
Scalable System Software Communication Infrastructure

Specification

Narayan Desai
Rusty Lusk

Andrew Lusk
Rick Bradshaw

April 9, 2003

1 Scalable Systems Software Architecture

The Scalable System Software (henceforth referred to as SSS) project is defining a compre-
hensive component architecture to address the needs of managers and users of large scale
computation resources, including clusters in the four to ten thousand node scale.

The approach taken in this design is to use discrete components, communicating using
XML messages framed over TCP sockets to provide all of the necessary functionality. It was
taken because of the distributed and varied nature of system software development; many
packages are developed at disparate institutions in many programming languages. This
component architecture is similar to that proposed by the CCA, with some differences.

The job of the communication infrastructure is to provide reliable messaging between
clients and components in the system. Many messages are synchronous, that is, they are
handled immediately. Other messages initiate commands that may take some time to
complete. In this case, use of an asynchronous message avoids many scalability concerns.

The communication infrastructure also handles the transport layer for inter-component
messages. It is important to have a coherent security model; this is completely handled
by the wire protocol implementations. Also, and perhaps most important, the communi-
cation infrastructure needs to be available in many programming languages, as component
and client authors should not be unnecessarily constrained by decisions made during the
specification process.

Note than any XML examples contained within will be valid, but may not be sufficient
to convey the range of flexibility of the component interfaces. Refer to the schemas for the
complete component syntaxes.

2 Wire Protocols

In this document, wire protocols are the union of authentication, persistence and message
framing possessing a unique name. To be explicit, mixing and matching of these attributes
result in a new wire protocol. As these three characteristics are all important, there is
no single wire protocol that is fit for all environments. Site security requirements cause
some wire protocols be mandated or excluded from sites. The components’ work patterns
cause connection persistence to be either desirable (or not). Also, message framing is

1

also dependent on the specifics of the situation. This means that the system needs to
be as flexible as possible with respect to wire protocols. To this end, the definition and
incorporation of new wire protocols must be as friendly and open as possible. Currently six
wire protocols are supported: basic, challenge, memfrob, http, rmhttp, and ssl. (see Section
A)

2.1 Wire Protocol Definition

The basis for service location is a location including a wire protocol, therefore wire protocols
should be clearly defined in a global fashion. In order to define a new wire protocol, a few
things need to be done. First, each protocol should have a unique name. Second, each wire
protocol needs a clear, English language description of the wire protocol, to aid in wire
protocol implementation for component developers. Finally, a reference implementation of
the wire protocol should be completed. These steps will lead to the easy adoption and
incorporation of new wire protocols.

3 Component Location Services

In a component architecture, the individual implementations of components need to be
able to locate one another and determine what interfaces these other components support.
Registration with the service directory is an important part of component startup. This
registration allows communication with other components. These other components would
be clients or other components. Service directory registration is required if a component
either services a published interface (i.e., it provides the “process-manager” interface) or if
it wishes to subscribe to events. This means that all components and many (though not
all) clients will need to register with the service directory in order to properly function in
the system.

The service directory stores this location information and also provides access to this
data with a standard restriction-based syntax. It creates events whenever the component
state changes.

3.1 Bootstrapping

In order to ensure both consistent configuration of the communication infrastructure, and
data security via the wire protocols, all components must use the same bootstrapping data
in order to initialize their communication system. This bootstrapping data consists of
the host, port and protocol (i.e, a location see Section 3.2) for the service directory, and all
necessary configuration information for any wire protocols. This wire protocol configuration
information could consist of a shared secret password, or any other wire protocol specific
data required.

3.2 Location Data

All operations supported by the service directory operate on one basic datatype, the location
type. The location type is data identifying an explicit location of a single (of potentially
many) instance of a service. Locations are composed of four pieces of data: component
name, a hostname (which should be as fully qualified as possible), a port number, and a
wire protocol name. The component name corresponds to the schema(s) that a component

2

supports. The hostname and port are the ip interface and ip port that the component is
responding on. The wire protocol name is the wire protocol that the component is speaking
on the aforementioned ip address/port. Note that a component may register more than
once if more than one schema or host/port/wire protocol tuple is supported. A location
looks as follows.

