
SAND REPORT
SAND2005-xxxx
Unlimited Release
Printed January 2005

APItest v0.2.5 User Guide

William C. McLendon III, Sandia

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of

Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of

the United States Government. Neither the United States Government, nor any agency

thereof, nor any of their employees, nor any of their contractors, subcontractors, or their

employees, make any warranty, express or implied, or assume any legal liability or re-

sponsibility for the accuracy, completeness, or usefulness of any information, appara-

tus, product, or process disclosed, or represent that its use would not infringe privately

owned rights. Reference herein to any specific commercial product, process, or service

by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute

or imply its endorsement, recommendation, or favoring by the United States Govern-

ment, any agency thereof, or any of their contractors or subcontractors. The views and

opinions expressed herein do not necessarily state or reflect those of the United States

Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from

the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
I C

A

SAND2005-xxxx
Unlimited Release

Printed January 2005

APItest v0.2.5 User Guide

William C. McLendon III
Dept. 9223

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1110
wcmclen@sandia.gov

Abstract

Distributed software, such as the system management software for parallel and
cluster computers often must be distributed across severalprocessors in a system to
balance the load of allowing multiple users and to handle thevarious functions of
the system in a scalable manner. System software consists ofmany components that
perform various tasks, such as managing the job queue, tracking the account usage,
launching jobs, etc. These components are often distributed and must communicate
with each other via some API usually over a network.

Errors are hard to isolate when the whole system is connectedand running because
it is difficult to determine the exact state of the machine at the time of the crash. This
also makes it difficult to reproduce system failures in a consistent manner. The analyst
usually must investigate log files to determine what the bug was. This can be a very
time intensive process for some bugs.

APItest is a portable test framework developed at Sandia foruse in testing and
validation of distributed software components such as these via their network APIs.
It is our belief that APItest can be used to test these software components in an iso-
lated manner by operating on their APIs in order to find bugs inthe APIs of software
components before they are connected together real system.

3

Acknowledgement

Thanks to Narayan Desai, Scott Jackson, and Thomas Naughtonfor providing excellent
feedback and requests that have significantly impacted the development directions of this
tool.

The format of this report is based on information found in [1].

4

Contents

Nomenclature .. 7
Introduction .. 9
Installation .. 10

Prerequisites 10
Installing from Source 11
Installing from a Binary RPM 11
Rebuilding a Source RPM 12
Windows Installation 12

Running APItest .. 13
Test Scripts .. 13

Test Status Codes 14
”cmd” Tests 15
”script” Tests 17
”sss” Tests 18

Batch Scripts .. 20
Dependencies 21

Viewing Results .. 22
Conclusion. .. 23
References .. 24

Appendix

A Command Line Options. .. 25
B Example Test Scripts .. 27
C Example Batch Scripts .. 31
D Encoding Special Characters into XML Text Blocks 33
E How To Create New Test Types 35
F Output File Formats .. 37
G Selected Screenshots .. 43
H List of Installed Files .. 49

Figures

1 Listing: Generic test file outline 13
2 Listing: CMD test file outline 16
3 Listing: SCRIPT test file outline 18
4 Listing: SSS test file outline 18

5

5 Listing: Batch file outline 20
6 Listing: BATCH1.apb 21
7 Listing: BATCH2.apb 22
8 Listing: BATCH3.apb 23

Tables

1 Standard<test> Attributes . 14
2 Test Status Codes 15
3 Standard<command> Attributes . 16
4 <input> and<output> Attribute Values for cmd and script tests 17

6

Nomenclature

.apt Three letter file name extension fortestfiles.

.apb Three letter file name extension forbatchfiles.

API A pplicationProgrammingInterface. In the context of APItest, API refers to the way
in which a component interacts with the operating system and/or other components.

CDATA C haracterDATA is a feature of XML and HTML type documents. It is a text-string
that exists between the sart and close of anelement. (ie. <element>CDATA</element>).

DOM DocumentObjectModel is a form of representation of structured documents (such as
XML) as an object-oriented model. DOM is the official World Wide Web Consortium
(W3C) standard for representing structured documents in a platform- and language-
neutral manner. Seehttp://en.wikipedia.org/wiki/Document_Object_Model
for additional information.

attribute A feature of an XML document. Anattributeis contained within an element, usually
containing some meta-data to that element. (ie.<element attribute="">

digraph Directed graph.

element A feature of an XML document. Anelementin XML creates a new node of informa-
tion. (ie.<element>). These are sometimes referred to astags.

DAG DirectedAcyclic Graph.

GUI G raphicalUserInterface (pronounced ”gooey”).

SSS ScalableSystemSoftware (A SciDAC project, details can be found at the following
url: http://www.scidac.org/ScalableSystems/.

XML eXtensibileMarkup Language is a simple, very flexible text format derived from
SGML (ISO 8879). Originally designed to meet the challenges of large-scale elec-
tronic publishing, XML is also playing an increasingly important role in the exchange
of a wide variety of data on the Web and elsewhere.[http://www.w3c.org/XML/]

7

8

APItest v0.2.5 User Guide

Introduction

Distributed software, such as the system management software for parallel and cluster com-
puters often must be distributed across several processorsin a system to balance the load
of allowing multiple users and to handle the various functions of the system in a scalable
manner. System software consists of many components that perform various tasks, such
as managing the job queue, tracking the account usage, launching jobs, etc. These com-
ponents are often distributed and must communicate with each other via some API usually
over a network.

