SAND REPORT

SAND2005-xxxx
Unlimited Release
Printed January 2005

APltest v0.2.5 User Guide

William C. McLendon lll, Sandia

Prepared by
Sandia National Laboratories
Albuguerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2005-xxxx
Unlimited Release
Printed January 2005

APIltest v0.2.5 User Guide

William C. McLendon lli
Dept. 9223
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-1110
wcmclen@sandia.gov

Abstract

Distributed software, such as the system management seftiwa parallel and
cluster computers often must be distributed across sepevakssors in a system to
balance the load of allowing multiple users and to handlevidrgous functions of
the system in a scalable manner. System software consigtamf components that
perform various tasks, such as managing the job queue,iricattke account usage,
launching jobs, etc. These components are often distdbaibel must communicate
with each other via some API usually over a network.

Errors are hard to isolate when the whole system is connactgdunning because
it is difficult to determine the exact state of the machinehattime of the crash. This
also makes it difficult to reproduce system failures in a st@aat manner. The analyst
usually must investigate log files to determine what the bag.wrhis can be a very
time intensive process for some bugs.

APltest is a portable test framework developed at Sandiaigerin testing and
validation of distributed software components such asetivés their network APIs.
It is our belief that APItest can be used to test these soffwamponents in an iso-
lated manner by operating on their APIs in order to find bughenAPIs of software
components before they are connected together real system.

Acknowledgement

Thanks to Narayan Desai, Scott Jackson, and Thomas Naufgitpnoviding excellent
feedback and requests that have significantly impacteddtel@apment directions of this
tool.

The format of this report is based on information found in [1]

Contents

NOMENCIATUIE . . . oot e e e e e e 7
0T [T 1o) o 9
INStallationo 10
PrerEqUISIEES . . ot e 10
Installing from Source. e 11
Installing fromaBinary RPM 11
Rebuildinga Source RPM i e 12
Windows Installation. 12
RUNNING AP eSSt e e e e ettt 13
TS S OIS . ittt e e 13
Test Status Codes i e 14
M TS L ettt 15
SO TS S & . v oo e e 17
PSS TOSIS . o e 18
BatCh SCIIPIS . . .ot 20
DepPeNdenCIESo 21
VIeWING RESUISo e 22
CONCIUSION . . . 23
REIEIENCES . . oo 24
Appendix
A Command Line OPtiONS.ottt et e e et e 25
B Example Test SCHPIS e e e 27
C Example BatCh SCrptS.o e e 31
D Encoding Special Characters into XML TextBlocksooovvvvn.... 33
E HowTo Create New TesSt TYPeSt i e 35
F Output File FOrmatso v e e e e e 37
G Selected SCreenshots 43
H ListofInstalled Files i e 49
Figures
1 Listing: Generic testfileoutline uu.ii... 13
2 Listing: CMD testfileoutline uuii... 16
3 Listing: SCRIPT testfileoutline cuu. ... 18
4 Listing: SSStestfileoutline 18

5 Listing: Batch fileoutline i n.. 20
6 Listing: BATCHL.apb i e 21
7 Listing: BATCH2.apb 22
8 Listing: BATCH3.apb 23
Tables
1 Standard<test> Attributes 14
2 TestStatus CodesSot e e 15
3 Standard<command- Attributes 16
4 <input> and<output> Attribute Values for cmd and scripttests 17

Nomenclature

.apt Three letter file name extension fi@stfiles.
.apb Three letter file name extension foatchfiles.

API A pplicationProgramming nterface. In the context of APItest, API refers to the way
in which a component interacts with the operating systentaradher components.

CDATA C haracteDATA is a feature of XML and HTML type documents. It is a text-siyin
that exists between the sart and close aél@ment (ie. <el enment >CDATA</ el emrent >).

DOM Documen©ObjectModel is a form of representation of structured documents(as
XML) as an object-oriented model. DOM is the official World &i\Web Consortium
(W3C) standard for representing structured documents Iatéopm- and language-
neutral manner. See t p: // en. wi ki pedi a. or g/ wi ki / Docunent _Qbj ect _Model
for additional information.

attribute A feature of an XML document. Aattributeis contained within an element, usually
containing some meta-data to that element. {iel. enent attri bute="">

digraph Directed graph.

element A feature of an XML document. Aelemenin XML creates a new node of informa-
tion. (ie. <element). These are sometimes referred tdags

DAG DirectedAcyclic Graph.
GUI GraphicalUserlnterface (pronounced "gooey”).

SSS S$alableSystemSoftware (A SciDAC project, details can be found at the folilogv
url: htt p: // www. sci dac. or g/ Scal abl eSyst ens/ .

XML eXtensibileMarkup Language is a simple, very flexible text format derived from
SGML (ISO 8879. Originally designed to meet the challenges of largeesetdc-
tronic publishing, XML is also playing an increasingly intpent role in the exchange
of a wide variety of data on the Web and elsewhéret p: / / www. w3c. or g/ XM/ |

APIltest v0.2.5 User Guide

Introduction

Distributed software, such as the system management seftargoarallel and cluster com-
puters often must be distributed across several processarsystem to balance the load
of allowing multiple users and to handle the various funtiiof the system in a scalable
manner. System software consists of many components thatpevarious tasks, such
as managing the job queue, tracking the account usage,haagnjobs, etc. These com-
ponents are often distributed and must communicate with etieer via some API usually
over a network.

Errors are hard to isolate when the whole system is connectédunning because it
is difficult to determine the exact state of the machine atitne of the crash. This also
makes it difficult to reproduce system failures in a consisteanner. The analyst usually
must investigate log files to determine what the bug was. Gémsbe a very time intensive
process for some bugs.

APltest is a test framework developed at Sandia for use tmteand validation of
distributed software components such as these via theironketAPIs. It is our belief that
APltest can be used to test these software components ilateld manner by operating
on their APIs in order to find bugs in the APIs of software comgrts before they are
connected together real system.

APltest is developed in Python, which makes it portable s£many different operating
systems. It can run as a command-line utility or it can stpra Ul via. a web browser
to provide a user-friendly environment. APltest offers aifiee and extensable test driver
framework for validation and testing of a wide range of apgiions that include but are
not limited to distributed system software components.

