
Scalable System Software Restriction Syntax

Specification Draft

May 6, 2004

1 Purpose

The restriction syntax is meant to provide a robust set of semantics for
command sets used by some Scalable Systems Software components. As ini-
tial implementations of components progressed, two primary goals emerged.
The more important is server side matching of data. That is, server side
commands should be able to provide some support for matching so that
clients don’t have to retrieve all data and then post process it. This set
of steps is implicitly prone to race conditions. The only way to avoid this
situation is for servers to provide matching capabilities.

Scalability is the other key concern. As components run on larger sys-
tems, the amount of data handled by said components grows accordingly.
Another important feature is for components to allow subsets of data to be
returned. If only three of ten fields on a group of data are important to a
task, the client should be able request the pertinent subset.

Finally, a uniform syntax for data manipulation between many com-
ponents allows automated heuristics to correlate data from independent
sources. This holds great potential for ad-hoc usage; sites can develop com-
prehensive custom reporting that combines data from a variety of sources.

2 Syntax and Semantics

The restriction syntax is intended to be a simple, flexible, and scalable com-
mand specification scheme. It has been completely implemented in under
200 lines of python.

1



2.1 Syntax

All restriction syntax commands have two basic parts, a command and a
restriction, hence the name “restriction syntax.” The command defines the
action to be taken. Each command is roughly analogous to a function call,
each command having a distinct signature. This command can range from
merely returning data, to modifying it, deleting it, or causing some other
operation on the data. The restriction defines the set of data to be operated
on. These complete commands take the form:

<command option1=’data1’ option2=’data2’>
<data/>

</command>

In this case, the command takes two options, and operates on the set
of results that the data element matches against. Three things are speci-
fied in this single command. First, the set of data elements is specified by
the restriction. Second, the operation is completely specified, including all
needed arguments. Finally, the amount of data to return from the operation
is specified. Each of these subjects is discussed in a subsequent section.

2.2 Matching Semantics

Any operation contains a restriction clause that defines the set of elements
on which it operates. Multiple restrictions are allowed in a single command;
in this case, the command will operate on the union of matches from each
restriction.

Two kinds of matching exist, simple and extended. Simple matching
provides for relationships. The only relationships supported for specification
in the simple matching case are exact equivalence, or wildcarding. Wildcards
are specified using ’*’ as a value.

<node name=’ccn1’ adminstate=’*’/>

The above restriction will match node-typed elements where name is
“ccn1” and adminstate has any value. These rules apply for any element to
element simple match. In a more complicated, hierarchical case, these same
matching rules are applied recursively.

<process-group pgid=’*’>
<process host=’ccn1’ pid=’*’/>

</process-group>

2



In this case, all process groups which have processes on host ccn1 will
match.

Extended matching provides a number of other tests that can be applied
to the values of element attributes. Extended matching is enabled by adding
the attribute match=’extended’ to a specification element. This can be ap-
plied on an element by element basis; that is, a single element in a hierarchy
can use extended matching without requiring its use in other elements.

When using extended matching, the value of each attribute contains
two parts, an operator defining a match, and the value. These are colon
delimited. For example, the value field=“¿:5” evaluates as true for each
element where the value of field is numerically greater than 5. Currently, all
operations in ¡table¿ are supported. New operators are quite easy to add.

2.3 Display Semantics

Once the working set of element for a command is determined and the
command is executed, a response must be constructed for the client. The
contents of the response are determined by the contents of the restriction
in the command. Which parts of matching elements are contained in the
response is also determined by which matching rules were used.

In simple matching cases, all attributes contained in the restriction spec-
ification are included in the response. In the extended matching case, all
attributes are contained in the response unless the string “!d” is prepended
to the operator. In either case child elements included in the specification
are included in the response.

2.4 Uniqueness

Complex queries can contain multiple restriction clauses. This opens up the
possibility of a single data element matching multiple restriction clauses.
This case is optionally handled in the following way. No matter the number
of restriction clauses, a single query will result in at most one match, and
corresponding element in the response. This means that commands match-
ing existing records will be not operate on the same record multiple times.
That is, each record can be returned at most once per response. In the
case that multiple restrictions match the same data record, and the differ-
ent restrictions specify different fields of the element for display, the union
of return fields is returned for display. This feature is activated by adding
the attribute unique=’yes’ to the command part of the restriction.

3



2.5 Command Semantics

All restriction commands effect the underlying dataset in one of three ways.
A command will either create a new record, effect existing records (in-
cluding modifications), or delete existing records. Using the case of the
process manager, the create-process-group command is the only command
with create-type semantics. get-process-group-info, signal-process-group,
and kill-process-group are all commands with existing-record semantics.
wait-process-group is the only command with deletion semantics.

2.6 Examples

Examples of restriction syntax queries and responses don’t make sense with-
out the context of a data set. Each of these sets of examples will contain first
an example data set, then a query, and finally the response. As explained
earlier, these query results are applied to the restriction command.