Errors are hard to isolate when the whole system is connectedand running because it
is difficult to determine the exact state of the machine at thetime of the crash. This also
makes it difficult to reproduce system failures in a consistent manner. The analyst usually
must investigate log files to determine what the bug was. Thiscan be a very time intensive
process for some bugs.

APItest is a test framework developed at Sandia for use in testing and validation of
distributed software components such as these via their network APIs. It is our belief that
APItest can be used to test these software components in an isolated manner by operating
on their APIs in order to find bugs in the APIs of software components before they are
connected together real system.

APItest is developed in Python, which makes it portable across many different operating
systems. It can run as a command-line utility or it can start up a GUI via. a web browser
to provide a user-friendly environment. APItest offers a flexible and extensable test driver
framework for validation and testing of a wide range of applications that include but are
not limited to distributed system software components.

We do not believe that using APItest or other similar testingtools on a particular com-
ponent can guarantee it to be bug-free. We do feel that it can be used as a tool to find bugs
that can be caught before trying to place the component into alarger, more complicated
setting. It is our belief that APItest can make testing easier by abstracting the code that
drives a test away from the test input/output sets. In the case of a network-based API we
wish to allow the test writer to focus on the buffer-data theywant to transmit rather than
worry about writing a new program for every test. To that end,we have developed APItest
to allow new test handlers to be defined and integrated into APItest with relative ease.

9

Installation

This section provides instructions on how to install APItest. There are packages that need
to be installed on a system in order for APItest to work. The following subsections describe
what prerequisites are needed and the installation procedure.

Prerequisites

APItest requires three packages to be installed before it can be installed and used. These
packages arePython≥ 2.2, Twisted, andElementTree. The following table provides a
quick summary of the requirements for APItest.

Python ≥ 2.2 Python runtime environment
http://www.python.org

Twisted ≥ 1.0 Twisted application framework
http://www.twistedmatrix.com

ElementTree ≥ 1.1 ElementTree module for Python
http://effbot.org/downloads/#elementtree

Python is the programming language that APItest is developed in. Since Python is an
interpreted language kind of like Perl, it must be installedor APItest cannot run.

Twisted is a framework, written in Python, for writing networked applications. It in-
cludes implementations of many useful network services such as a web server, etc. APItest
makes extensive use of Twisted’s web service as well as otherservices it provides.

ElementTree is a Python library which parses XML into a DOM tree. It provides a
much cleaner and easier to use interface than the default XMLparser that comes packaged
with Python. We make use of this for loading and processing test scripts and in saving
results.

10

Installing from Source

If you wish to build and install APItest from the source distribution, you should follow
these steps.

1. Make sure all prerequisites have been installed.

2. Extract the tar.gz archive.
$ tar -xzf apitest-0.2.5.tar.gz

3. CD into the directory created during extraction.
$ cd apitest-0.2.5

4. Build and install APItest using make.
$ make install
Note: this will most likely need to be done with root permissions.

The installation script installslibapitest into thesite-packages directory of your
current python installation. It also installsapitest into the default directory/usr/local/apitest.
This default installation directory can be changed by editing theinstall root variable in
setup.py via a text editor.

Installing from a Binary RPM

Installing APItest from a binary RPM on an x86 computer can beaccomplished using the
following steps on a pc running linux.

1. $ rpm -Uvh apitest-0.2.5-1.i386.rpm

See Appendix H for a complete listing of the files this will install. The listing may also
be obtained by issuing the rpm command:$ rpm -qpl apitest-0.2.5-1.i386.rpm.

11

Rebuilding a Source RPM

The following steps will guide you thorough building and installing from a source rpm.

1. Create a binary RPM.
$ rpmbuild --rebuild apitest-0.2.5-1.src.rpm

2. Copy the binary RPM to your home directory.
$ cp /usr/src/redhat/RPMS/i386/apitest-0.2.5-1.i386.rpm /.

3. Install APItest from the binary rpm.
$ rpm -Uvh apitest-0.2.5-1.i386.rpm

Windows Installation

No windows-specific instructions at this time.

12

Running APItest

APItest can be run either via the command line only or it can berun with a web-browser
based GUI. The former mode allows APItest to be run as a batch or system scheduled task,
while the latter allows a more interactive mode of execution. A full listing of allowable
command line options is available in Appendix A, table A.

Help - $ apitest –help
Test-Only - $ apitest[options] -f input file
Graphical - $ apitest[options] httpd[httpd options]
Graphical Help - $ apitest httpd –help

Test Scripts

Tests are written in XML text files. We refer to these files asscripts. Currently there are
two types of scripts that APItest recognizes,testandbatchscripts. Atestscript instructs
APItest to execute a command or task. The basic XML structureof a test file is shown in
Figure 1.