We do not believe that using APItest or other similar testogs on a particular com-
ponent can guarantee it to be bug-free. We do feel that it earsbd as a tool to find bugs
that can be caught before trying to place the component ihéoger, more complicated
setting. It is our belief that APItest can make testing gasjeabstracting the code that
drives a test away from the test input/output sets. In the ods network-based API we
wish to allow the test writer to focus on the buffer-data tlent to transmit rather than
worry about writing a new program for every test. To that emel have developed APItest
to allow new test handlers to be defined and integrated intite&Pwith relative ease.

9

Installation

This section provides instructions on how to install APIt8here are packages that need
to be installed on a system in order for APItest to work. THi®¥ang subsections describe
what prerequisites are needed and the installation proeedu

Prerequisites

APltest requires three packages to be installed beforenibeainstalled and used. These
packages ar®ython> 2.2, Twisted and ElementTree The following table provides a
quick summary of the requirements for APItest.

Python > 2.2 Python runtime environment
http://ww. pyt hon. org
Twisted > 1.0 Twisted application framework

http://ww.tw stedmatrix.com
ElementTree > 1.1 ElementTree module for Python
http://effbot.org/ downl oads/ #el ementtree

Python is the programming language that APItest is develapeSince Python is an
interpreted language kind of like Perl, it must be instatledPltest cannot run.

Twisted is a framework, written in Python, for writing netsked applications. It in-
cludes implementations of many useful network serviceh ss@ web server, etc. APItest
makes extensive use of Twisted’s web service as well as e#reices it provides.

ElementTree is a Python library which parses XML into a DOREtr It provides a
much cleaner and easier to use interface than the default paiger that comes packaged
with Python. We make use of this for loading and processisgderipts and in saving
results.

10

Installing from Source

If you wish to build and install APItest from the source distition, you should follow
these steps.

1. Make sure all prerequisites have been installed.

2. Extract the tar.gz archive.
$ tar -xzf apitest-0.2.5.tar.gz

3. CD into the directory created during extraction.
$ cd apitest-0.2.5

4. Build and install APItest using make.
$ make install
Note: this will most likely need to be done with root permss.

The installation script installsi bapi t est into thesi t e- packages directory of your
current python installation. It also instadipi t est into the default directorjyusr /| ocal / api t est .
This default installation directory can be changed by adithei nst al | _r oot variable in
set up. py via a text editor.

Installing from a Binary RPM

Installing APItest from a binary RPM on an x86 computer cambeomplished using the
following steps on a pc running linux.

1. $ rpm-Wh apitest-0.2.5-1.i386.rpm

See Appendix H for a complete listing of the files this willtals The listing may also
be obtained by issuing the rpm commatfidr pm - qpl apitest-0.2.5-1.i386.rpm

11

Rebuilding a Source RPM

The following steps will guide you thorough building andteding from a source rpm.

1. Create a binary RPM.
$ rpnbuild --rebuild apitest-0.2.5-1.src.rpm

2. Copy the binary RPM to your home directory.
$ cp /usr/src/redhat/RPMS/i 386/ apitest-0.2.5-1.i386.rpm /.

3. Install APItest from the binary rpm.
$ rpm-Uvh apitest-0.2.5-1.i386.rpm

Windows Installation

No windows-specific instructions at this time.

12

Running APltest

APltest can be run either via the command line only or it camupewith a web-browser
based GUI. The former mode allows APItest to be run as a batsyxsstem scheduled task,
while the latter allows a more interactive mode of executidnfull listing of allowable
command line options is available in Appendix A, table A.

Help - $ apitest —help
Test-Only - $ apitestfoptiong -f input file
Graphical - $ apitesfoptions httpd [httpd.options

Graphical Help - $ apitest httpd —help

Test Scripts

Tests are written in XML text files. We refer to these filessagpts Currently there are
two types of scripts that APItest recognizésstandbatchscripts. Atestscript instructs
APItest to execute a command or task. The basic XML struaitieetest file is shown in
Figure 1.

<testDef>
<info>CDATA</info>
<test type=type namé attributes>
<input name=input namé >CDATA </input>

<output name=8utputnamé format="format >CDATA </output>

<[test>
<[testDef>

Figure 1. Listing: Generic test file outline

The top-level root element istestDef>. It serves as the root level element for the
XML document. This element contains two other elements<arfo> element and a
<test> element.

13

The <info> element is common to ALL APIltest input files. There are noilaites
associated with this element. The purpose of this elemédat ihe test developer to write
notes or comments in. Otherwise, this element is not usediteat for any actual testing.
For that, we use thetest> element.

The <test> element contains everything that APItest needs to knowderaio execute
atest. Table 1 shows the attributes associated with thisezle The most critical attribute
for this element is théypeattribute. It tells APItest which handler to use to run thastt
Without it, the test will break and cause unpredictable kran APItest. Currently,
APltest comes with three predefined tggtes cmd script, andsss We say a test is a
"cmd test” if the type attribute oktest> equals "cmd”.

Other parameters, such as working directory, timeout, dcihiag expectation can be
controlled via the optional attributes. These are alsedish table 1. There are also some
sub-elements that can be contained withiest>.

APItest will look for <input> and <output> within a <test- element. There can
many or none of these, as needed by a specific test. Their neuggsest their function
in that an<input> element providegputsto the test andoutput> elements specify the
expected outputsf this test. Since<input> and<output> attribute values are somewhat
dependent on what kind of test they’re being used in, we vedlalibe them in more detalil
in later sections.

<test> Element Attributes
Optional | Attribute | default | Description cmd | script | sss
No type Type of test to run. (REQUIRED) Y Y Y
Yes timeout -1 Timeout in seconds (-1 = infinite). Y Y Y
Yes match YES | PASS if actual output matches
expected? (YES/NO) Y Y Y

Table 1. Standardtest> Attributes

Test Status Codes

A status code is the final exit status of a test. For instarice,tést matched all of its
expected outputs then we might say that the test PASSEDe Tapltovides a listing of
status codes and a brief description of each.

