1 The Process Management and Monitoring Working Group
The Process Management and Monitoring Working Group (PMWG) is responsible for defining and implementing three components: the Process Manager, the Checkpoint Manager, and System Monitoring. These components share a need to deal with jobs on the level of individual processes, and thus must all respond to single requests that might be satisfied only through scalable execution across an entire cluster. They also each include a runtime interface to processes on the nodes. These similarities bring the three components together under the same working group.
Members of the working group meet by telephone on alternate weeks or weekly when needed. In addition to the teams developing the three components, members of the Build and Configuration Management Working Group, and the Resource Management Working Group regularly attend the PMWG conference calls to represent their interests as clients of the PMWG components.
Rusty Lusk of Argonne National Lab (ANL) leads the Process Manager team. The Checkpoint Manager team is led by Paul Hargrove of Lawrence Berkeley National Lab (LBNL), who also chairs the PMWG. Mike Showerman of the National Center for Supercomputing Applications (NCSA) leads the System Monitors team.
The remainder of this section describes in greater detail each of the three components within the PMWG.
1.1 The Process Manager Component

This section describes the Process Manager (PM) component: the challenges present in its specification, the accomplishments to date in this area, the interactions this work has engendered both within and beyond the ISIC, and an outline of the plans for the future.

1.1.1 Challenges

The principal challenge of the Process Manager component specification is to precisely delineate what the Process Manager is and is not responsible for and then provide a scalable interface by which its functions can be invoked by other components of the Scalable Systems Software environment. This interface must allow for complete flexibility in specifying a parallel job and its execution environment, including individual executables, command-line arguments and environment variables for each process of a parallel job, and a way of handling standard I/O. The interface must also allow for flexibility and scalability in delivering signals to the processes of a parallel job. To support other tools in the environment, it must be able to provide certain information about a parallel job without encroaching on the domains of other components, such as monitoring components.

A separate challenge of the Process Manager design is the specification of an interface to parallel application software, whether realized as languages or libraries. Scalable startup and runtime communication establishment require that the application communication library, such as an MPI implementation, communicate with the Process Manager, which knows where all the processes of a parallel job have been started. Specification of an interface here allows multiple Process Managers to manage multiple communication libraries in a true component design.

A further challenge to Process Manager specification is to design an interface that provides necessary functionality to tools such as debuggers, profilers, checkpointers and other software that must interact with process management.

1.1.2 Accomplishments

The primary accomplishment to date has been the development of a Process Manager specification that provides a constrained set of functions (other functions have been adopted by other components) but is very flexible and complete. The challenges defined above have been met in this specification. Syntax has been defined for specifying job startup, control, and termination in a scalable way.

A prototype of the Process Manager component has been developed. It provides the defined interface to other Scalable Systems Software components such as the Service Directory, Event Manager, and Queue Manager, and actually starts parallel jobs using the MPD process management system[1], although other systems, such as BProc-based systems[2], could be supported as well. In turn, MPD implements the PMI (Process Management Interface), for use by parallel libraries. In particular, the MPICH implementation of MPI uses the PMI interface to Process Manager services. Thus the prototype Process Manager component described here can be (and has been) used to start large MPI jobs on actual clusters such as the Chiba City research cluster and Jazz production cluster, both at ANL. These are presently the only large-scale clusters where MPD is running as root and thus able to start jobs for multiple users.
At SC2002 the Process Manager was one of a set of components that were demonstrated interacting with one another to process an example job stream.

1.1.3 Interactions

This work has fostered a large number of interactions, within the process management working group, with other working groups within this ISIC, with vendors of scalable computing systems, and with other systems software groups, both research-oriented and commercial.

Within the PMWG, the Process Manager component must supply accurate information to both the monitoring and checkpointing components so they can locate the processes they must monitor or checkpoint.