<testDef>
<info>CDATA</info>

<test type=”typename” attributes>
<input name=”input name”>CDATA</input>

...
<output name=”outputname” format=”format”>CDATA</output>

...
</test>

</testDef>

Figure 1. Listing: Generic test file outline

The top-level root element is<testDef>. It serves as the root level element for the
XML document. This element contains two other elements, an<info> element and a
<test> element.

13

The <info> element is common to ALL APItest input files. There are no attributes
associated with this element. The purpose of this element isfor the test developer to write
notes or comments in. Otherwise, this element is not used by APItest for any actual testing.
For that, we use the<test> element.

The<test> element contains everything that APItest needs to know in order to execute
a test. Table 1 shows the attributes associated with this element. The most critical attribute
for this element is thetypeattribute. It tells APItest which handler to use to run this test.
Without it, the test will break and cause unpredictable behavior in APItest. Currently,
APItest comes with three predefined testtypes: cmd, script, andsss. We say a test is a
”cmd test” if the type attribute of<test> equals ”cmd”.

Other parameters, such as working directory, timeout, or matching expectation can be
controlled via the optional attributes. These are also listed in table 1. There are also some
sub-elements that can be contained within<test>.

APItest will look for <input> and <output> within a <test> element. There can
many or none of these, as needed by a specific test. Their namessuggest their function
in that an<input> element providesinputsto the test and<output> elements specify the
expected outputsof this test. Since<input> and<output> attribute values are somewhat
dependent on what kind of test they’re being used in, we will describe them in more detail
in later sections.

<test> Element Attributes
Optional Attribute default Description cmd script sss

No type Type of test to run. (REQUIRED) Y Y Y
Yes timeout -1 Timeout in seconds (-1 = infinite). Y Y Y
Yes match YES PASS if actual output matches

expected? (YES/NO) Y Y Y

Table 1. Standard<test> Attributes

Test Status Codes

A status code is the final exit status of a test. For instance, if a test matched all of its
expected outputs then we might say that the test PASSED. Table 2 provides a listing of
status codes and a brief description of each.

14

Test Status Codes
PASS The test passed
FAIL The test failed
FAILDEP The test did not execute because of one or more faileddependencies.
TIMEOUT The test ran too long and was killed by APItest

Table 2. Test Status Codes

”cmd” Tests

A cmdtest is a test that executes some command via a direct command-line call. To specify
a test as a ”cmd” test, thetype attribute in<test> should be ”cmd”, or rather:

<test type="cmd">

These tests are designed to run some other preexisting binary or executable script on the
system. These tests require one additional XML element to bespecified inside<test>,
called<command>.

The<command> element is used to specify what the actual command we are execut-
ing is. For instance:

<command>ls</command>

will instruct APItest to execute the UNIX directory listingcommand ”ls”. Building on
the basic test file structure, we can now see the general structure of a ”cmd” test in figure 2.

There are several attributes we can specify for the<command> attribute that affect how
and where the test is run. We can provide a particular workingdirectory or run a command
under a different user id. We can also specify which shell to run the command from such
asbash or csh. Table 3 provides a listing of the attributes along with brief descriptions.

After the<command> element, we can optionally add some<input> and<output>
elements. Table 4 shows the possible attributes for these elements forcmdandscript tests.
Input elements can provide command-line arguments and stdin buffers to the commands
being execute. It is allowed to specify multiple arguments.

APItest will recognize only stdout, stderr, or status in output elements for cmd and script
tests. These values are the only ones that will make sense fora script or command since they

15

<testDef>
<info>CDATA</info>

<test type=”cmd” attributes>
<commandoptions>exec</command>
<input name=”input name”>CDATA</input>

...
<output name=”outputname” format=”format”>CDATA</output>

...
</test>

</testDef>

Figure 2. Listing: CMD test file outline

<command> Element Attributes
Optional Attribute default Description cmd script sss

Yes interpreter /bin/sh Interpreter for test. Y Y
Yes uname current User name to execute the command

Requiresroot permission. Y Y N
Yes wdir /tmp/ Working directory. Y Y

Table 3. Standard<command> Attributes

typically write to standard output, standard error, and setan exit status upon completion.
We also allow two different types of expected output buffers: regular expressions (regexp)
and string literals (literal).

If a regular expression is provided, APItest will determineif the actual output matches
the expected regular expression. If the expected output is astring literal, APItest will do a
direct string comparison.

If the test developer wishes to ignore some particular output stream, such as the standard
error buffer, they can omit a<output name=”stderr”> element and APItest will ignore
standard error. A good rule of thumb here is that APItest willonly check what it’s told to,
everything else is ignored.

16

<input> Attribute Values
name=”argument” Specifies an argument to the command.
name=”stdin” Specifies a string to send into the stdin buffer

<output> Attribute Values
name=”stdout” Specifies this is the expectedstdoutbuffer.
name=”stderr” Specifies this is the expectedstderrbuffer.
name=”status” Specifies this is the expectedexit status.
format=”literal” Expected output is a literal string.
format=”regexp” Expected output is a regular expression.

Table 4. <input> and<output> Attribute Values for cmd and
script tests

”script” Tests

Script tests are similar to command tests. They execute a task on your system as speci-
fied by a script written inline with the APItest test file. Figure 3 shows the outline for a
script test. These are nearly identical to cmd tests, the only differences being that the test
type attribute is set to ”script” and the script body is placed in the CDATA buffer of the
<command> element.