14

Test Status Codes

PASS The test passed

FAIL The test failed

FAILDEP The test did not execute because of one or more fdiggndencies.
TIMEOUT The test ran too long and was killed by APItest

Table 2. Test Status Codes

"cmd” Tests

A cmdtest is a test that executes some command via a direct cominaraill. To specify
atest as a "cmd” test, the/pe attribute in<test> should be "cmd”, or rather:

<test type="cnmd" >

These tests are designed to run some other preexistingylmnaxecutable script on the
system. These tests require one additional XML element tspeeified inside<test>,
called<command-.

The <command- element is used to specify what the actual command we areiexec
ing is. For instance:

<command>| s</ comrand >

will instruct APltest to execute the UNIX directory listirgpmmand "Is”. Building on
the basic test file structure, we can now see the generatwteuaf a "cmd” test in figure 2.

There are several attributes we can specify foctbemmand- attribute that affect how
and where the test is run. We can provide a particular wordtirgctory or run a command
under a different user id. We can also specify which shelutothe command from such
asbash or csh Table 3 provides a listing of the attributes along with bdescriptions.

After the <command- element, we can optionally add som@put> and <output>
elements. Table 4 shows the possible attributes for theseegits focmdandscripttests.
Input elements can provide command-line arguments and btdfers to the commands
being execute. It is allowed to specify multiple arguments.

APltest will recognize only stdout, stderr, or status inpuitelements for cmd and script
tests. These values are the only ones that will make senaetwipt or command since they

15

<testDef>
<info>CDATA</info>
<test type=tmd attributes>
<commandptions>exec/command-
<input name=inputnamé >CDATA </input>

<output name=gutputname format="format’ >CDATA </output>

</[test>

</testDef>
Figure 2. Listing: CMD test file outline
<command> Element Attributes
Optional | Attribute | default | Description cmd | script | sss
Yes interpreter| /bin/sh | Interpreter for test. Y Y
Yes uname current | User name to execute the commagnd
Requires oot permission. Y Y N
Yes wdir Itmp/ | Working directory. Y Y

Table 3. Standardkcommand- Attributes

typically write to standard output, standard error, andaseéxit status upon completion.
We also allow two different types of expected output buffeegular expressions (regexp)
and string literals (literal).

If a regular expression is provided, APItest will determifthe actual output matches
the expected regular expression. If the expected outpustisray literal, APItest will do a
direct string comparison.

If the test developer wishes to ignore some particular digjpeam, such as the standard
error buffer, they can omit azoutput name="stderr®> element and APItest will ignore
standard error. A good rule of thumb here is that APItest anlly check what it’s told to,
everything else is ignored.

16

<input > Attribute Values
name="argument” Specifies an argument to the command.
name="stdin” Specifies a string to send into the stdin buffer

<output> Attribute Values

name="stdout” Specifies this is the expecstdoutbuffer.
name="stderr” Specifies this is the expecstderrbuffer.
name="status” Specifies this is the expeated status
format="literal” Expected output is a literal string.

format="regexp” Expected output is a regular expression.

Table 4. <input> and <output> Attribute Values for cmd and
script tests

"script” Tests

Script tests are similar to command tests. They executekaotayour system as speci-
fied by a script written inline with the APltest test file. Figu3 shows the outline for a
script test. These are nearly identical to cmd tests, the differences being that the test
type attribute is set to "script” and the script body is pthde the CDATA buffer of the
<command- element.

There are no additional attributes for the¢est> element in a script test. See Table 1
for a listing of attributes for thectest> element in script tests.

Script tests also share the same attributes foxtt@mmand- element. Table 3 shows
the relevant attributes. When running a script test, APWékcreate and execute the script
in the working directory provided by the test.

Finally, script tests share the saménput> and <output> format and attributes as
cmd tests. This is reasonable considering the similar ;x@atl outputs a cmd or script will
receive/produce.

17

<testDef>
<info>CDATA</info>
<test type=5cript’ attributes>
<commandptions>
script body
</command-
<input name=input namé >CDATA </input>

<output name=8utputnamé format="format' >CDATA </output>

</[test>
<[testDef>

Figure 3. Listing: SCRIPT test file outline

"sss” Tests

The third test type provided by APltest is th&s’ test. A sss test is designed to work with
the ssslibcommunication package, which is part of the Scalable Systawmject (it t p:

I ' ww. sci dac. or g/ Scal abl eSyst ens). These tests are used to test out APIs of system
software components for this project.

<testDef>
<info>CDATA</info>
<test type=5%s$ destination="%ervicenamé attributes>
<input name="sendbuf* CDATA </input>
<output name="recvbuf’ format$drmat’ >CDATA </output>
<[test>
</testDef>

Figure 4. Listing: SSS test file outline

A sss test represents a single transaction with a SciDAC S@&$eaapplication. A
transaction consists of transmitting some buffer to a servia the sss.ssslib module. One
caveat, we will need the Service Directory (SD) to be runranghe system for the test

18

to work correctly. Also, we generally expect a transactmodnsist of a message to a sss
component and a response back.

Figure 4 shows the outline of a sss test. The basic outlineeisame, but there are
some differences. Thetest> element requires a special attribudest i nat i on, which
specifies the destination service for the message. The caiation library will lookup
the destination in the service directory and transmit thesage buffer to the correct com-
ponent.

There is also a change in tkeénput> and the<output> elements. We only need one
of each for a sss test. Theinput> element specifies the send-buffer for a transaction. It
requires the name attribute to be set to "sendbuf’. The CDAT#ent to the destination
during the test via the ssslib communication library. Keutput> element requires its
name attribute to be assigned "recvbuf’ to specify this ascagive buffer. If<output>
is omitted APlItest will do the send, but not wait for the reeei We do not recommend
extensive use of this feature.

Plese see Appendix B for example SSS test scripts. Additsmnigpts are located in the
sanpl es/ sci dac_sss/ directory.

19

Batch Scripts

A batch script is a script that does not run tests directlyrtner provides a listing of other
tests that are to be run. Batch scripts can contain liststd tksts of other batches, or a mix
of both. These scripts also allow dependencies to be setbettests to enforce execution
order. These dependencies can also be set to allow a testdrebated conditionally
depending on whether or not other tests passed or failed.