The Process Manager interacts with several components from outside the PMWG. It registers with the Service Directory and notifies the Event Manager of job start and job termination events. Its most complex task is to start parallel jobs at the request of the Queue Manager, providing environment variables, command-line arguments, permissions, group memberships, etc., in short every aspect of a process's execution environment to the processes of a parallel job. It can also provide startup of associated "co-processes" for debuggers and monitoring applications.

The Process Manager has been a motivating component driving the development of parts of the general communication infrastructure being developed by the Build and Configuration Management Working Group, and has often been the first component to use, and thus test, new interfaces in the ISIC-wide communication library.

A number of parallel computer vendors have expressed interest in this work. IBM is currently planning to use the MPD prototype Process Manager on its BG/L system of 64,000 processors, and some of the Process Manager's capabilities, such as separate command-line arguments for each process, have been motivated by IBM requests. MPD has also been modified to support Myrinet jobs under MPICH-GM in collaboration with Myricom, enabling support for jobs on Chiba City and Jazz at Argonne. Cray has adopted MPICH as the basis of their MPI implementation for Red Storm at Sandia. They intend a YOD-based implementation of the PMI interface. Interfaces are in general strengthened by multiple implementations.

Others interacting with the Process Manager team on process management issues include and Sun and Etnus, who want the Process Manager to facilitate interactive debugging of parallel jobs launched with the Process Manager, and the Paradyne group at Wisconsin for monitoring such jobs. The BProc group at Los Alamos is working with the team to enhance process management for parallel jobs started in the "Clustermatic" environment.

1.1.4 Plans

Near-term plans include completion of the prototype Process Manager component and complete implementation of the interface as adopted by the ISIC as a whole. The MPD Process Manager will be extended to support all of the functionality specifiable through the Process Manager's XML interface. We have not yet dealt with interactive jobs in the Process Manager component, and this needs to be done to support interactive debugging as well as certain types of parallel jobs.

A research issue is how to support the MPI-2 dynamic process management functions, such as MPI_Comm_spawn_multiple, MPI_comm_connect, and MPI_Comm_Accept. These will obviously require support from the process management system, and additions to the PMI interface specifications will be necessary. At that point the Process Manager team will be in a position to begin work on the relevant additions to the external interface of the Process Manager necessary for providing information needed at run time by the dynamic process management functions in the MPI library. We will also begin investigating how to best support less-transparent, non-MPI parallel systems such as those required by UPC or Co-Array Fortran compilers.

1.1.5 References

[1] R. Butler, W. Gropp, and E. Lusk, "Components and Interfaces of a Process Management System for Parallel Programs", Parallel Computing 27(2001), pp. 1417-1429.

[2] BProc Project Home Page, http://bproc.sourceforge.net
1.2 The Checkpoint Manager

This section motivates a distinct Checkpoint Manager (CM) component, and sets the goals it shall meet. The status of the component is described by technical accomplishments and the interactions between the Checkpoint Manager team and other groups, within and beyond this ISIC. Finally, the plans for the future work of this team are outlined.

1.2.1 Motivation

One goal of the PMWG is to define uniform interfaces to checkpointing capabilities. The capability to checkpoint and restart jobs is included in the Scalable Systems Software architecture because it can be valuable in meeting several common goals on terascale computing facilities,.

The PMWG has chosen to standardize the interface to a checkpoint implementation as that of a distinct Checkpoint Manager component. There were three main reasons to do this:
· Doing otherwise would continue the existing practice in which each batch scheduler has a different interface to underlying checkpoint implementations.
· The choice to elevate this interface to component status allows independent implementations of the various components to interface with multiple checkpoint implementations without modification.
· This choice neither requires nor precludes systems in which the checkpoint implementation is tightly integrated with the functionality of the Process Manager component.

1.2.2 Challenges
The main challenge for the Checkpoint Manager interfaces is ensuring that the other components can utilize the checkpoint capabilities to achieve various system-wide goals: providing higher system availability, higher system utilization, lower wait time, and increased fault-tolerance. These four goals highlight three usage scenarios of a Checkpoint Manager, and in turn guide the design of the interfaces.