There are no additional attributes for the<test> element in a script test. See Table 1
for a listing of attributes for the<test> element in script tests.

Script tests also share the same attributes for the<command> element. Table 3 shows
the relevant attributes. When running a script test, APItest will create and execute the script
in the working directory provided by the test.

Finally, script tests share the same<input> and<output> format and attributes as
cmd tests. This is reasonable considering the similar inputs and outputs a cmd or script will
receive/produce.

17

<testDef>
<info>CDATA</info>

<test type=”script” attributes>
<commandoptions>
script body
</command>
<input name=”input name”>CDATA</input>

...
<output name=”outputname” format=”format”>CDATA</output>

...
</test>

</testDef>

Figure 3. Listing: SCRIPT test file outline

”sss” Tests

The third test type provided by APItest is the ”sss” test. A sss test is designed to work with
the ssslibcommunication package, which is part of the Scalable Systems project (http:
//www.scidac.org/ScalableSystems). These tests are used to test out APIs of system
software components for this project.

<testDef>
<info>CDATA</info>

<test type=”sss” destination=”servicename” attributes>
<input name=”sendbuf”>CDATA</input>
<output name=”recvbuf” format=”format”>CDATA</output>

</test>
</testDef>

Figure 4. Listing: SSS test file outline

A sss test represents a single transaction with a SciDAC SSS aware application. A
transaction consists of transmitting some buffer to a service via the sss.ssslib module. One
caveat, we will need the Service Directory (SD) to be runningon the system for the test

18

to work correctly. Also, we generally expect a transaction to consist of a message to a sss
component and a response back.

Figure 4 shows the outline of a sss test. The basic outline is the same, but there are
some differences. The<test> element requires a special attribute,destination, which
specifies the destination service for the message. The communication library will lookup
the destination in the service directory and transmit the message buffer to the correct com-
ponent.

There is also a change in the<input> and the<output> elements. We only need one
of each for a sss test. The<input> element specifies the send-buffer for a transaction. It
requires the name attribute to be set to ”sendbuf”. The CDATAis sent to the destination
during the test via the ssslib communication library. The<output> element requires its
name attribute to be assigned ”recvbuf” to specify this as a receive buffer. If<output>
is omitted APItest will do the send, but not wait for the receive. We do not recommend
extensive use of this feature.

Plese see Appendix B for example SSS test scripts. Additional scripts are located in the
samples/scidac sss/ directory.

19

Batch Scripts

A batch script is a script that does not run tests directly, but rather provides a listing of other
tests that are to be run. Batch scripts can contain lists of tests, lists of other batches, or a mix
of both. These scripts also allow dependencies to be set between tests to enforce execution
order. These dependencies can also be set to allow a test to beexecuted conditionally
depending on whether or not other tests passed or failed.

<testBatch>
<info>CDATA</info>

<test name=”filename”/>
...

<dep parent=”filename” child=” filename” attributes/>
...

</testBatch>

Figure 5. Listing: Batch file outline

This is the structure of a batch test.<test> elements do not have to precede<dep> elements.
They can be placed in any order in the file.

The basic structure of a batch script is shown in Figure 5. Theroot element of a batch
test is the<testBatch> element. It can contain an<info> element, and any combination
of <test> and<dep> elements.

Figure 6 shows an example batch script file which will run 6 tests. This file shows
only <test> elements these tests may execute in any particular order. Inpractice they will
usually execute in the order of appearance, but without explicit dependencies set we will
not guarantee the ordering. The following subsection will look at setting dependencies
between tests.

20

<testBatch>
<info>Some information about this file</info>
<test name="A.apt"/>
<test name="B.apt"/>
<test name="C.apt"/>
<test name="D.apt"/>
<test name="E.apt"/>
<test name="F.apt"/>

</testBatch>

Figure 6. Listing: BATCH1.apb

This listing shows a batch script that will launch tests A - F (note the.apt
extension indicates these are tests). In this example, the tests will be run in no
particular order.

Dependencies

A batch test can also specify an ordering restriction on tests. That is, we can specify if we
wantA.apt to run beforeB.apt. Figure 7 extends our previous example shown in Figure 6
by adding dependencies between the tests.

We add dependencies by using the<dep> element. Tests listed in adep element do
not have to be listed previously by a<test> element. The format of a<dep> element is:

<dep parent="t1" child="t2" [status="expected status"]/>

The statusattribute is an optional attribute. It can containPASS, FAIL, or ANY with
PASS being the default value. Thestatusattribute adds a restriction to a particular test
dependency. For example, addingstatus="PASS" means that the parent test must finish
with aPASS status or we say the dependency is failed, whileFAIL means the child test only
executes if the parent FAILED, andANY means the child test will be scheduled after the
parent and will be run regardless of the parent’s status. If atest fails its dependency, it will
not execute and APItest will assign it status ”FAILDEP ”.

Figure 8 further extends our example by adding a status condition to the edge between
A.apt and B.apt. In this case, test B.apt will execute if A.apt FAILED when it was run.