<testBatch-
<info>CDATA </info>
<test name=filenamé&/ >

<dep parent=filenamé child="filenamé attributeg>

</[testBatch-

Figure 5. Listing: Batch file outline

This is the structure of a batch testt est > elements do not have to preceddep> elements.
They can be placed in any order in the file.

The basic structure of a batch script is shown in Figure 5. rébeelement of a batch
test is the<testBatch- element. It can contain aginfo> element, and any combination
of <test> and<dep> elements.

Figure 6 shows an example batch script file which will run @gesThis file shows
only <test> elements these tests may execute in any particular ordprattice they will
usually execute in the order of appearance, but withouti@kplependencies set we will

not guarantee the ordering. The following subsection witlk at setting dependencies
between tests.

20

<testBatch>
<info>Some information about this file</info>
<test name="A apt"/>
<test name="B.apt"/>
<test name="C. apt"/>
<test name="D.apt"/>
<test name="E. apt"/>
<test name="F.apt"/>
<[testBatch>

Figure 6. Listing: BATCH1.apb

This listing shows a batch script that will launch tests A -rfleté the. apt
extension indicates these are tests). In this examplegtite will be run in no
particular order.

Dependencies

A batch test can also specify an ordering restriction orsteBhat is, we can specify if we
wantA. apt to run beforeB. apt . Figure 7 extends our previous example shown in Figure 6
by adding dependencies between the tests.

We add dependencies by using thdep> element. Tests listed in@ep element do
not have to be listed previously bya est > element. The format of adep> element is:

<dep parent="t1" child="t2" [status="expectedstatus"]/ >

The status attribute is an optional attribute. It can cont®@#SS, FAIL, or ANY with
PASS being the default value. Thstatusattribute adds a restriction to a particular test
dependency. For example, addisigat us="PASS" means that the parent test must finish
with a PASS status or we say the dependency is failed, willeL means the child test only
executes if the parent FAILED, arANY means the child test will be scheduled after the
parent and will be run regardless of the parent’s statustdétfails its dependency;, it will
not execute and APltest will assign it statéF\ILDEP .

Figure 8 further extends our example by adding a status tiondo the edge between
A.apt and B.apt. In this case, test B.apt will execute if ARBILED when it was run.

21

A.apt

<testBatch> hl |j
<dep parent="A apt" child="B.apt"/ >

<dep parent="A apt" child="C apt"/> B.apt C.apt

<dep parent="C. apt" child="D. apt"/ > ¢ ‘—*

<dep parent="C apt" child="E apt"/> b oot £ oot
<dep parent="D.apt" child="F. apt"/> o o
</ testBatch> ¢
F.apt
(A) (B)

Figure 7. Listing: BATCH2.apb

(A) is a batch containing the tests listed in fig 6, with an oirte now specified. In (B) we see a
graphical illustration of the tests showing the dependdesarchy.

Viewing Results

There are three primary methods that users can view tedtsgamerated by APltest. The
first method is to use the graphical mode of APltest to viewltef a test that was run
during the same session of APItest. The list of runs can beddwy clicking on theBrowse
Session Resultgutton.

These results will no longer be viewable once APltest is siffut A user might still
want to view these results graphically, so we have providedfiiine browser as a part of
APltest. To use this feature, simply start apitest with ie@l mode enableds(api t est
ht t pd) and click theBrowse Saved Result§utton in your browser.

Finally, the results are saved on disk in text files in XML f@atmThe raw output can
be viewed in any text viewer a user wishes to use. These filesared according to a
particular naming convention. More information can be fon the naming of these files
in Appendix F. There are some screenshots showing the taswer in Appendix??

22

<testBatch>
<dep parent="A apt" child="B.apt" status="FAIL"/>
>dep parent="A apt" child="C apt"/>
<dep parent="C. apt" child="D.apt"/>
<dep parent="C.apt" child="E apt"/>
<dep parent="D.apt" child="F. apt"/>
</testBatch>

Figure 8. Listing: BATCH3.apb

A third batch listing, illustrating setting an edge depeme In this case, we add a restriction that
B.apt will only run if test A.apt had a status of FAIL.

Conclusion

APltest is a new open-source framework for driving appiaratests. It provides a portable
and easy to use test framework due to its development in Rythd use of XML scripting
for test writing.

The initial design of APItest was to provide a capability ésttthe API of networked
components such as those in cluster system software intordalidate their APIs. APltest
allows interfaces to be tested for ScCIDAC Scalable Systeftw@oe components using the
ssslib package.

We also added the capability to APItest to run scripts as agkxecute programs via
a command line type shell. This gives users the capabilitggovirtually anything using
APltest.

Finally, due to the object-oriented design of APItest, rehyi new test types can be
defined without having to significantly modify the APIltestdeo Appendix F provides
more detailed instructions for creating new test typess Hilows APItest a large degree
of customization for specific test environments while ailogvtests to still be run natively
under APltest.

23

References

[1] Tamara K. Locke. Guide to preparing SAND reports. Techhreport SAND98-
0730, Sandia National Laboratories, Albuquerque, New kte8i7185 and Livermore,
California 94550, May 1998.

24

A Command Line Options

General Command Line Options

ut)

Short | Long Default | Description
-d | —debug | Disabled| Run APlItest in debug mode.
-0 | —oroot Joutput | Output directory.
-v | —verbose | Disabled| Verbose output.
-t | —timeout | 43200 | Timeout (seconds) to shut down APITest. (-1 = no timeg
-T | —transient| Disabled| If enabled, no output is saved to disk.
—version Print out twisted Version information and exit.

Options For Text-Only Mode

Short

Long

Default

Description

-f

—file

None

Input file (can be aapt or a. apb file).

Options For Graphical Mode

Short | Long Default | Description
-i —iroot A Input Directory
-h | —host localhost| HTTP host URL. (ie. http:Host /
-p | —port 2112 HTTP port number. (ie. http://hogtrt /)

Table A.1. Command line options for APItest.

25

26

B Example Test Scripts

Example "cmd” Test Scripts

The following is an examplemd script that runs the command ”Is -Itr” in /tmp/. The
out put elements specify that APItest will check the stdout buffarthie regular expression
" *” which matches any output. This test will also validateat the command returns
nothing to stderr and exits with a status of 0.