<location component=’process-manager’ host=’host1’
port=’4567’ proto=’challenge’/>

3.3 Component Usage

Upon startup, a component will bind to a port to enable network communications. After
this has successfully occurred, it must register with the service directory. This is essential
for a few reasons. Most importantly, it is not known what programs will attempt to connect
to said component, so there must be a well-formed, reliable way to determine where it is
on a system. Also, other parts of the communication infrastructure, like the event man-
ager, require a valid service directory registration in order to deliver event notifications.
Once this registration has occurred, the component is known to the service directory, and
other components can determine how to connect to it. Upon shutdown, the component is
responsible for location removal from the service directory.

The next few messages are an example location registration, an example location re-
moval, and the response that the service directory will return for either command. This
response is the set of matches that the command resulted in. In the case of registration,
this will be the service registered if all went well. If the case of removal, this is the set of
all services that were removed.

<add-location>
<location component=’COMPONENT-NAME’ host=’host3.domain’ port=’7435’

protocol=’challenge’/>
</add-location>

<del-location>
<location component=’COMPONENT-NAME’ host=’host3.domain’ port=’7435’

protocol=’challenge’/>
</del-location>

<locations>
<location component=’COMPONENT-NAME’ host=’host3.domain’ port=’7435’

protocol=’challenge’/>
</locations

3.4 Client Usage

When a client wishes to communication with a component, it needs to determine the location
of the component from the service directory. In order to fetch this data from the service
directory, a connection must be made to the service directory, using the bootstrapping
configuration. Once the connection is established, the following message can be used to
fetch complete location data from the service directory.

3

<?xml version=’1.0’?>
<get-locations>
<location component=’<COMPONENT NAME>’ host=’*’ port=’*’ proto=’*’/>
</get-locations>

It is worth noting that this command can include multiple location elements returning
disjoint sets of information. The above can be parsed as follows, return all location elements
where component equals ¡COMPONENT NAME¿. All other fields have been wildcarded.
All fields present in the request will be returned in the response. The response will look
like:

<?xml version=’1.0’?>
<locations>
<location component=’<COMPONENT NAME>’ host=’host1.domain’

port=’5345’ proto=’challenge’/>
<location component=’<COMPONENT NAME>’ host=’host2.domain’

port=’5451’ proto=’challenge’/>
</locations>

Any number of location elements can be in the response. An empty locations element
signifies lack of a registered matching component on the system. If multiple elements are
returned, all can be used interchangeably.

4 Event Management

As was mentioned previously, many operations initiated by SSS component commands may
take some time to complete. In order to allow long-running operations to complete and
provide feedback, asynchronous messages are required. The messaging model is based on
the notion of components not blocking when responding to messages. This means that if
an operation will take time to complete, an identifier should be handed back to the client,
and then an event should be created when the operation has completed. This model was
motivated by a number of scalability concerns; command connections that persist based on
the latency of command completion would be an inherently unscalable solution.

The event manager provides an imperative, subscription based interface to an asyn-
chronous messages. If a component wants to generate an asynchronous notification to
interested parties that some non-instantaneous task has finished it can generate an event,
which will be delivered to interested parties. These interested parties need not be known
to the originator of the event. This component transmits this event to the event manager.
The event manager then handles delivery. In the case of event subscription, a component
is interested in a particular sort of events. It can subscribe to notifications from the event
manager based on some criterion. Once this is completed, the event manager will transmit
any messages matching the criterion to the component. When the component is no longer
interested in these events, or is shutting down, it can unsubscribe from the notifications.

4.1 Event Management Data Types

Event management requires two basic data types. The first of these is the event data type.
The event data type has four parts: component, message, data and time. Component is

4

the name of the component that generated the event. Message and data are the specifics
of the event; message tells the type of event, like “node-state-changed” and data tells what
context the message is valid for, like “ccn256.mcs.anl.gov.” Also, a timestamp generated
by the originator of the event is included.

The other data type is for subscriptions. The subscription data type contains four pieces
of data, component, message, data and notify. Notify is the interested party; it is to be
sent any messages that match the matching criterion. The matching criterion is composed
of three parts, component, message and data. These correspond to the identically named
attributes of the event type. All of these can be either explicit, like requiring data to be
“ccn256.mcs.anl.gov” or they can be wildcarded, by using a wildcard, “**”. Examples for
events and subscriptions follow.

<event component=’node-state-manager’ msg=’node-state-changed’
time=’apr-10-2002-15:32:21’ data=’ccn256.mcs.anl.gov’/>

<subscription component=’process-manager’ msg=’**’ data=’**’
notify=’interested-component’/>

4.2 Event Generation

Most components generate events when substantial progress has been made on a task. For
example, the process manager generates events whenever a process group is started, or
exits. There are no requirements to originators of events other than basic connectivity with
the event manager. The command api consists simply of sending the event manager some
number of events. An example follows, with a response.

