes.

· A requested property MAY have a group attribute of type Integer that indicates expression grouping and operator precedence much like parenthetical groupings. A compliant implementation MAY support this attribute. A positive grouping indicates the number of nested expressions being opened with the property while a negative grouping indicates the number of nested expressions being closed with the property. The purpose of this attribute would be to logically group utilized properties if they were used in certain aggregations (like a job that spanned machines).

The following is an example of specifying dedicated properties:

<Dedicated>

<Processors>16</Processors>

<Resource name=”NetworkAdapter” type=”ELAN4”>2</Resource>

</Dedicated>

9. AwarenessPolicy Attribute

A word or two should be said about compatibility mechanisms. With all the leeway in the specification allowing implementers to choose to implement or not implement various portions of the specification, problems might arise if an implementation simply ignores a portion of a job specification that is critical to the job function in certain contexts, so we might want to enforce a policy in which a job is rejected if any element or attribute contained in it was not understood by the implementation. On the other hand, in many cases jobs will want to interpret them the best they can and have the components implement a best-effort approach to operating on the portions they understand. Consequently, we define an awarenessPolicy attribute which can be added as an optional attribute to the Job element or any other containment or property element to indicate how the property (or the default action for the elements that the containment element encloses) must react when the implementation does not understand an element or attribute.

An awareness policy of “Reject” will cause the server to return a failure if it receives a client request in which it does not support or understand the associated element name or attribute name or value.

An awareness policy of “Warn” will accept the misunderstood element or attribute and continue to process the job object on a best effort basis. However a warning MUST be sent (if possible) to the requestor enumerating the elements and attributes that are not understood.

An awareness policy of “Ignore” will accept the misunderstood element or attribute and continue to process the job object on a best effort basis. The action could be to simply ignore the attribute.

· This name of this attribute is awarenessPolicy.

· This attribute is of type String.

· This attribute can have values of “Reject”, “Warn” or “Ignore”.

· A compliant implementation MAY support this attribute.

· If an implementation does not support the attribute, it MUST adopt the policy of rejecting any job object which contains elements or attributes that it does not support. Furthermore, it SHOULD return a message to the requestor with an indication of the element or attribute name it did not understand.

· This attribute MAY be present in a property or containment element.

· If an implementation does support the attribute, but it is absent, the default value of “Reject” is implied.

· Individual elements within the job object may override the containing object’s awareness policy default by including this attribute. For example, a job might specify an awarenessPolicy of “Reject” at its root (the Job element) but may want to allow a particular subset of elements or attributes to be ignored if not understood. Conversely, a job with a default awarenessPolicy of “Ignore” might want to classify a subset of its optional elements as “Reject” if they are indispensible to its correct interpretation. An implementation can opt to check or not check for this attribute at any level it wants but must assume a “Reject” policy for any elements it does not check.

Job

Step

TaskGroup

Task

Task

Task

Task

Step

Task

Task

Task

Task

TaskGroup

TaskGroup

TaskGroup