<t est Def >
<info>This test will list out a directory listing. </info>
<test type="cmd" >
<command interpreter="/bin/csh" wdir="/tnp" >l s</command>
<input name="argunent" >-1</input >
<input name="argument" >-t </input >
<input name="argument" >-r </input >
<out put name="stdout" format="regexp">.*</output >

<output name="stderr" format="literal" />
<out put name="st at us" >0</ out put >
<[/test >
</ testDef >

27

Example "script” Test Scripts

In this case, the script prints the characters 'a’,’b’, aodeach on a separate line. The
interpreterattribute in the command element specifies which interptéie script is run
as, and the script will be executed from the wdir directorye o left out an output
element specifying stderr, which tells APItest to comgietgnore any output to stdout.

<t est Def >
<info>Runs a simple script.</info>
<test type="cnd" match="yes" >
<conmmand interpreter="/bin/csh" wdir="/tnp/" >
foreach i ("a 'b" 'c¢’)

echo "$i "
end
</ command>
<out put nanme="stdout" format="regexp" >a\nb\nc\n</out put >
<output name="status" format="literal " >0</output >
<ltest >

</t est Def >

28

Example "sss” Test Scripts

An example SSSlib test which transmits a buffer to the serdicectory and expects any
kind of output in return.

<test Def >
<test type="sss" destination="service-directory">
<input name="sendbuf">& t; get-Iocation> & g;location
conponent =" servi ce-directory’ host="*" port="*" protocol =" *’
schema_version="*" tier="*"/> & t;/get-location> </input>
<out put name="recvbuf" format="regexp">.*</output >
<[/test >
</ test Def >

29

30

C Example Batch Scripts
Here we have some examples of some batch scripts:

<testBatch>
<info>Sanpl e batch script with no dependencies<info>
<test name="sanpl es/cnd/cnd_test 1.apt"/ >
<test name="sanpl es/cnd/cnd_test 2. apt"/ >
<test name="sanpl es/cnd/ cnd_test 3. apt"/ >
<[testBatch>

<testBatch>
<info>Sanpl e batch script with dependenci es<info>
<dep parent="sanpl es/cnmd/cnd_test 1.apt"
chi | d="sanpl es/ cnd/ cnd_test 2. apt"/ >

<dep parent="sanpl es/cnmd/cnd_test _1.apt"
chil d="sanpl es/ cnd/ cnd_test 3. apt" status="PASS'/ >

<dep parent="sanpl es/cmd/cnd_test 3. apt"
chil d="sanpl es/cnd/ cnd_test 2. apt" status="ANY"/ >
<[testBatch>

<testBatch>
<dep parent="sanpl es/cnmd/cnd_test _1.apt"
chil d="sanpl es/ cmd/ cnd_test 2. apt"/ >

<dep parent="sanpl es/cnmd/cnd_test 1.apt"
chil d="sanpl es/ cmd/ cnd_test 3. apt" status="PASS'/ >

<test name="sanpl es/ cnd/ cnd. apb”/ >

<dep parent="sanpl es/cmd/cnd_test 3. apt"
chil d="sanpl es/cnd/ cnd_test 2. apt" status="ANY"/ >

<dep parent="sanpl es/ cnmd/ cnd_not f ound_1. apt”

chil d="sanpl es/cnd/ cnd_test 4. apt" status="FAIL"/>
</testBatch>

31

32

D Encoding Special Characters into XML Text Blocks

One problem encountered in writing tests, especially fob&S&€ SSS components (which
transmit XML enocoded messages from one component to anasHeow exactly we can
encode an XML message into the CDATA portion of another XMiigavithout confusing
the parser. For example, if we want to put the texs&nd_dat a>t est buffer </ send_dat a>
into a<buf f er > element, we might try the following:

<buf f er ><send_dat a>t est buffer </ send_dat a></ buf f er >

Unfortunately, this will confuse an XML parser because il witerpret the "<” char-
acter in<send_dat a> as the start of a new element. The way to get around this isgo us
ad&l t; in place of< in the CDATA buffer. Our example will work if we make it lookikde
this:

<buf fer >& t;send data>test buffer& t;/send.data></ buffer>

This change will allow the XML message to be encoded withirA&@ftest script file.
We can also us> ; to replace> and&anp; to replace & characters too.

33

34

E How To Create New Test Types

Developing a general test framework is no easy task becaesg &pplication is different
and every development environment is also unique. Ourisoldb this problem is to
develop APltest in an object-oriented manner and providiet@nface from a test handler
into the framework itself that is easy for a developer to use.

We provide several test handlers with APltest already (udpt, and sss test types).
Extending these is not difficult for basic tests. The bastcedure is as follows:

1. Obtain the source distribution (the .tar.gz file) andasttit.

2. Edit the testHandler.py file in thie bapi t est/ directory. For a new test type,
newType, add the following function definitions to thest Handl er class.
e do_newType
e cl eanup_newType
e Kill _newType

3. Install your modified version:
$ python setup.py install

Once this is finished, we would like to run our new test type.isTib done via the
<test> element in a .apt file. One might look like:t est type="newType" >.

The following sections will explain what each of the threedtions are and what
APltest expects from each.

The do_.newType() Function

This function is the workhorse of a test. Itis responsiblesicecuting the test and returning
the results back to the APItest calling framework. Sinceté&tlis built on the Twisted
framework, we don’t use a stack-based call system, ratherseeallbacks for tests. This
allows the web-browser and other handlers to perform theictions while a test is still
running.

The callback is executed via inserting this command befriteng:

35

reactor.call Later (0.0, self.procReturned, rval)

This tells the Twisted reactor to call the function selfgReturned(rval) 0.0 seconds after
the currently running function exits.val is a Pythondictionary object storingkeyvalue
pairs. Each key corresponds to the<aoutput name=Key > element, and thealuestores
the actual result APItest takes rval and compares the key:value pairs withettpected
results for a test to determine if the test passes or fails iStthe minimal requirement for
a test to return to the framework, though, we haven't agiuddhe anything yet.