21

<testBatch>
<dep parent="A.apt" child="B.apt"/>
<dep parent="A.apt" child="C.apt"/>
<dep parent="C.apt" child="D.apt"/>
<dep parent="C.apt" child="E.apt"/>
<dep parent="D.apt" child="F.apt"/>

</testBatch>

(A)

A.apt

C.aptB.apt

D.apt E.apt

F.apt

(B)

Figure 7. Listing: BATCH2.apb

(A) is a batch containing the tests listed in fig 6, with an ordering now specified. In (B) we see a
graphical illustration of the tests showing the dependencyhierarchy.

Viewing Results

There are three primary methods that users can view test results generated by APItest. The
first method is to use the graphical mode of APItest to view results of a test that was run
during the same session of APItest. The list of runs can be found by clicking on theBrowse
Session Resultsbutton.

These results will no longer be viewable once APItest is shutoff. A user might still
want to view these results graphically, so we have provided an offline browser as a part of
APItest. To use this feature, simply start apitest with graphical mode enabled ($ apitest
httpd) and click theBrowse Saved Resultsbutton in your browser.

Finally, the results are saved on disk in text files in XML format. The raw output can
be viewed in any text viewer a user wishes to use. These files are saved according to a
particular naming convention. More information can be found on the naming of these files
in Appendix F. There are some screenshots showing the resultbrower in Appendix??

22

<testBatch>
<dep parent="A.apt" child="B.apt" status="FAIL"/>
>dep parent="A.apt" child="C.apt"/>
<dep parent="C.apt" child="D.apt"/>
<dep parent="C.apt" child="E.apt"/>
<dep parent="D.apt" child="F.apt"/>

</testBatch>

Figure 8. Listing: BATCH3.apb

A third batch listing, illustrating setting an edge dependency. In this case, we add a restriction that
B.apt will only run if test A.apt had a status of FAIL.

Conclusion

APItest is a new open-source framework for driving application tests. It provides a portable
and easy to use test framework due to its development in Python and use of XML scripting
for test writing.

The initial design of APItest was to provide a capability to test the API of networked
components such as those in cluster system software in orderto validate their APIs. APItest
allows interfaces to be tested for SciDAC Scalable System Software components using the
ssslib package.

We also added the capability to APItest to run scripts as wellas execute programs via
a command line type shell. This gives users the capability totest virtually anything using
APItest.

Finally, due to the object-oriented design of APItest, entirely new test types can be
defined without having to significantly modify the APItest code. Appendix F provides
more detailed instructions for creating new test types. This allows APItest a large degree
of customization for specific test environments while allowing tests to still be run natively
under APItest.

23

References

[1] Tamara K. Locke. Guide to preparing SAND reports. Technical report SAND98-
0730, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore,
California 94550, May 1998.

24

A Command Line Options

General Command Line Options
Short Long Default Description

-d –debug Disabled Run APItest in debug mode.
-o –oroot ./output Output directory.
-v –verbose Disabled Verbose output.
-t –timeout 43200 Timeout (seconds) to shut down APITest. (-1 = no timeout)
-T –transient Disabled If enabled, no output is saved to disk.

–version Print out twisted Version information and exit.

Options For Text-Only Mode
Short Long Default Description

-f –file None Input file (can be a.apt or a.apb file).

Options For Graphical Mode
Short Long Default Description

-i –iroot ./ Input Directory
-h –host localhost HTTP host URL. (ie. http://host/
-p –port 2112 HTTP port number. (ie. http://host:port/)

Table A.1. Command line options for APItest.

25

26

B Example Test Scripts

Example ”cmd” Test Scripts

The following is an examplecmd script that runs the command ”ls -ltr” in /tmp/. The
output elements specify that APItest will check the stdout buffer via the regular expression
”.*”, which matches any output. This test will also validatethat the command returns
nothing to stderr and exits with a status of 0.

<testDef>
<info>This test will list out a directory listing.</info>
<test type="cmd">

<command interpreter="/bin/csh" wdir="/tmp">ls</command>
<input name="argument">-l</input>
<input name="argument">-t</input>
<input name="argument">-r</input>
<output name="stdout" format="regexp">.*</output>
<output name="stderr" format="literal" />
<output name="status">0</output>

</test>
</testDef>

27

Example ”script” Test Scripts

In this case, the script prints the characters ’a’,’b’, and ’c’ each on a separate line. The
interpreterattribute in the command element specifies which interpreter this script is run
as, and the script will be executed from the wdir directory. We also left out an output
element specifying stderr, which tells APItest to completely ignore any output to stdout.

<testDef>
<info>Runs a simple script.</info>
<test type="cmd" match="yes">

<command interpreter="/bin/csh" wdir="/tmp/">
foreach i (’a’ ’b’ ’c’)

echo "$i"
end

</command>
<output name="stdout" format="regexp">a\nb\nc\n</output>
<output name="status" format="literal">0</output>

</test>
</testDef>

28

Example ”sss” Test Scripts

An example SSSlib test which transmits a buffer to the service directory and expects any
kind of output in return.

