
Scalable System Software Process Manager
Specification Draft

Narayan Desai Rusty Lusk Rick Bradshaw

January 20, 2005

1 Functionality

The process manager provides the ability to start and control parallel process
groups across parallel machines. It provides parallel process group bootstrap-
ping, allowing parallel processes (like MPI programs) to execute properly. It
also allows complete specification of different executables, arguments and
environment variables across different ranks. Resource limits supported by
rlimit are supported as startup specifications. This functionality is provided
by the CreateProcessGroup command. Once a process group is running, its
status can be queried, including all startup parameters, running process in-
formation and current execution status. This process information consists of
hostname, process id, and session id. Due to the restriction syntax, all data
can be used for matching in commands.

During execution, process groups can also be killed or signaled, with the
commands KillProcessGroup and SignalProcessGroup, respectively. Once the
process group was exited, a client can call WaitProcessGroup to collect exit
codes and output. This operation also purges all traces of the ProcessGroup
from the system.

2 Commands

• CreateProcessGroup: This command starts a new process group. All
startup parameters are specified in this command, including executable,
user, path, cwd, environment variables, and locational information.

1

This command returns a process group specification element conform-
ing to the less restricted syntax.

• GetProcessGroup: This command gets process information, including
all specifications passed in to CreateProcessGroup. This command also
returns current job state and an element for each currently executing
process. Each currently executing process-group will be returned at
most once, depending on the specification.

• SignalProcessGroup signal=’SIGNAL’ scope=’Global—Single’: Signals
each process-group matching the specification with the signal SIGNAL
once. For Global scope the signal is delivered to all processes in the
process group. In the Single case, the signal is only delivered to “top”
process in each process group.

• KillProcessGroup: Kills each process group matching the specification.
Each matching group is killed exactly once.

• WaitProcessProup: Expunge all information about matching process
groups from the process manager. Each matching process-group is
expunged and returned exactly once.

A usual process group execution consists of a CreateProcessGroup com-
mand followed by polling of GetProcessGroup to determine current execution
status until the process has exited. Finally, a WaitProcessGroup is executed,
which can return process output and exit status, and can remove all traces
of the process group from the process-manager.

3 Process Manager Datatypes

The process manager fundamentally operates on one datatype, the Process-
Group type. These states represent the current operational state of a single
groups of (potentially parallel) running processes. All operations, save Cre-
ateProcessGroup match and operate on them. CreateProcessGroup takes a
different datatype, the ProcessGroupSpecification, which describes all startup
parameters for ProcessGroups. The ProcessGroupSpecification used to in-
stantiate a ProcessGroup instance is included in the corresponding Process-
Group.

2

3.1 ProcessGroupSpecification

ProcessGroupSpecification instances are used in the creation of new parallel
process groups. All attributes needed at creation time are included. A fully
specified example is as follows:

<ProcessGroupSpecification>

<User>username</User>

<Size>32</Size>

<Environment>

<Variable>

<Name>PATH</Name>

<Value>/usr/bin:/usr/sbin:/home/desai/bin</Value>

</Variable>

</Environment>

<Executable>/path/to/program</Executable>

<Arguments>

<Argument>-v</Argument>

<Argument>-q</Argument>

</Arguments>

<Hosts>

<Mode>unordered</Mode>

<List>host1

host2

host3

host4

</List>

</Hosts>

<Limits>

<Limit>

<Name>RSS</Name>

<Value>100MB</Value>

</Limit>

</Limits>

<Diversions>

<Diversion range=’1-31’>

<Executable>/path/to/program.slave</Executable>

</Diversion>

</Diversions>

3

</ProcessGroupSpecification>

This specification describes a process group, to be run as user “user-
name” of size 32. The environment specifies PATH, and the program run is
/path/to/program with the “-v” and “-q” arguments. Four nodes, host1-4,
are specified for this process group, and the ranks may be assigned in any
manner. The diversion clause specifies settings for subsets of nodes that differ
from the main specification. Any of the single or multiple-instance attributes
can be included in this section, and in this case a different executable is run
on processors 1-32. A resource limit of 100MB of memory is also set for all
processes.

3.2 ProcessGroup

ProcessGroup instances describe the current running state of a process group.
This type is mutable over time, with attributes added after the process group
exits. A completely specified example follows:

<ProcessGroup>

<State>Done</State>

<Specification>

<User>username</User>

<Size>4</Size>

<Environment>

<Variable>

<Name>PATH</Name>

<Value>/usr/bin:/usr/sbin:/home/desai/bin</Value>

</Variable>

</Environment>

<Executable>/path/to/program</Executable>

<Arguments>

<Argument>-v</Argument>

<Argument>-q</Argument>

</Arguments>

<Hosts>

<Mode>unordered</Mode>

<List>host1

host2

4

host3

host4

</List>

</Hosts>

<Diversions>

<Diversion range=’1-3’>

<Executable>/path/to/program.slave</Executable>

</Diversion>

</Diversions>

</Specification>

<Processes>

<Process>

<Host>ccn1</Host>

<PID>2453</PID>

<Session>2454</Session>

</Process>

<Process>

<Host>ccn2</Host>

<PID>2455</PID>

<Session>2454</Session>

</Process>

<Process>

<Host>ccn3</Host>

<PID>2453</PID>

<Session>2454</Session>

</Process>

<Process>

<Host>ccn4</Host>

<PID>2453</PID>

<Session>2454</Session>

</Process>

<Process>

<Host>ccn5</Host>

<PID>2453</PID>

<Session>2454</Session>

</Process>

<Process>

<Host>ccn6</Host>

5

<PID>2453</PID>

<Session>2454</Session>

</Process>

<Process>

<Host>ccn7</Host>

<PID>2453</PID>

<Session>2454</Session>

</Process>

<Process>

<Host>ccn8</Host>

<PID>2453</PID>

<Session>2454</Session>

</Process>

</Processes>

<ExitCodes>

<Status>

<Host>host1</Host>

<Code>0</Code>

</Status>

<Status>

<Host>host2</Host>

<Code>0</Code>

</Status>

<Status>

<Host>host3</Host>

<Code>0</Code>

</Status>

<Status>

<Host>3</Host>

<Code>1</Code>

</Status>

</ExitCodes>

<Output>

<Stream>

<Name>stdout</Name>

<Value>process0 on host1

process1 on host2

process2 on host3

6

process4 on host4</Value

</Stream>

</Output>

</ProcessGroup>

4 Events

The process manager emits two events, one upon process-group startup, and
once upon completion. In this example, events pertain to the process group
with pgid 29. These events look like:

<Event>

<Component>process-manager</Component>

<Message>ProcessStart</Message>

<Data>29</Data>

</Event>

<Event>

<Component>process-manager</Component>

<Message>ProcessEnd</Message>

<Data>29</Data>

</Event>

5 Examples

In this section, we give examples of a typical process group execution. This
process usually consists of a CreateProcessGroup command, with an event-
manager subscription delivering pertinent process-manager events. Once a
ProcessEnd event is delivered, the client calls WaitProcessGroup to collect
exit status and clean up after the process. The initial command takes the
form:

<CreateProcessGroup>

<ProcessGroupSpecification>

<User>desai</User>

<Size>8</Size>

<Executable>/bin/false</Executable>

<CWD>/tmp</CWD>

7

<Diversions>

<Diversion>

<Range>6-7</Range>

<Executable>/bin/true</Executable>

<Environment>

<Variable>

<Name>LD_LIBRARY_PATH</Name>

<Value>/local/lib</Value>

</Variable>

</Environment>

<Arguments>

<Argument>-v</Argument>

</Arguments>

</Diversion>

</Diversions>

<HostSpecification>

<Mode>Unordered</Mode>

<Value>ccn1

ccn2

ccn3

ccn4

ccn5

ccn6

ccn7

ccn8

</Value>

</HostSpecification>

</ProcessGroupSpecification>

</CreateProcessGroup>

This command creates a process group consisting of 8 processes, owned
by user “desai”. The program run is “/bin/false” with a current working
directory of “/tmp”. Processes 6 and 7 run a different executable with an
argument and one environment variable set. These programs run on the
nodes ccn1-8, with ranks allocated in any order. This command will return
the following response:

<ProcessGroup>

8

<PGID>29</PGID>

</ProcessGroup>

This response only contains the allocated PGID for the process group
started. Other values can be queried with a GetProcessGroup command.

During execution, the current status of the ProcessGroup can be re-
quested as follows. Fields containing multiple-instance attributes are added
to the ProcessGroup datatype after execution has completed. Once this has
occurred, the ProcessGroup can be reaped with the command WaitProcess-
Group. A query to locate hosts associated with a particular process would
look like the following:

<GetProcessGroup>

<ProcessGroup>

<PGID>29</PGID>

<Processes>

<Process>

<Host match=’false’/>

</Process>

</Processes>

</ProcessGroup>

</GetProcessGroup>

This query requests information about the location of process running as
a part of the ProcessProup with PGID 29. The response looks like:

<ProcessGroups>

<ProcessGroup>

<PGID>29</PGID>

<Processes>

<Process>

<Host>ccn1</Host>

</Process>

<Process>

<Host>ccn2</Host>

</Process>

<Process>

<Host>ccn3</Host>

9

</Process>

<Process>

<Host>ccn4</Host>

</Process>

<Process>

<Host>ccn5</Host>

</Process>

<Process>

<Host>ccn6</Host>

</Process>

<Process>

<Host>ccn7</Host>

</Process>

<Process>

<Host>ccn8</Host>

</Process>

</Processes>

</ProcessGroup>

</ProcessGroups>

Clients can either poll for process-group completion or rely on event sub-
scriptions to provide asynchronous notifications of process group completion.
In the polling case, the following command will return the current execution
status of process-group 29.