For a test to do something, it needs to gain some informationtavhat the test script
is telling it to do. The testHandler class has a variable deficalledsel f. xnl Test Root ,
which contains the DOM tree of the test. Specifically, it isd@mentTree.Element object
pointing to the<test> element of the DOM tree. This can be navigated to extract the
appropriate instructions using the interfaces providedElmentTree. We advise a test
developer to consult the ElementTree documentation faileetinstructions on the use of
that library.

It should be noted that if a new test type is expected to be-tanging it is useful
to write the test handler in such a way that it is non-blockipigeferably in a stackless
manner using callbacks. Otherwise, the APItest browsdrappear to "hang” while it is
waiting for the function to exit. Examples of how to do thie ahown in the dacript()
and dacmd() handlers.

The do_cleanup.newType() Function

The cleanup function is called as a final step during testliandts purpose is to provide
capability to perform post-processing after a test has deteg. This mightinclude closing
down a process, or deleting or archiving of temporary fildse APItest calling framework
does not require anything special from this function, it keoas a regular stack-based call.

The dokill _newType() Function

The third and final function which APltest expects to find istiéandler is the kill function.
This function’s purpose is to shutdown the test process aitdremediately. When a
timeout threshold is reached for a given test, APItest witlken a call to that tests Kill
function. No special output is required for this functidrisiinvoked using a regular stack-
based call.

36

F Output File Formats

Naming Conventions

The default mode of APItest is to save a copy of the output feotest run to disk. This
output is typically saved in XML output files under a diregtsaved in therootdirectory.
The format of the output directories encodes the date arglairthe run.

A test run executed on September 27th, 2004 at 1:01:00 PMdamuplaced in a di-
rectory such asout put/run. 2004- 09- 27. 13- 01- 00Z/ . Individual test results are are
named according to the following formula:

[b,t]nn.test file.out

The first character is either a "b” or a "t”, corresponding thaether or not the result file is
for a batch or a test file. The next chars are numbers, indig#étie order in which the test
or batch ran. Following the dot, we have the test file namewd by. out . An example
batch output file might be named:

b12. bTest _1. out

A test output file might be named something like:

t32.testfile. out

Saving test output can be disabled by issuing-ther - - t r ansi ent options on the
command-line.

37

Output File for Tests

Test output format outline

<testResul t >
<dep/ >

<out put >
<actual >
<expect >
</ out put >

</testResul t >

testResult element

Thet est Resul t element is the root level element for an APltest test redJiiis element
contains the following attributes:

dep element

One or more of these can be contained within tket Resul t element. This element
contains the status of a tests’ dependencies.

e actual - Actual status of the parent test.
e expect- Expected status of the parent test.

e parent - Parent test file.

output element

The output element contains the following attributes:

e format - Format of the expected output? Valid valueslareer al orregexp.

38

testResult Element Attributes

filename Filename of the test script for which this is a result
md5sum MD5 hash signature of the test file.

pBatchID ID number of the batch file that called this test.
pctMatch Percentage of this test matched (0% or 100%).

pctMatchMax Upper bound percent match range.
pctMatchMin Lower bound percent match range.

runiD ID number of the run in which this test was executed.
status Final status of this test (PASS, FAIL)

testlD ID number of this test.

timeStart Start time.

timeStop Stop time.

timeoutFlag Did this test timeout? "YES” or "NO”.
timeoutTime Time limit for this test (seconds).

uid User ID under which this test is run.
uname User Name under which this test is run.

Table F.2. testResult Element Attributes

e matched- Did the actual and expected output match? ("YES” or "NO”).

e name- The name of this 'output’ buffer? (iet dout orstderr.

An output element contains sub elementst ual >CDATA</ act ual > and<expect >CDATA</ expe
where the CDATA buffers are the actual and expected buffesied for the test.

39

Output File for Batches

Test output format outline

<bat chResul t >
<summary/ >
<childl >

</ bat chResul t >

batchResult element

The batchResult element is the root-level element for ahbfdeeresult.

¢ filename- Filename of the batch script for which this is a result.

md5sum- MD5 hash signature of the test file.

pBatchID - ID number of the batch file that called this batch (if any).

runIiD - ID number of the run this batch occurred in.

status- UNUSED

timeStart - Start time of this batch script.

summary element

A batch result contains one summary element. This givesaguimmary of the contents
of the file. Specifically, it gives the talley of how many testsre in this batch, how many
failed, and how many passed. The attributes forstiverar y element are:

e nFail - Number of tests that failed.

e nPass- Number of tests that passed.

e nTotal - Total number of tests executed by this batch script.

40

child element

For each test contained within this batch, there¢sid d element. This element contains
data about each test that was run, its status code, and IDerufbe elementchi | d>
contains these attributes:

e file - The filename of the test file run.
e status- Status code of this test (ie. PASS, FAIL, FAILDEP, etc).

e testlD - The TestID of this test. This can be used to reveal the otu#rthe tests
were run.

41

42

G Selected Screenshots

This section shows some selected screenshots of APltestiondo give a feel for what
the graphical interface might look like on a user’s system.

] Temina [ENaPR
Eile Edit Wiew Terminal Go Help

% apitest -f testssbatchl,apb =

[FAS5] 2004-03-22T13:12:04Z2 tests/zhell/cmd/cndTestl, apt

[FASS] 2004-03-22T13:12:047 testsSzhell/omd/cndTest?, apt

[PAsS] 2004-03-22T13:12:047 testa/shell/script/scriptTestl,apt

[PAsS] 2004-03-22T12:12:047 testa/shell/script/scriptTest?, apt

[PASS] 2004-03-22T13:12:047 tests/shell/cnd/cmdTestl, apt

[PASS] 2004-03-22T13:12:047 tests/shell/cnd/cmdTest2, apt

[PASS] 2004-09-22T13:12:047 tests/shell/scriptdsoriptTest?, apt

[PASS] 2004-09-22T13:12:047 tests/shell/script/soriptTestl, apt

[PASS] 2004-09-22T13:12:047 tests/shell/cnd/cmdTestl, apt

[PASS] 2004-09-22T13:12:047 tests/shell/cmd/cndTestd, apt

[PASS] 2004-09-22T13:12:042 testz/shell/cnd/cmdTest2, apt

[PASS] 2004-09-22T13:12:042 testz/shell/zcript/scriptTestl,apt

[PiSS] 2004-09-22T13:12:042 testz/shell/zcript/scriptTest2,apt

§

Figure G.1. Running APlItest from in command-line only mode.