2.6.1 Simple Match, One Element

Dataset:

<node-states>
<node-state node=’ccn1’ state=’up’ adminstate=’online’/>
<node-state node=’ccn2’ state=’down’ adminstate=’offline’/>
<node-state node=’ccn3’ state=’up’ adminstate=’online’/>
<node-state node=’ccn4’ state=’up’ adminstate=’online’/>
<node-state node=’ccn5’ state=’down’ adminstate=’offline’/>
<node-state node=’ccn6’ state=’up’ adminstate=’offline’/>
<node-state node=’ccn7’ state=’up’ adminstate=’online’/>
<node-state node=’ccn8’ state=’up’ adminstate=’online’/>

</node-states>

Query:

<get-node-state>
<node-state node=’*’ adminstate=’online’/>

</get-node-state>

This query fetches the node and adminstate fields from all node state ele-
ments where adminstate equals online.
Response:

4



<node-states>
<node-state node=’ccn1’ adminstate=’online’/>
<node-state node=’ccn3’ adminstate=’online’/>
<node-state node=’ccn4’’ adminstate=’online’/>
<node-state node=’ccn7’ adminstate=’online’/>
<node-state node=’ccn8’ adminstate=’online’/>

</node-states>

2.6.2 Simple Match, multiple elements

Dataset:

<process-groups>
<process-group pgid=’192’ submitter=’desai’ totalprocs=’2’

output=’merged’ state=’started’>
<process-spec exec=’cpi’ cwd=’/home/desai/stest’

path=’’/usr/bin:/usr/local/bin’’/>
<process host=’ccn1’ pid=’5347’ session=’5348’>
<process host=’ccn2’ pid=’5227’ session=’5228’>

</process-group>
<process-group pgid=’197’ submitter=’lusk’ totalprocs=’4’

output=’merged’ state=’finished’>
<process-spec exec=’mpifract’ cwd=’/home/desai/stest’

path=’’/usr/bin:/usr/local/bin’’/>
<process host=’ccn3’ pid=’5347’ session=’5348’>
<process host=’ccn4’ pid=’5227’ session=’5228’>
<process host=’ccn5’ pid=’4434’ session=’4448’>
<process host=’ccn6’ pid=’227’ session=’228’>
<output/>
<error/>

</process-group>
<process-group pgid=’207’ submitter=’desai’ totalprocs=’2’

output=’merged’ state=’running’>
<process-spec exec=’cpi’ cwd=’/home/desai/stest’

path=’’/usr/bin:/usr/local/bin’’/>
<process host=’ccn7’ pid=’5347’ session=’5348’>
<process host=’ccn8’ pid=’5227’ session=’5228’>

</process-group>
<process-group pgid=’212’ submitter=’desai’ totalprocs=’2’

output=’merged’ state=’running’>

5



<process-spec exec=’mpish’ cwd=’/home/desai/stest’
path=’’/usr/bin:/usr/local/bin’’/>

<process host=’ccn7’ pid=’2147’ session=’5348’>
<process host=’ccn8’ pid=’53427’ session=’5228’>

</process-group>
</process-groups>

Query:

<signal-process-group signal=’SIGKILL’>
<process-group pgid=’*’>

<process host=’ccn7’/>
</process-group>

</signal-process-group>

This query signals (with SIGKILL) all process-groups with a process on
ccn7. Pgids, and process elements on ccn7 are returned.
Response:

<process-groups>
<process-group pgid=’207’>

<process host=’ccn7’/>
</process-group>
<process-group pgid=’212’>

<process host=’ccn7’/>
</process-group>

</process-group>

2.6.3 Simple Match, multiple restrictions

This example uses the data set from 2.6.1.
Query:

<get-node-state>
<node-state node=’*’ adminstate=’online’/>
<node-state node=’*’ state=’down’/>

</get-node-state>

This query fetches different fields based on differing criterion.
Response:

6



<node-states>
<node-state node=’ccn1’ adminstate=’online’/>
<node-state node=’ccn2’ state=’down’/>
<node-state node=’ccn3’ adminstate=’online’/>
<node-state node=’ccn4’ adminstate=’online’/>
<node-state node=’ccn5’ state=’down’/>
<node-state node=’ccn7’ adminstate=’online’/>
<node-state node=’ccn8’ adminstate=’online’/>

</node-states>

2.6.4 Complex Match, one element

This section uses the dataset of 2.6.2.
Query:

<get-process-group>
<process-group pgid=’<:195’ submitter=’!d=:desai’ match=’complex’/>

</get-process-group>

This query fetches all process groups where submitter is ’desai’ and pgid
is greater than 195. Only the pgids are returned, because of the !d specifi-
cation for submitter.

<process-groups>
<process-group pgid=’197’/>
<process-group pgid=’207’/>
<process-group pgid=’212’/>

</process-group>

2.7 SQL Comparison

Any set of matches that can be defined using SQL can be defined using the
restriction syntax. Because of the use of child elements and sparse joins
between disjoint sets of data, terse descriptions of complex sets are possible
using a single restriction that take several SQL queries to describe.

Complex commands can be easily defined. For example, the following
command can be used to find all process groups with processes on a partic-
ular node. It will additionally return process elements for each process on
host “ccn1.”

<get-process-group>

7



<process-group pgid=’*’>
<process host=’ccn1’ pid=’*’/>

</process-group>
</get-process-group>

3 Benefits

With the addition of uniform semantic content processing, all queries become
like database queries. This additional power allows users to run complex
operations without the need for all of these operations to be planned for.
Furthermore, the syntax and semantics of the restriction syntax allow for any
disjoint subset of data elements to be matched; this prevents race conditions.
Thus, any operation on any arbitrary, disjoint subset of data can occur
atomically.

Component transparency is useful; with this style of command, all impor-
tant internal data structures are exposed in a well formed way. This means
that inter-component system debugging becomes very straightforward.

This syntax is compact; complex operations are simply described. While
powerful, the syntax is not so complicated as to pose a large implementation
burden on component writers.

8