<GetProcessGroup>

<ProcessGroup>

<PGID>29</PGID>

<Status match=’false’/>

</ProcessGroup>

</GetProcessGroup>

Once the process group has completed execution, the response will look
like:

<ProcessGroups>

<ProcessGroup>

<PGID>29</PGID>

10

<Status>Finished</Status>

</ProcessGroup>

</ProcessGroups>

Another option is to match both fields against their desired state. In this
scenario, once the process group has completed, a non-empty response will
be returned. This query looks as follows:

<GetProcessGroup>

<ProcessGroup>

<PGID>29</PGID>

<Status>Finished</Status>

</ProcessGroup>

</GetProcessGroup>

The response during execution will be:

<ProcessGroups/>

Once the process group has finished, the same response as above will be
returned. Once the process-group has completed, it must be reaped. This
command looks like:

<WaitProcessGroup>

<ProcessGroup>

<PGID>29</PGID>

<ExitStatus>

<Status>

<Code negate=’true’>0</Code>

<Host match=’false’/>

</Status>

</ExitStatus>

<Output>

<Stream>

<Name op=’re’>stdout|stderr</name>

<Value match=’false’/>

</Stream>

</Output>

</ProcessGroup>

</WaitProcessGroup>

11

This command reaps process group 29, and requests stderr and stdout
output streams. Also, exit codes where non-zero status occurs and the host
location of these processes is returned. For this process group, the response
would look like:

<ProcessGroups>

<ProcessGroup>

<PGID>29</PGID>

<ExitStatus>

<Status>

<Host>ccn2</Host>

<Code>1</Code</Host>

</Status>

<Status>

<Host>ccn6</Host>

<Code>255</Code>

</Status>

</ExitStatus>

<Output>

<Stream>

<Name>stdout</Name>

<Value>process 0 on ccn1

process 1 on ccn2

process 2 on ccn3

process 3 on ccn4

process 4 on ccn5

process 5 on ccn6

process 6 on ccn7

process 7 on ccn8

</Value>

</Stream>

<Stream>

<Name>stderr</Name>

<Value/>

</Stream>

</Output>

</ProcessGroup>

</ProcessGroups>

12

At the conclusion of this process, pgid is expunged from the system, and
all traces of the process-group are gone.

Alternatively, process-groups can be signalled, or directly killed during
execution without waiting for normal process termination. These commands,
KillProcessGroup and SignalProcessGroup operate as follows.

<KillProcessGroup>

<ProcessGroup>

<PGID>29</PGID>

</ProcessGroup>

</KillProcessGroup>

This command kills process-group 29, and only returns the process group
id. Note that the process-group must still be reaped after this command.
Similarly, process-groups can be signaled as follows:

<SignalProcessGroup signal=’SIGKILL’>

<ProcessGroup>

<PGID>29</PGID>

</ProcessGroup>

</SignalProcessGroup>

The preceding command signals process-group 29 with the signal SIGKILL.
Similarly to KillProcessGroup process-group 29 still must be manually reaped.

A XML Schema

B BNF Definition

[InMsg] ::= [CreateCommand]|[Query]

[CreateCommand] ::= <CreateProcessGroup>[PGSpecification]

</CreateProcessGroup>

[PGSpecification] ::= <ProcessGroupSpecification>[PGSattrs]

</ProcessGroupSpecification>

[PGSattrs] ::= [PGSattr]|[PGSattr][PGSattrs]

[PGSattr] ::= <[FieldName]>[FieldValue]</[FieldName]>

[Query] ::= <[ArgCmd][Arguments]>[ProcessGroup]</[ArgCmd]>|

<[Command]>[ProcessGroup]</[Command]>

13

[Command] ::= KillProcessGroup|GetProcessGroup|WaitProcessGroup

[ArgCmd] ::= SignalProcessGroup

[Arguments] ::= []|[Argument]|[Argument] [Arguments]

[Argument] ::= [identifier]=[identifier]

[ProcessGroup] ::= <ProcessGroup>[Fields]</ProcessGroup>

[Fields] ::= [Field]|[Field][Fields]|

[MultiField]|[MultiField][Fields]

[Field] ::= <[FieldName]>[FieldValue]</[FieldName]>

[FieldName] ::= PGID|User|Size|Executable

[FieldValue] ::= identifier

[MultiField] ::= <[FieldGroup]>[MFields]</[FieldGroup]>

[MFields] ::= [MField]|[MField][MFields]

[MField] ::= <[MFName] [Qualifiers]>[MFValue]</[MFName]>

[Qualifiers] ::= []|[Qualifier][Qualifiers]

[Qualifier] ::= [BooleanKey]=[BooleanValue]|

[StringKey]=[StringValue]

[BooleanKey] ::= ’negate’|’match’|’return’

[BooleanValue] ::= ’true’|’false’

[StringKey] ::= ’op’

[StringValue] ::= ’eq’|’ne’|’lt’|’gt’|’le’|’ge’|’range’|’re’

[MFName] ::= HostSpec|Environment|Diversions

[MFValue] :: identifier

14