43

- OxX
Ele Edt View Go Boo s Help '
% ;:) @ - ﬁ: " () hitps/#iocalhosta1 2/ G 1
| JLocalMET |V 5andia | News [GlGoogle
x
APltest Top Page y
Execute Reset Home Wiew &1l Runs Erowse Saved “Shutdown
[~ fests
[~ | batchl.apb Wigw KL
[T | batch2.apb Wiew KL
[T | batch3.apb iigw KWL
[~ | batchd.apb Wiew KL
[~ fests/batches [
[T | bTest_l.apb Wiew XML
[T | bTest 2.apb Wiew HML
[T | bTest 3.aph Wiew XML
[| bTest_4.aphb iiew ML
[<] | bTest_root.apb Wiew KL
[+ ftests/output
I« | higQutput!.apt Wiaw KL
[| higQutput?.apt Wiew HhL
[| higQutputd.apt Wiew Kbl
[~ estsishellicmd
I lecmdTestl.apt iiew MML
[|cmdTestz.apt Wiew KL
[cmdTests.apt Wiew ¥hL
[lemdTestd.apt iiew ML
[~ cmd_notfound_1.apt Wiew HhL
ey ; 7 -
Bﬂm /’;

Figure G.2. This is the top-level page of APItest that is shown
when initially connecting to APltest.

44

Mozilla Firefox

Ele Edf Uiew Go Buokwarks Took telp

%;\) @ o ﬁ: " httpulocalhost211 ZidisplayruniD=0 NG

| JLocalMET |V 5andia | News [GlGoogle

APltest Test Run

Home iew All Runs Erowse Saved

tests

13 [13 E batchi.aph
tests/batche
4 [4 [0bTest rootaph
tests/output
PASS qQutputl.apt
PASS gQutputZ.apt
PASS gQutput3.apt

testsishellicmd
PASS cmdTest].apt
PASS cmdTestZ.apt
PASS cmdTest3.apt
PASS cmdTestd.apt
tests/shellfscript.
PASS [scriptTesti.apt
PASS | seriptTestz apt
testséshelltimeout
TIMEDOUT | timeouti.apt
testsishellts
PASS timeStamp1.apt
PASS timeStampe. apt
PASS timeStamp3.apt

‘Daone:

Figure G.3. This is the results of the list of tests run during a ses-
sion. This figure shows a completed run that contained aliast t

timed out and some batches. The listing is ordered by dingcto
and sorted.

45

m 0000000000 wozilaFelx [Ey=p
Elle Edit View Go Bookmarks Toole Help)
@3) @) §5 htpiocahost 211 2risplayPhatchiD=0 AN g

{ JLocalNET | U sandia | News [GlGoogle

AFltest Batch Listing

Haome Wiew &l Runs Browse Saved Wiew This Run

tests
9 [9 707 batchz.apb
tests/shellicmd
PASS |cmdTestl.apt
PASS | cmdTestz.apt
tests/shellfscript.
PASS [scriptTesti.apt
PASS | seriptTestz apt

Figure G.4. A batch listing that contains another batch listing
inside it. In this case, the sub-batch test in this batchaionst
another batch. The pass/fail statistics shwon in the Statlusnn
are a sum oéll the batches, recursively.

46

Mozilla Firefox

Eie Edi View Go Backnarks Took Help
%%@ - ﬂ: " hitp#ocalhost217 Zhistory G
| JLocalMET |V 5andia | News [GlGoogle
AFltest Results
o | _Erovee saved |

Z004-08-22 13.00:07 Details

Z004-08-22 12:59:51 Details

2004-08-22 12:58:37 Details

Z004-08-22 12:59:28 Details

2004-08-22 12:56:58 Details

2004-08-22 12:55:25 Details

2004-08-22 12:54:55 Details
Dohe: ”

Figure G.5. Offline test result browser. Each of the test runs
under theoutput directory are listed here and can be investigated
by clicking theDetails link.

a7

Mozilla Firefox
File Edit View Go Bookmarks Tools Help &)

@3 > @ - ﬂ http:/Aocalhast:211 2/displayTtestiD=51

LocalMET | Sandia | News Google

APltest Test Information

I Hame l Wiew All Runs I Browse Saved l Wiew as XhL —

\.
(@]

File Mame: tests/shell’script/scriptTestz apt
Status: FAILDEP

Start Tirme: Z004-09-22T13:05:042

Stop Time: Z004-09-22T13:05:042

mdSsum: 3deB3ac1513848be3405dd 186747 1fh
% Ivatched: MNone

% Match range: [Mone Mohe]
Test Dependencies

PASS PASS tests/shell/script/scriptTest1.apt

[PASS | FAIL | tests/sheliemdicmd Teste.apt

Dane- ¥

Figure G.6. Detailed results on a test that failed to meet a de-
pendency criteria. In this case¢ri pt Test 2 cannot run unless
script Test 1 passed andnmdTest 2 failed. Unfortunately, when
cndTest 2 ran it passed so the dependency not satisfied. Therefore
scri pt Test 2 cannot be executed.

48

H List of Installed Files

Installing the RPM distribution installs the following fde The site-packages directory may
be different if APItest is installed vipyt hon set up. py install, depending upon your
environment.