The first scenario is “CHECKPOINT”, in which the state of a job must be saved in such a way that it can be restored after a reboot. Higher system availability can be achieved by checkpointing jobs shortly before the system (or a portion of it) becomes unavailable due to scheduled down time, eliminating the “queue draining” period which typically results in significant idle time. Similarly, fault-tolerance can be improved met by periodic checkpoints to protect against unscheduled down time.

The second scenario is “SUSPEND”, in which a job is made to temporarily cease its use of resources to allow an another job (or jobs) to use these resources. This permits preemptive scheduling, which helps to increase utilization and lower wait times.

The third scenario is “MIGRATE”, in which a running job is to be moved from its current set of execution nodes to a different, possibly overlapping, set of nodes. This can be used to help meet the goal of increased system availability when only a portion of the system must become unavailable. Migration can also be used to achieve better utilization of resources, such as bandwidth in a network lacking full bisection-bandwidth.

Considering these three distinct usage scenarios for checkpointing when defining interfaces helps express information about intent, allowing the implementation to take advantage of the differing requirements. For instance, migration might be performed without going to disk, entirely over the network or through globally addressable shared memory.

The Checkpoint Manager team is responsible for developing a production quality implementation of the component on Linux clusters, including system-level (application-transparent) checkpointing. However, there is presently no system-level checkpointing available for Linux that meets our users’ requirements[1]. Checkpointing of open files and MPI communication are two of the most challenging requirements.

1.2.3 Accomplishments
At the SC2002 conference, the Checkpoint Manager team demonstrated an early version of system-level checkpointing on Linux clusters. This version uses the vmadump kernel module, maintained by the BProc team at Los Alamos National Lab, with additions to to support multi-threaded applications. There is also new kernel code allowing initiation of checkpoints by any authorized process, and a small shared library implementing an interface to runtime libraries. This runtime interface allows libraries such as MPI to cooperate in the checkpointing and restarting of an application.

To date, work on the Scalable Systems interfaces to the Checkpoint Manager has focused on requirements definition. The PMWG has described these interfaces in terms of the three scenarios given in the Challenges section. Specification as XML has been deferred until the implementation has advanced enough to allow the interface to be explored and tested. This specification work will resume soon.

The current checkpoint implementation supports MPI jobs, as was show in the demo given at SC2002. This MPI support is approximately two years ahead of schedule, and was made possible through collaboration with the LAM/MPI team at Indiana University. The TCP/IP code in LAM/MPI was modified to use the runtime interface; registering code which quiesces network communications immediately before a checkpoint is taken and resumes them afterwards. When an application is restarted from a checkpoint, the TCP/IP sockets among the processes are reconnected, even if they have migrated to different nodes.

The combined system of the Linux checkpoint implementation and the modified LAM/MPI has been demonstrated to generate consistent checkpoints of the NAS Parallel Benchmarks (NBPs) running across multiple nodes. The checkpointed NPBs have been restarted across reboots and migrated among nodes. In all cases the restarted NPBs run to completion and verify their results, demonstrating that all MPI messages in-flight at checkpoint time were successfully delivered exactly once to their intended destinations.

1.2.4 Interactions

The Checkpoint Manager team has been working with the Process Manager team to understand the interaction between these two components when jobs are checkpointed and restored. Interactions on the weekly conference calls of the PMWG and the quarterly face-to-face meetings of the whole ISIC have allowed the Checkpoint Manager team to gather an understanding of how the components of the Resource Management Working Group will use the Checkpoint Manager.

Outside the ISIC group, many additional interactions have been developed related to this work. The most notable are the interactions with three of the major MPI implementations for Linux clusters. The collaboration with Indiana University was developed first due to the relative simplicity of their TCP code relative to that in MPICH-1.2. However the MPICH-2 team has expressed interest in providing support in the future. MPI-softtech, vendor of the commercial MPI/Pro software, has also expressed interest in adding support once the Linux checkpoint/restart code is released to the public.