<add-events>
<event component=’node-state-manager’ msg=’node-state-changed’

time=’apr-10-2002-15:32:21’ data=’ccn256.mcs.anl.gov’/>
<event component=’node-state-manager’ msg=’node-state-changed’

time=’apr-10-2002-15:32:21’ data=’ccn255.mcs.anl.gov’/>
</add-events>

<events>
<event component=’node-state-manager’ msg=’node-state-changed’

time=’apr-10-2002-15:32:21’ data=’ccn256.mcs.anl.gov’/>
<event component=’node-state-manager’ msg=’node-state-changed’

time=’apr-10-2002-15:32:21’ data=’ccn255.mcs.anl.gov’/>
</events>

4.3 Event Receiver Usage

While a component is running and its location is registered with the service directory, it
is able to subscribe to events. Subscription is achieved by sending a subscription request
to the event manager. When events matching the specification are generated, the event
manager matches them against all subscriptions, and delivers copies of these events to the
component name included in the subscription.

Subscriptions should persist as long as the component does, and no longer. That is, if a
component subscribes to events, but doesn’t unsubscribe before its exit, the event manager

5

can flush the subscription and all associated events. Storing events for a component that
may or may not return is not a scalable solution.

Also, there are potential race conditions having to do with event generation. For ex-
ample, the queue manager creates a process group using the process manager. The process
manager sends an identifier back to the queue manager, in this case a pgid. The queue
manager can then subscribe to all events having to do with the pertinent pgid. If there is
an error, or the process group is very short-lived, then the process-start and even process-
ended events can reach the event manager before the subscription request from the queue
manager. In order to allow the subscribing component to work around this race condition
when appropriate, the event manager maintains a cache of events with fifo expiration. This
means that after subscription, the queue manager can also request all previously generated
matching events that remain in the cache, avoiding the race condition.

A subscription creation request will return the subscription created. After this has
successfully occurred, any matching event will be sent to the client or component on the
port it is registered on.

<add-subscription>
<subscription component=’node-state-manager’ msg=’**’

data=’ccn256.mcs.anl.gov’/>
</add-subscription>

<subscriptions>
<subscription component=’node-state-manager’ msg=’**’

data=’ccn256.mcs.anl.gov’/>
</subscriptions>

Groups of events delivered to the component will look like:

<events>
<event component=’node-state-manager’ msg=’node-state-changed’

data=’ccn256.mcs.anl.gov’ time=’apr-10-2002-15:32:21’/>
<event component=’node-state-manager’ msg=’node-state-changed’

data=’ccn254.mcs.anl.gov’ time=’apr-10-2002-15:32:21’/>
</events>

A Wire Protocol Definitions

The following are english language descriptions of wire protocols currently implemented in
the SSS suite. As mentioned above, this list is by no means exhaustive, and the submission
process is open to any documented wire protocol with a reference implementation. The
section headings correspond to the canonical wire protocol names.

A.1 Basic

The wire protocol basic works as follows. The client connects to the server on the host
and port registered with the service directory. No authentication is required, so once the
socket is established, the session is active. At this point, the client can send a message
to the server. The client sends the length of the message in characters represented as an

6

integer followed by a space. The space functions as a delimiter. Note that the message
length is only the length of the message; it doesn’t include either the preceding message
length or space. The client then transmits the actual message. At this point, the server can
send a response, using symmetric message framing. This set of actions can be repeated an
arbitrary number of times. There is no session shutdown message. The connection can be
terminated based on the state of the underlying socket.

This wire protocol is implemented as the “basic” wire protocol module in SSSlib. Be-
cause of the lack of any authentication, use of this protocol is strongly discouraged. The
challenge protocol, described in the next section has similar performance properties, and
also includes socket based authentication.

A.2 Challenge

The wire protocol basic works as follows. The client connects to the server on the host and
port registered with the service directory. Basic authentication is required; it occurs once
per session. This authentication consists of a challenge response scheme using a shared
secret password. The server sends a randomly generated number delimited by a newline to
the client. The client appends this random number and the shared secret key. This results
in the string being first the random number and then the shared secret password, with no
delimiter. Then it creates an MD5 digest of the string, and sends to back to the server. The
server then sends either a 1 for authentication success or a 0 for failure. At this point, the
server can verify the shared secret key. Also, the key is not transmitted over the network
in cleartext, and the message sent over the network is not easily able to be replayed.