<testDef>
<test type="sss" destination="service-directory">

<input name="sendbuf"><get-location>≶location
component=’service-directory’ host=’*’ port=’*’ protocol=’*’
schema version=’*’ tier=’*’/></get-location></input>

<output name="recvbuf" format="regexp">.*</output>
</test>

</testDef>

29

30

C Example Batch Scripts

Here we have some examples of some batch scripts:

<testBatch>
<info>Sample batch script with no dependencies<info>
<test name="samples/cmd/cmd test 1.apt"/>
<test name="samples/cmd/cmd test 2.apt"/>
<test name="samples/cmd/cmd test 3.apt"/>

</testBatch>

<testBatch>
<info>Sample batch script with dependencies<info>
<dep parent="samples/cmd/cmd test 1.apt"

child="samples/cmd/cmd test 2.apt"/>

<dep parent="samples/cmd/cmd test 1.apt"
child="samples/cmd/cmd test 3.apt" status="PASS"/>

<dep parent="samples/cmd/cmd test 3.apt"
child="samples/cmd/cmd test 2.apt" status="ANY"/>

</testBatch>

<testBatch>
<dep parent="samples/cmd/cmd test 1.apt"

child="samples/cmd/cmd test 2.apt"/>

<dep parent="samples/cmd/cmd test 1.apt"
child="samples/cmd/cmd test 3.apt" status="PASS"/>

<test name="samples/cmd/cmd.apb"/>

<dep parent="samples/cmd/cmd test 3.apt"
child="samples/cmd/cmd test 2.apt" status="ANY"/>

<dep parent="samples/cmd/cmd notfound 1.apt"
child="samples/cmd/cmd test 4.apt" status="FAIL"/>

</testBatch>

31

32

D Encoding Special Characters into XML Text Blocks

One problem encountered in writing tests, especially for SciDAC SSS components (which
transmit XML enocoded messages from one component to another) is how exactly we can
encode an XML message into the CDATA portion of another XML script without confusing
the parser. For example, if we want to put the text ”<send data>test buffer</send data>”
into a<buffer> element, we might try the following:

<buffer><send data>test buffer</send data></buffer>

Unfortunately, this will confuse an XML parser because it will interpret the ”<” char-
acter in<send data> as the start of a new element. The way to get around this is to use
a< in place of< in the CDATA buffer. Our example will work if we make it look like
this:

<buffer><send data>test buffer</send data></buffer>

This change will allow the XML message to be encoded within anAPItest script file.
We can also use> to replace> and& to replace & characters too.

33

34

E How To Create New Test Types

Developing a general test framework is no easy task because every application is different
and every development environment is also unique. Our solution to this problem is to
develop APItest in an object-oriented manner and provide aninterface from a test handler
into the framework itself that is easy for a developer to use.

We provide several test handlers with APItest already (cmd,script, and sss test types).
Extending these is not difficult for basic tests. The basic procedure is as follows:

1. Obtain the source distribution (the .tar.gz file) and extract it.

2. Edit the testHandler.py file in thelibapitest/ directory. For a new test type,
newType, add the following function definitions to thetestHandler class.

• do newType

• cleanup newType

• kill newType

3. Install your modified version:
$ python setup.py install

Once this is finished, we would like to run our new test type. This is done via the
<test> element in a .apt file. One might look like:<test type="newType">.

The following sections will explain what each of the three functions are and what
APItest expects from each.

The do newType() Function

This function is the workhorse of a test. It is responsible for executing the test and returning
the results back to the APItest calling framework. Since APItest is built on the Twisted
framework, we don’t use a stack-based call system, rather weuse callbacks for tests. This
allows the web-browser and other handlers to perform their functions while a test is still
running.

The callback is executed via inserting this command before exiting:

35

reactor.callLater(0.0, self.procReturned, rval)

This tells the Twisted reactor to call the function self.procReturned(rval) 0.0 seconds after
the currently running function exits.rval is a Pythondictionaryobject storingkey:value
pairs. Each key corresponds to the an<output name=”key”> element, and thevaluestores
the actual result. APItest takes rval and compares the key:value pairs with the expected
results for a test to determine if the test passes or fails. This is the minimal requirement for
a test to return to the framework, though, we haven’t actually done anything yet.

For a test to do something, it needs to gain some information about what the test script
is telling it to do. The testHandler class has a variable defined, calledself.xmlTestRoot,
which contains the DOM tree of the test. Specifically, it is anElementTree.Element object
pointing to the<test> element of the DOM tree. This can be navigated to extract the
appropriate instructions using the interfaces provided byElementTree. We advise a test
developer to consult the ElementTree documentation for detailed instructions on the use of
that library.

It should be noted that if a new test type is expected to be long-running it is useful
to write the test handler in such a way that it is non-blocking, preferably in a stackless
manner using callbacks. Otherwise, the APItest browser will appear to ”hang” while it is
waiting for the function to exit. Examples of how to do this are shown in the doscript()
and docmd() handlers.

The do cleanup newType() Function

The cleanup function is called as a final step during test handling. Its purpose is to provide
capability to perform post-processing after a test has completed. This might include closing
down a process, or deleting or archiving of temporary files. The APItest calling framework
does not require anything special from this function, it works as a regular stack-based call.