The Checkpoint Manager team has been working with the BProc team at LANL to share patches to the vmadump code they maintain, and which is used by both BProc and the Linux checkpoint implementation. The Checkpoint Manager team has contributed their vmadump extensions back to the maintainer.

The team has established contacts with groups that are interested in helping to develop future support for Quadrics (at LANL), porting to Linux on the PowerPC (at Ames Lab) and for integration with OpenPBS and PBSPro (Altair Engineering). The team has also established contacts within numerous hardware vendors and cluster vendors/integrators who are interested in offering products that include checkpointing support under Linux. These interactions are expected to strengthen in the coming year.

1.2.5 Plans

The two most immediate tasks for the Checkpoint Manager team are preparing the software for a beta distribution, and implementing Scalable Systems XML interfaces. Once the roughly defined interfaces are implemented for testing, refinement and specification of these interfaces can be completed. These three milestones are scheduled for spring of 2003.

The team is collaborating with the LAM/MPI team to prepare an implementation report describing the chages to LAM/MPI for checkpointing. This report will be submitted to SC2003. The team hopes this report will help to add checkpointing support to other MPI implementations including MPICH-2 and MPI/Pro. A draft will be available in April, 2003.

System-level checkpoint/restart for Linux is unfinished. Support for restoring open files and for checkpointing process groups and sessions are scheduled for spring and summer of 2003. Support for restoring processes with open files is required for most applications. Checkpointing of entire process groups and/or sessions is required, for instance, in order to deal with jobs launched from shell scripts. Beyond file and process group/session support, there are many resources that are not yet saved and restored. Among these are accounting and resource usage records, interval timers and termios structures. Support for restoring these resources will be added as needed. The full set of requirements [1] will be satisfied in FY05.

Once the Linux 2.6 kernel is released, much work is anticipated to port the kernel module and library portions of the implementation. At the same time this is done, the Checkpoint Manager team anticipates rewriting much of the current code to be more robust and maintainable. The team will then port the rewritten version to non-IA32 architectures, including IA64 and PPC. All of this work is tentatively scheduled to begin fall 2003, but depends on the release date of the 2.6 kernel.

Development of the Checkpoint Manager component that presents the Scalable Systems interfaces to other components will proceed concurrently with the development of the Linux checkpoint/restart implementation. In addition to providing the interfaces, the Checkpoint Manager team will develop utilities to allow manual checkpointing by users and systems administrators, and for management of checkpoint files. Through the various contacts detailed in the Interactions section, the team will work to generate support in additional MPI implementations and in widely used batch systems.

1.2.6 References

[1] J. Duell, P. Hargrove, and E. Roman, “Requirements for Linux Checkpoint/Restart”. Berkeley Lab Technical Report LBNL-49659, 2002. http://www.nersc.gov/research/ftg/checkpoint/LBNL-49659.pdf
1.3 System Monitoring
This section is devoted to the System Monitoring component and will present the challenges related to this component, the accomplishments and interactions to date, and the plans for the future.
1.3.1 Challenges
The System Monitoring component is responsible for providing the real-time state data of various components within large-scale computational resource. It focuses on scalability and extensibility into new environments. It provides a framework that is a unified source for collecting data that is often redundantly collected by multiple subsystems within existing systems.

Scalability is central to the design of this component. The number of devices in high performance computing systems has been dramatically increasing for large installations over the last few years. Concurrently, the availability of high quality data at the device level has expanded significantly as well. Network switches, interconnect switches, power controllers, host adapters, storage systems and many other devices now incorporate not only performance information, but other data that is useful in predictive failure analysis such as temperature, voltage, and fan speed information.