Once authentication has been completed, the client can send a message to the server.
The client sends the length of the message in characters represented as an integer followed
by a space. The space functions as a delimiter. Note than the message length is only the
length of the message; it doesn’t include either the preceding message length or space. This
is followed by transmission of the message. At this point, the server can send a response,
using symmetric message framing. This set of actions can be repeated an arbitrary number
of times. There is no session shutdown message. The connection can be terminated based
on the state of the underlying socket. This wire protocol is implemented as the “challenge”
wire protocol module in SSSlib.

A.3 Memfrob

The wire protocol memfrob works as follows. It is nearly identical to “basic.” The client
connects to the server on the host and port registered with the service directory. No
authentication is required, so once the socket is established, the session is active. At this
point, the client can send a message to the server. The client sends the length of the
message in characters represented as an integer followed by a space. The space functions
as a delimiter. Note than the message length is only the length of the message; it doesn’t
include either the preceding message length or space. The client follows this with the actual
message, in this case, the message run through the glibc memfrob function. At this point,
the server can send a response, using symmetric message framing. This set of actions can
be repeated an arbitrary number of times. There is no session shutdown message. The
connection can be terminated based on the state of the underlying socket.

This wire protocol is implemented as the “memfrob” wire protocol module in SSSlib.
Because of the lack of any authentication, use of this protocol is strongly discouraged, though

7

the messages aren’t transmitted completely in the clear. The challenge protocol, described
in the next section has many of the same performance properties, and also includes socket
based authentication.

A.4 HTTP

The http wire protocol is similar to the basic protocol for connection initialization and
closing. This means that there is no authentication on a per session basis. Message sends
from the client are of the form:

POST /componentname HTTP/1.0
Connection: Keep-Alive
Content-type: text/xml
Content-length: messagelen

message

The component name is placed where ¡componentname¿ is. This allows for multiple
components to share a single http server. The ¡messagelen¿ is replaced with the length of
the message, starting with the first line after the blank line that follows the headers. Other
headers are allowed but are ignored at this time. message is replaced with the body of the
message. The server is formatted in a similar way.

HTTP/1.0 200 OK
Connection: Keep-Alive
Content-type: text/xml
Content-length: messagelen

message

A.5 RMHTTP

The rmhttp wire protocol is identical to the http protocol, with two exceptions. The uri
used in the post is /SSSRMAP instead of /componentname. Also all messages use HTTP
1.1 instead of HTTP 1.0 in headers. Note that this protocol also doesn’t include an session
authentication.

A.6 SSL

B Component Schemas

B.1 Service Directory Data Types

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xml:lang="en">

<xsd:annotation>
<xsd:documentation>

Service Directory datatype schema
SciDAC SSS project
2002 Andrew Lusk alusk@mcs.anl.gov

8

2003 Narayan Desai desai@mcs.anl.gov
</xsd:documentation>

</xsd:annotation>

<xsd:include schemaLocation="sss-error.xsd"/>

<xsd:complexType name="PartialLocation">
<xsd:attribute name="component" type="xsd:string" use="optional"/>
<xsd:attribute name="host" type="xsd:string" use="optional"/>
<xsd:attribute name="port" type="xsd:string" use="optional"/>
<xsd:attribute name="protocol" type="xsd:string" use="optional"/>

</xsd:complexType>

<xsd:simpleType name="PortType">
<xsd:restriction base="xsd:unsignedShort">

<xsd:minInclusive value="1"/>
<xsd:maxInclusive value="65535"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="Location">
<xsd:attribute name="component" type="xsd:string"/>
<xsd:attribute name="host" type="xsd:string"/>
<xsd:attribute name="port" type="PortType"/>
<xsd:attribute name="protocol" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="LocationSet">
<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:element name="location" type="PartialLocation"/>
<xsd:element name="error" type="SSSError"/>

</xsd:choice>
</xsd:complexType>

<xsd:complexType name="SDPartialAction">
<xsd:choice minOccurs="1" maxOccurs="unbounded">

<xsd:element name="location" type="PartialLocation"/>
</xsd:choice>

</xsd:complexType>

<xsd:complexType name="SDFullAction">
<xsd:choice minOccurs="1" maxOccurs="unbounded">

