The Process Manager Component

In this section we describe the challenges present in the specification of a process manager component, our accomplishments to date in this area, the interactions this work has engendered both inside and outside the Scalable Systems Software Project, and an outline of our plans for the future.

Challenges

The principal challenge of the process manager component specification is to precisely delineate what the process manager is and is not responsible for and then provide a scalable interface by which its functions can be invoked by other components of the Scalable Systems Software environment. This interface must allow for complete flexibility in specifying a parallel job and its execution environment, including individual executables, command-line arguments and environment variables for each process of a parallel job, and a way of handling standard I/O. The interface must also allow for flexibility and scalability in delivering signals to the processes of a parallel job. To support other tools in the environment, it must be able to provide certain information about a parallel job without encroaching on the domains of other components, such as monitoring components.

A separate challenge of the process manager design is the specification of an interface to parallel application software, whether realized as languages or libraries. Scalable startup and runtime communication establishment require that the application communication library, such as an MPI implementation, communicate with the process manager, which knows where all the processes of a parallel job have been started. Specification of an interface here allows multiple process managers to manage multiple communication libraries in a true component design.

A further challenge to process manager specification is to design an interface that provides necessary functionality to tools such as debuggers, profilers, checkpointers and other software that must interact with process management.

Accomplishments

The primary accomplishment to date has been the development of a process manager specification that provides a constrained set of functions (other functions have been adopted by other components) but is very flexible and complete. The challenges defined above have been met in this specification. Syntax has been defined for specifying job startup, control, and termination in a scalable way.

A prototype of the process manager component has been developed. It provides the defined interface to other Scalable Systems Software components such as the Resource Directory, Event Manager, and Job Queue Manager, and actually starts parallel jobs using the MPD process management system[1], although other systems, such as BProc-based systems[2], could be supported as well. In turn, MPD implements the PMI (Process Management Interface), which can be used by parallel libraries. In particular, the MPICH implementation of MPI uses the PMI interface to process manager services. Thus the prototype process manager component described here can be (and has been) used to start large MPI jobs on actual clusters such as Argonne’s Chiba City research cluster and its Jazz production cluster. (These are currently the only large-scale clusters where MPD is running as root and thus can start jobs for multiple users.)

At SuperComputing ’02 the process manager was one of a set of components that were demonstrated interacting with one another to process a simple job stream.

Interactions

This work has fostered a large number of interactions, within the process management working group, with other working groups in the Scalable Systems Software Project, with vendors of scalable computing systems, and with other systems software groups, both research-oriented and commercial.

Within the Process Management Working Group, the process manager component must supply accurate information to both the monitoring and checkpointing components. It must be prepared to deliver signals to all the processes of a parallel job when directed to by the checkpoint manager.

The process manager interacts with several components from outside the process management working group. It registers with the service directory and notifies the event manager of job start and job termination events. Its most complex task is to start parallel jobs at the request of the queue manager, providing environment variables, command-line arguments, permissions, group memberships, etc., in short every aspect of a process’s execution environment to the processes of a parallel job. It can also provide startup of associated “co-processes” for debuggers and monitoring applications.

The process manager has been a motivating component driving the development of parts of the general communication infrastructure being developed by the Build and Configuration Management Working Group, and has often been the first component to use and thus test new interfaces in the project-wide communication library.

A number of parallel computer vendors have expressed interest in this work. IBM is currently planning to use the MPD prototype process manager on its BG/L system of 64,000 processors, and some of the process manager’s capabilities, such as separate command-line arguments for each process, have been motivated by IBM requests. MPD has also been modified to support Myrinet jobs under MPICH-GM in collaboration with Myricom, enabling support for jobs on Chiba City and Jazz at Argonne. Cray has adopted MPICH as the basis of their MPI implementation for Red Storm at Sandia. They intend a YOD-based implementation of the PMI interface. Interfaces are in general strengthened by multiple implementations.

Others interacting with us on process management issues include and Sun and Etnus, who want the Process Manager to facilitate interactive debugging of parallel jobs launched with the process manager, and the Paradyne group at Wisconsin for monitoring such jobs. The BProc group at Los Alamos is working with us to enhance process management for parallel jobs started in the “Clustermatic” environment.

Plans

Near-term plans include completion of the prototype Process Manager component and complete implementation of the interface as adopted by the Scalable Systems Software project as a whole. The MPD process manager will be extended to support all of the functionality specifiable through the process manager’s XML interface. We have not yet dealt with interactive jobs in the process manager component, and this needs to be done to support interactive debugging as well as certain types of parallel jobs.

A research issue is how to support the MPI-2 dynamic process management functions, such as MPI_Comm_spawn_multiple, MPI_comm_connect, and MPI_Comm_Accept. These will obviously require support from the process management system, and additions to the PMI interface specifications will be necessary.; At that point we will be in a position to begin work on the relevant additions to the external interface of the process manager necessary for providing information needed at run time by the dynamic process management functions in the MPI library. We will also begin investigating how to best support less-transparent, non-MPI parallel systems such as those required by UPC or Co-Array Fortran compilers.

References

1. R. Butler, W. Gropp, and E. Lusk, “Components and Interfaces of a Process Management System for Parallel Programs”, Parallel Computing 27(2001), pp. 1417-1429.

2. BProc Project Home Page, http://bproc.sourceforge.net
