Scalable System Software Restriction Syntax Specification
Draft

July 10, 2003

1 Purpose

The restriction syntax is meant to provide a robust set of semantics for command sets used
by some Scalable Systems Software components. As initial implementations of components
progressed, several goals emerged. The most important is server side matching of data.
That is, server side commands should be able to provide some support for matching so that
clients don’t have to retrieve all data and then post process it. This set of steps is implicitly
prone to race conditions. The only way to avoid this situation is for servers to provide
matching capabilities.

Scalability is another key concern. As components run on larger systems, the amount
of data handled by said components grows accordingly. Another important feature is for
components to allow subsets of data to be returned. If only three of ten fields on a group
of data are important to a task, the client should be able request the pertinent subset.

Finally, a uniform syntax for data manipulation between many components allows auto-
mated heuristics to correlate data from independent sources. This holds great potential for
ad-hoc usage; sites can develop comprehensive custom reporting that combines data from
a variety of sources.

2 Syntax

All restriction syntax commands have two basic parts, a command and a restriction, hence
the name “restriction syntax.” The command defines the action to be taken. This command
can range from merely returning data, to modifying it, deleting it, or causing some other
operation on the data. The restriction defines the set of data to be operated on. These
complete commands take the form:

<command optionl=’datal’ option2=’data2’>
<data-type fieldl=’valuel’ field2=’value2’/>
</command>

In this case the command is command, and optionl and option2 both apply to the
command. Data-type is the restriction, and field1 and field2 are parts of its specification.
2.1 Matching Semantics

The basic matching semantics used by the restriction syntax can be defined as follows.
Each child element of the command is distinct. This means that matched data needs to



correspond only to a single child element. Matching within a single element is accomplished
by matching any data that matches all fields specified by the restriction element. In the
simple example above, any data where field1l and field2 are valuel and value2 respectively
will match. The character “*” can be used as a wildcard, matching any value. The values
of attributes are implicitly “anded” and complete restrictions are implicitly “ored.” This
is disjunctive normal form. There exist proofs showing that any logical construct using
conjunctions and disjunctions can be expressed in terms of disjunctive normal form. This
means that any disjoint set can be described in terms of a single restriction.

<get-node-state>
<node-state state=’online’ node=’ccnl’/>
<node-state state=’offline’ node=’ccn2’/>
</get-node-state>

In the above example, two restrictions are intersected to provide a larger disjoint set.
This command will return node state elements, including fields state and node, if node=’ccnl’
and state=’online’ or if node=’ccn2’ and state="offline’. Depending on current state any-
where between zero and two elements will be returned.

Child nodes of restrictions are handled similarly. A data element has to have at least
one child element analogue that matches each one specified by the restriction.

2.2 Return Semantics

Data returned by any restriction command is solely determined by the content of the re-
striction contained in the command. Any field contained in the restriction is returned. The
wildcard, “*”, mentioned earlier, can be used in cases where the user requires data that
isn’t matched against. This scheme allows simple specification of the fields of interest for
any command. It is worth noting that more data is returned in some cases than desired.
This is done because in the case of complex restrictions, this data is required to differentiate
between data matched by different restriction clauses.

Child data return is governed by the same rules inside of an element. Whole element
inclusion is governed by child nodes included in the restriction.

2.3 Extended Matching Semantics

While whole attribute matching is sufficient for many tasks, there are cases where type-
specific operators are useful. For example, if searching for jobs using more than 10 nodes,
it is handy to be able to specify this explicitly, as opposed to approximating it with exact
matches. To provide these different matching semantics, we have introduced modal match-
ing semantics. If a restriction has the attribute match, and its value is “complex”, the same
semantics are available, but the values of attributes are processed to split an operator from
the desired value. Operators supported include standard infix mathematical operators and
a regular expression match. More operators can be trivially added.

<get-process-group>
<process-group match=’complex’ pgid=’>:5’/>
</get-process-group>

In the above case, process group elements with pgid values greater than 5 are returned.
Because of the above return semantics, only pgid values are returned.



2.4 SQL Comparison

Any set of matches that can be defined using SQL can be defined using the restriction
syntax. Because of the use of child elements and sparse joins between disjoint sets of data,
terse descriptions of complex sets are possible using a single restriction that take several
SQL queries to describe.

Complex commands can be easily defined. For example, the following command can
be used to find all process groups with processes on a particular node. It will additionally
return process elements for each process on host “ccnl.”

<get-process-group>
<process-group pgid=’*’>
<process host=’ccnl’ pid=’%’/>
</process-group>
</get-process-group>

3 Benefits

With the addition of uniform semantic content processing, all queries become like database
queries. This additional power allows users to run complex operations without the need for
all of these operations to be planned for.

Component transparency is useful; with this style of command, all important internal
data structures are exposed in a well formed way. This means that inter-component system
debugging becomes very straightforward.

This syntax is compact; complex operations are simply described. While powerful,
the syntax is not so complicated as to pose a large implementation burden on component
writers.