<xsd:element name="location" type="Location"/>
</xsd:choice>

</xsd:complexType>
</xsd:schema>

9

B.2 Service Directory Inbound Schema

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xml:lang="en">

<xsd:annotation>
<xsd:documentation>

Service Directory component schema
SciDAC SSS project
2002 Andrew Lusk alusk@mcs.anl.gov
2003 Narayan Desai desai@mcs.anl.gov

</xsd:documentation>
</xsd:annotation>

<xsd:include schemaLocation="sd-types.xsd"/>

<xsd:element name="add-location" type="SDFullAction"/>
<xsd:element name="del-location" type="SDPartialAction"/>
<xsd:element name="get-location" type="SDPartialAction"/>

</xsd:schema>

B.3 Service Directory Outbound Schema

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xml:lang="en">

<xsd:annotation>
<xsd:documentation>

Service Directory component schema
SciDAC SSS project
2002 Andrew Lusk alusk@mcs.anl.gov
2003 Narayan Desai desai@mcs.anl.gov

</xsd:documentation>
</xsd:annotation>

<xsd:include schemaLocation="sd-types.xsd"/>
<xsd:include schemaLocation="sss-error.xsd"/>

<xsd:element name="locations" type="LocationSet"/>
<xsd:element name="error" type="SSSError"/>

</xsd:schema>

B.4 Event Manager Data Types

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xml:lang="en">

<xsd:annotation>
<xsd:documentation>

Event Manager component schema
SciDAC SSS project
2002 Andrew Lusk alusk@mcs.anl.gov

10

</xsd:documentation>
</xsd:annotation>

<xsd:simpleType name="TimeStampType">
<xsd:restriction base="xsd:string">

<xsd:pattern value="(Mon|Tue|Wed|Thu|Fri|Sat|Sun)
(Jun|Jul|Aug|Sep|Oct|Nov|Dec|Jan|Feb|Mar|Apr|May)
([0-2][0-9])|(3[0-1])
([0-1][0-9])|(2[0-4]):([0-5][0-9]):([0-5][0-9]) [0-9]{4}"/>

</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="Event">
<xsd:attribute name="component" type="xsd:string" use="required"/>
<xsd:attribute name="time" type="xsd:string" use="required"/>
<xsd:attribute name="msg" type="xsd:string" use="required"/>
<xsd:attribute name="data" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:complexType name="PartialEvent">
<xsd:attribute name="component" type="xsd:string" use="optional"/>
<xsd:attribute name="time" type="xsd:string" use="optional"/>
<xsd:attribute name="msg" type="xsd:string" use="optional"/>
<xsd:attribute name="data" type="xsd:string" use="optional"/>

</xsd:complexType>

<xsd:complexType name="Subscription">
<xsd:attribute name="component" type="xsd:string" use="required"/>
<xsd:attribute name="msg" type="xsd:string" use="required"/>
<xsd:attribute name="data" type="xsd:string" use="required"/>
<xsd:attribute name="notify" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:complexType name="PartialSubscription">
<xsd:attribute name="component" type="xsd:string" use="optional"/>
<xsd:attribute name="msg" type="xsd:string" use="optional"/>
<xsd:attribute name="data" type="xsd:string" use="optional"/>
<xsd:attribute name="notify" type="xsd:string" use="optional"/>

</xsd:complexType>

<xsd:complexType name="EMEventPartialAction">
<xsd:choice maxOccurs="unbounded">

<xsd:element name="event" type="PartialEvent"/>
</xsd:choice>

</xsd:complexType>

<xsd:complexType name="EMEventFullAction">
<xsd:choice maxOccurs="unbounded">

11

<xsd:element name="event" type="Event"/>
</xsd:choice>

</xsd:complexType>

<xsd:complexType name="EventSet">
<xsd:choice minOccurs=’0’ maxOccurs="unbounded">

<xsd:element name="event" type="PartialEvent"/>
</xsd:choice>

</xsd:complexType>

<xsd:complexType name="EMSubscriptionPartialAction">
<xsd:choice maxOccurs="unbounded">

<xsd:element name="subscription" type="PartialSubscription"/>
</xsd:choice>

</xsd:complexType>

<xsd:complexType name="EMSubscriptionFullAction">
<xsd:choice maxOccurs="unbounded">

<xsd:element name="subscription" type="Subscription"/>
</xsd:choice>

</xsd:complexType>

<xsd:complexType name="SubscriptionSet">
<xsd:choice minOccurs=’0’ maxOccurs="unbounded">