The do kill newType() Function

The third and final function which APItest expects to find in testHandler is the kill function.
This function’s purpose is to shutdown the test process and exit immediately. When a
timeout threshold is reached for a given test, APItest will make a call to that tests kill
function. No special output is required for this function, it is invoked using a regular stack-
based call.

36

F Output File Formats

Naming Conventions

The default mode of APItest is to save a copy of the output froma test run to disk. This
output is typically saved in XML output files under a directory saved in theorootdirectory.
The format of the output directories encodes the date and time of the run.

A test run executed on September 27th, 2004 at 1:01:00 PM would be placed in a di-
rectory such as:output/run.2004-09-27.13-01-00Z/. Individual test results are are
named according to the following formula:

[b,t]nn.test file.out

The first character is either a ”b” or a ”t”, corresponding to whether or not the result file is
for a batch or a test file. The next chars are numbers, indicating the order in which the test
or batch ran. Following the dot, we have the test file name followed by.out. An example
batch output file might be named:

b12.bTest 1.out

A test output file might be named something like:

t32.testfile.out

Saving test output can be disabled by issuing the-T or --transient options on the
command-line.

37

Output File for Tests

Test output format outline

<testResult>
<dep/>

...
<output>

<actual>
<expect>

</output>
...

</testResult>

testResult element

ThetestResult element is the root level element for an APItest test result.This element
contains the following attributes:

dep element

One or more of these can be contained within thetestResult element. This element
contains the status of a tests’ dependencies.

• actual - Actual status of the parent test.

• expect- Expected status of the parent test.

• parent - Parent test file.

output element

The output element contains the following attributes:

• format - Format of the expected output? Valid values areliteral or regexp.

38

testResult Element Attributes
filename Filename of the test script for which this is a result.
md5sum MD5 hash signature of the test file.
pBatchID ID number of the batch file that called this test.
pctMatch Percentage of this test matched (0% or 100%).
pctMatchMax Upper bound percent match range.
pctMatchMin Lower bound percent match range.
runID ID number of the run in which this test was executed.
status Final status of this test (PASS, FAIL)
testID ID number of this test.
timeStart Start time.
timeStop Stop time.
timeoutFlag Did this test timeout? ”YES” or ”NO”.
timeoutTime Time limit for this test (seconds).
uid User ID under which this test is run.
uname User Name under which this test is run.

Table F.2. testResult Element Attributes

• matched- Did the actual and expected output match? (”YES” or ”NO”).

• name- The name of this ’output’ buffer? (ie.stdout or stderr.

An output element contains sub elements<actual>CDATA</actual> and<expect>CDATA</expect
where the CDATA buffers are the actual and expected buffers specified for the test.

39

Output File for Batches

Test output format outline

<batchResult>
<summary/>
<child/>

...
</batchResult>

batchResult element

The batchResult element is the root-level element for a batch file result.

• filename- Filename of the batch script for which this is a result.

• md5sum- MD5 hash signature of the test file.

• pBatchID - ID number of the batch file that called this batch (if any).

• runID - ID number of the run this batch occurred in.

• status- UNUSED

• timeStart - Start time of this batch script.

summary element

A batch result contains one summary element. This gives a quick summary of the contents
of the file. Specifically, it gives the talley of how many testswere in this batch, how many
failed, and how many passed. The attributes for thesummary element are:

• nFail - Number of tests that failed.

• nPass- Number of tests that passed.

• nTotal - Total number of tests executed by this batch script.

40

child element

For each test contained within this batch, there is achild element. This element contains
data about each test that was run, its status code, and ID number. The element<child>
contains these attributes:

• file - The filename of the test file run.

• status- Status code of this test (ie. PASS, FAIL, FAILDEP, etc).

• testID - The TestID of this test. This can be used to reveal the order that the tests
were run.

41

42

G Selected Screenshots

This section shows some selected screenshots of APItest in action to give a feel for what
the graphical interface might look like on a user’s system.

Figure G.1. Running APItest from in command-line only mode.

43

Figure G.2. This is the top-level page of APItest that is shown
when initially connecting to APItest.

44

Figure G.3. This is the results of the list of tests run during a ses-
sion. This figure shows a completed run that contained a test that
timed out and some batches. The listing is ordered by directory
and sorted.

45

Figure G.4. A batch listing that contains another batch listing
inside it. In this case, the sub-batch test in this batch contains
another batch. The pass/fail statistics shwon in the Statuscolumn
are a sum ofall the batches, recursively.

46

Figure G.5. Offline test result browser. Each of the test runs
under theoutput directory are listed here and can be investigated
by clicking theDetails link.

47

Figure G.6. Detailed results on a test that failed to meet a de-
pendency criteria. In this case,scriptTest2 cannot run unless
scriptTest1 passed andcmdTest2 failed. Unfortunately, when
cmdTest2 ran it passed so the dependency not satisfied. Therefore
scriptTest2 cannot be executed.

48

H List of Installed Files

Installing the RPM distribution installs the following files. The site-packages directory may
be different if APItest is installed viapython setup.py install, depending upon your
environment.