In traditional systems, there are multiple separate and often overlapping infrastructures to gather and interpret this information without a common interface to provide the data to its consumers. Resource managers, performance monitors, and administration/health monitors often use independent mechanisms for collecting their own information without any aggregation or sharing. This System Monitoring component must include a common interface specification for the collection and distribution of device data in an extensible and scalable manner.

The primary technical challenge of the implementation design centers around defining an internal communication protocol that minimizes the latencies of a hierarchical structure, and balancing the performance tradeoffs between extensibility and data quality at new scales. Secondary interests involve the creation of a reasonably portable reference implementation at all layers of the hierarchy, and defining a simple functional interface to site-specific shared library examples.
1.3.2 Accomplishments
The System Monitoring component has three phases of the development cycle. The first stage has been completed and is in review, while the second is underway. Stage one involved designing a monitoring system prototype that collects the necessary data for the other Scalable Systems Software components, defining an extensible XML interface. In addition, this interface has been designed and tested to provide a framework that accommodates the expansion of new types data and devices to be monitored. Existing software used for the collection and visualization of system performance data was adapted to use this new communication mechanism, and new applications are being tested to demonstrate the flexibility of the component interface and provide the data graphically. In addition to the collection of system performance data, an application has been developed to view the registration and communications between the software systems contained within the ISIC. This application is helpful in the debugging phase of component interactions, and is also is a visual aid in demonstrating the communication paths within the entire Scalable Systems Software environment.
1.3.3 Interactions

[WAITING FOR TEXT FROM MIKE. SHOULD AT LEAST MENTION LANL’S SUPERMON.]
1.3.4 Plans
The second phase of development is underway for the design and implementation of the software foundation for a scalable extensible monitoring hierarchy. This first involves daemons to monitor hardware/software systems. The design of this software incorporates the use of an abstraction layer that partitions the software between platform/system specific sections, and infrastructure object software. This is partially accomplished by developing portable software objects for the internal data storage and communication mechanisms, while defining a functional interface for the collection and querying of the data. The implementation of this functional interface is provided in dynamically linked shared libraries. This allows a single daemon to collect and export different or new information based on the implementation of libraries linked at run time. This model requires the use of internal data stores that are flexible in the manner they retain their data.

This design also requires additional isolation of the data content from the processing at the middle layers of the collection hierarchy. In this phase, research into the scalability/ data quality/ extensibility tradeoffs will be required to tune the software layer used to aggregate the data and export it via the XML interface. Finalization of the light weight semi-intelligent protocol used between devices producing performance/state data and the aggregation components will be completed during this phase of development.

In the third phase, new visualization software, performance archiving and meta-monitoring components will be developed to demonstrate and test the functionality of this system. For an example of a meta-monitor, a software component can be used to gather job information from the Queue Manager, process information from the Process Manager, and correlate the real-time performance data from the System Monitoring component to provide job-based monitoring. This could provide standardized metrics like actual memory or CPU usage at the job level, or provide new types of job based data as a result of site specific implementations of the data collection shared libraries. In the case of a cluster, this may be current bytes/sec of the Myrinet[1] network for a specific job to help understand performance bottlenecks of a cluster.

Also in the third phase, new functionality to improve administration and scheduling capabilities will be added by providing query engine to the performance database. This could be used to provide an XML response to devices that meet a certain criteria. A scheduler may query online hosts with available CPU, memory, disk, rather than gathering all of the necessary scheduling parameters for suitable and unsuitable hosts to arrive at the same conclusion. Visualization techniques for choosing and displaying meaningful data for very large scale systems will also be developed. This involves both dense data representation, and the creation of metrics that provide sufficient contrast to illuminate the important differences between devices and jobs. An early example of current functional job/system monitoring is represented by NCSA’s Clumon [2] project.
1.3.5 References
[1] Myricom’s myrinet interconnect: http://www.myri.com
[2] Clumon: Cluster monitor used on NCSA’s production clusters http://padmin2.ncsa.uiuc.edu