<xsd:element name="subscription" type="PartialSubscription"/>
</xsd:choice>

</xsd:complexType>
</xsd:schema>

B.5 Event Manager Inbound Schema

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xml:lang="en">

<xsd:annotation>
<xsd:documentation>

Event Manager inbound schema
SciDAC SSS project
2002 Andrew Lusk alusk@mcs.anl.gov
2003 Narayan Desai desai@mcs.anl.gov

</xsd:documentation>
</xsd:annotation>

<xsd:include schemaLocation="em-types.xsd"/>

<xsd:element name="add-event" type="EMEventFullAction"/>
<xsd:element name="get-event" type="EMEventPartialAction"/>
<xsd:element name="add-subscription" type="EMSubscriptionFullAction"/>
<xsd:element name="del-subscription" type="EMSubscriptionPartialAction"/>

12

<xsd:element name="get-subscription" type="EMSubscriptionPartialAction"/>
</xsd:schema>

B.6 Event Manager Outbound Schema

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" xml:lang="en">

<xsd:annotation>
<xsd:documentation>

Event Manager outbound schema
SciDAC SSS project
2002 Andrew Lusk alusk@mcs.anl.gov
2003 Narayan Desai desai@mcs.anl.gov

</xsd:documentation>
</xsd:annotation>

<xsd:include schemaLocation="em-types.xsd"/>
<xsd:include schemaLocation="sss-error.xsd"/>

<xsd:element name="events" type="EventSet"/>
<xsd:element name="subscriptions" type="SubscriptionSet"/>
<xsd:element name="error" type="SSSError"/>

</xsd:schema>

C SSSlib

SSSlib is a wire protocol abstraction library, written in C, with bindings for a number of
other languages. It has been written to ease the process of component and client develop-
ment. Currently, all wire protocols in use by any prototype components are implemented in
the library. (see Appendix A for English language specifications of all wire protocols) Also,
there are bindings for the library available for C, C++, Python, Perl and Java, to facilitate
implementation of new components in any of these languages.

SSSlib provides a handle based interface to communications with SSS components.
Client’s are able to send and receive messages without needing to implement underlying
wire protocols or even interact with sockets.

C.1 Library API

The API of SSSlib consists of 8 function calls. All of these calls either handle the sending and
receiving of messages, or service registration and removal so that the component is registered
with the service directory. Also, the communication library is capable of multiplexing many
concurrently active connections and functioning simultaneously as both a client and a server.

In order to send or receive messages, first a communication handle needs to be initial-
ized. If the component is acting as a client (i.e, it will connect to another component,
send it a command and receive a response) it will call ClientInit. Components handling
incoming connections will call ServerInit. Both of these functions return a handle that can
be used as an identifier for individual operations. Each takes one function; ClientInit takes

13

a component name it should connect to, ServerInit takes a socket that has already been
accepted and negotiates a wire protocol session on it.

The handle returned by either Init function can then be passed to SendMessage or
RecvMessage to send or receive messages on the corresponding SSS communication channel.
Both of these functions take both a handler and a test string message.

Components that need to be reachable from other components also must register with
the service directory. SDRegister and SDRemove abstract the service registration and
removal. Both functions take identical arguments. The arguments are component, host,
port and protocol. These values correspond directly with the data in the location data type
in the service directory. (see Section 3.2)

C.2 Prototypes

The following are the prototypes for the C bindings of SSSlib. Function signatures are as
similar as possible in other languages, though not identical, owing to language differences.

C API

/* SSS_SDRegister - registers with service directory */

int SSS_SDRegister(SSS sss,char *service, char *host, int port, char *protocol);

/* SSS_SDRemove - Removes a component from the service directory */

int SSS_SDRemove(SSS sss,char *service, char *host, int port,char *protocol);

/* SSS_ServerInit - starts a server side end of a wire protocol */

char *SSS_ServerInit(SSS sss,int sock);

/* SSS_ClientInit - starts a client end of a wire protocol */

char *SSS_ClientInit(SSS sss,char *service);

/* SSS_ClientClose - closes a wire protocol connection */

int SSS_ClientClose(SSS sss,char *handle);

/* SSS_ServerClose - closes a wire protocol connection on the server end */

int SSS_ServerClose(SSS sss,char *handle);

/* SSS_SendMessage - sends a message */

int SSS_SendMessage(SSS sss,char *handle,char *message);

/* SSS_RecvMessage - receives a message */

14

char *SSS_RecvMessage(SSS sss,char *handle);

Python API

Perl API

C++ API

Java API

15