Site Packages
fusr/1ib/python2.2/site-packages/libapitest/__init__.py
fusr/1ib/python2.2/site-packages/|ibapitest/digraph.py
fusr/1ibl/python2.2/site-packages/!|ibapitest/digraph.pyc
fusr/1ibl/python2.2/site-packages/|ibapitest/htmtools.py
fusr/1ib/python2.2/site-packages/|ibapitest/htmtools.pyc
fusr/1ib/python2.2/site-packages/|ibapitest/httpHandl er. py
[usr/1ib/python2.2/site-packages/|ibapitest/httpHandl er. pyc
fusr/1ibl/python2.2/site-packages/!|ibapitest/inmageHandl er. py
fusr/1ibl/python2.2/site-packages/!|ibapitest/imgeHandl er. pyc
fusr/1ib/python2. 2/site-packages/|ibapitest/jobMnager. py
fusr/1ib/python2.2/site-packages/!|ibapitest/jobManager. pyc
fusr/1ib/python2. 2/site-packages/|ibapitest/|ibapitest.py
[usr/1ibl/python2.2/site-packages/|ibapitest/libapitest.pyc
fusr/1ibl/python2.2/site-packages/|ibapitest/I|ibdebug.py
[usr/1ibl/python2.2/site-packages/|ibapitest/|ibdebug.pyc
fusr/libl/python2.2/site-packages/|ibapitest/systools.py
[usr/libl/python2.2/site-packages/!|ibapitest/systools.pyc
fusr/1ib/python2.2/site-packages/|ibapitest/testHandl er.py
fusr/1ibl/python2.2/site-packages/|ibapitest/testHandl er.pyc
[usr/1ibl/python2.2/site-packages/!|ibapitest/tw stedTools. py
[usr/1ib/python2. 2/site-packages/|ibapitest/tw stedTools. pyc

APltest Executable
fusr/local/apitest/apitest

Samples

fusr/local/apitest/sanpl es/apitest_test.apb
fusr/1ocal /apitest/sanpl es/ batch/bTest _1. apb
fusr/1ocal/apitest/sanpl es/batch/bTest 2. apb
fusr/1ocal/apitest/sanpl es/batch/bTest 3. apb
fusr/1ocal /apitest/sanpl es/ batch/ bTest _4. apb
fusr/1ocal/apitest/sanpl es/ batch/ bTest _5. apb

49

fusr/1ocal /apitest/sanpl es/ batch/ bTest _6. apb
fusr/1ocal/apitest/sanpl es/ batch/bTest _7. apb
fusr/1ocal/apitest/sanpl es/batch/bTest _8. apb
[usr/1ocal/apitest/sanpl es/ batch/bTest _seq. apb
[usr/1ocal/apitest/sanpl es/ batch/batch. apb
fusr/1ocal/apitest/sanpl es/ cmd/ crd. apb
fusr/local/apitest/sanples/cmd/crd_filediff.apt
fusr/local/apitest/sanpl es/cmd/ cmd_not f ound_1. apt
[usr/1ocal/apitest/sanpl es/cnd/ cnmd_not f ound_2. apt
fusr/1ocal/apitest/sanpl es/cnd/cnd_test _1.apt
fusr/local/apitest/sanpl es/ crd/ crmd_t est _2. apt
fusr/local/apitest/sanpl es/ cnd/ crmd_t est _3. apt
fusr/local/apitest/sanpl es/ cnd/ crd_t est _4. apt
fusr/1ocal/apitest/sanpl es/ daenon/ daenoni ze. apt
[usr/1ocal/apitest/sanpl es/ envvar/envvar. apb
[usr/local/apitest/sanpl es/ envvar/envvar _cnd. apt
[usr/1ocal/apitest/sanpl es/ envvar/envvar _cnd_sui d. apt
[usr/1ocal/apitest/sanpl es/ envvar/envvar _script. apt
[usr/1ocal/apitest/sanpl es/ envvar/envvar _script _sui d. apt
fusr/local/apitest/sanples/iolio.apb
fusr/local/apitest/sanples/iolio_large mtchall.apt
fusr/local/apitest/sanples/iolio_large_m ss_stderr.apt
fusr/local/apitest/sanples/iolio_large_m ss_stdout.apt
fusr/local/apitest/sanpl es/scidac_sss/sd/sss_01. apt
fusr/local/apitest/sanpl es/scidac_sss/sd/ sss_02. apt
fusr/local/apitest/sanpl es/scidac_sss/sd/sss_sd.inittest.apb
fusr/1ocal/apitest/sanpl es/scidac_sss/sd/sss_sd_inittest _cl eanup. apt
fusr/local/apitest/sanpl es/scidac_sss/sd/sss_sd_inittest_prep.apt
[usr/1ocal/apitest/sanpl es/scidac_sss/sd/ sss_sd_renove_emng. apt
[usr/local/apitest/sanpl es/scidac_sss/sd/ sss_sdstat sdof f. apt
fusr/local/apitest/sanpl es/scidac_sss/sd/ sss_sdstat _sdon. apt
fusr/local/apitest/sanpl es/scidac_sss/sd/sss_start. apt
fusr/1ocal/apitest/sanpl es/sci dac_sss/sd/ sss_stop. apt
fusr/local/apitest/sanpl es/script/script.apb
fusr/local/apitest/sanples/script/script_test_1.apt
fusr/local/apitest/sanples/script/script_test_2.apt
fusr/local/apitest/sanpl es/script/tinestanp. apt
[usr/local/apitest/sanpl es/suid/suid_cnd_uid. apt
fusr/1ocal/apitest/sanpl es/suid/suid_cnd_unarme. apt
fusr/1ocal/apitest/sanpl es/suid/sui d_cnd_unane_notf ound. apt

50

fusr/1ocal/apitest/sanpl es/suid/suid_cnmd_uname_wdir _1. apt
fusr/1ocal/apitest/sanpl es/suid/ suid_cnmd_uname_wdir _2. apt
fusr/local/apitest/sanpl es/suid/suid_script_uid.apt
fusr/local/apitest/sanpl es/suid/suid_script_unane. apt
[usr/1ocal/apitest/sanpl es/suid/suid_script_unanme_notfound. apt
fusr/local/apitest/sanpl es/suid/suid_script_uname_status. apt
fusr/local/apitest/sanpl es/timeout/timeout. apb
fusr/local/apitest/sanpl es/tineout/timeout. apt

51

DISTRIBUTION:

1

Thomas Naughton
ORNL

1 Bethel Valley Road, bldg.

5600, rm A205
Oak Ridge, TN 37831-6016

MS 1110
William McLendon, 9223

MS 0817
Sue Goudy, 9224

MS 1110
William Hart, 9215

MS 1110
Ron Oldfield, 9223

52

MS 1110
Steve Plimpton, 9212

MS 1110
Neil Pundit, 9223

MS 9018
Central
8940-2

Technical Files,

MS 0899
Technical Library, 4916

MS 0619
Review & Approval Desk,
4916