Site Packages
/usr/lib/python2.2/site-packages/libapitest/ init .py

/usr/lib/python2.2/site-packages/libapitest/digraph.py

/usr/lib/python2.2/site-packages/libapitest/digraph.pyc

/usr/lib/python2.2/site-packages/libapitest/htmltools.py

/usr/lib/python2.2/site-packages/libapitest/htmltools.pyc

/usr/lib/python2.2/site-packages/libapitest/httpHandler.py

/usr/lib/python2.2/site-packages/libapitest/httpHandler.pyc

/usr/lib/python2.2/site-packages/libapitest/imageHandler.py

/usr/lib/python2.2/site-packages/libapitest/imageHandler.pyc

/usr/lib/python2.2/site-packages/libapitest/jobManager.py

/usr/lib/python2.2/site-packages/libapitest/jobManager.pyc

/usr/lib/python2.2/site-packages/libapitest/libapitest.py

/usr/lib/python2.2/site-packages/libapitest/libapitest.pyc

/usr/lib/python2.2/site-packages/libapitest/libdebug.py

/usr/lib/python2.2/site-packages/libapitest/libdebug.pyc

/usr/lib/python2.2/site-packages/libapitest/systools.py

/usr/lib/python2.2/site-packages/libapitest/systools.pyc

/usr/lib/python2.2/site-packages/libapitest/testHandler.py

/usr/lib/python2.2/site-packages/libapitest/testHandler.pyc

/usr/lib/python2.2/site-packages/libapitest/twistedTools.py

/usr/lib/python2.2/site-packages/libapitest/twistedTools.pyc

APItest Executable
/usr/local/apitest/apitest

Samples
/usr/local/apitest/samples/apitest test.apb

/usr/local/apitest/samples/batch/bTest 1.apb

/usr/local/apitest/samples/batch/bTest 2.apb

/usr/local/apitest/samples/batch/bTest 3.apb

/usr/local/apitest/samples/batch/bTest 4.apb

/usr/local/apitest/samples/batch/bTest 5.apb

49

/usr/local/apitest/samples/batch/bTest 6.apb

/usr/local/apitest/samples/batch/bTest 7.apb

/usr/local/apitest/samples/batch/bTest 8.apb

/usr/local/apitest/samples/batch/bTest seq.apb

/usr/local/apitest/samples/batch/batch.apb

/usr/local/apitest/samples/cmd/cmd.apb

/usr/local/apitest/samples/cmd/cmd filediff.apt

/usr/local/apitest/samples/cmd/cmd notfound 1.apt

/usr/local/apitest/samples/cmd/cmd notfound 2.apt

/usr/local/apitest/samples/cmd/cmd test 1.apt

/usr/local/apitest/samples/cmd/cmd test 2.apt

/usr/local/apitest/samples/cmd/cmd test 3.apt

/usr/local/apitest/samples/cmd/cmd test 4.apt

/usr/local/apitest/samples/daemon/daemonize.apt

/usr/local/apitest/samples/envvar/envvar.apb

/usr/local/apitest/samples/envvar/envvar cmd.apt

/usr/local/apitest/samples/envvar/envvar cmd suid.apt

/usr/local/apitest/samples/envvar/envvar script.apt

/usr/local/apitest/samples/envvar/envvar script suid.apt

/usr/local/apitest/samples/io/io.apb

/usr/local/apitest/samples/io/io large matchall.apt

/usr/local/apitest/samples/io/io large miss stderr.apt

/usr/local/apitest/samples/io/io large miss stdout.apt

/usr/local/apitest/samples/scidac sss/sd/sss 01.apt

/usr/local/apitest/samples/scidac sss/sd/sss 02.apt

/usr/local/apitest/samples/scidac sss/sd/sss sd inittest.apb

/usr/local/apitest/samples/scidac sss/sd/sss sd inittest cleanup.apt

/usr/local/apitest/samples/scidac sss/sd/sss sd inittest prep.apt

/usr/local/apitest/samples/scidac sss/sd/sss sd remove emng.apt

/usr/local/apitest/samples/scidac sss/sd/sss sdstat sdoff.apt

/usr/local/apitest/samples/scidac sss/sd/sss sdstat sdon.apt

/usr/local/apitest/samples/scidac sss/sd/sss start.apt

/usr/local/apitest/samples/scidac sss/sd/sss stop.apt

/usr/local/apitest/samples/script/script.apb

/usr/local/apitest/samples/script/script test 1.apt

/usr/local/apitest/samples/script/script test 2.apt

/usr/local/apitest/samples/script/timestamp.apt

/usr/local/apitest/samples/suid/suid cmd uid.apt

/usr/local/apitest/samples/suid/suid cmd uname.apt

/usr/local/apitest/samples/suid/suid cmd uname notfound.apt

50

/usr/local/apitest/samples/suid/suid cmd uname wdir 1.apt

/usr/local/apitest/samples/suid/suid cmd uname wdir 2.apt

/usr/local/apitest/samples/suid/suid script uid.apt

/usr/local/apitest/samples/suid/suid script uname.apt

/usr/local/apitest/samples/suid/suid script uname notfound.apt

/usr/local/apitest/samples/suid/suid script uname status.apt

/usr/local/apitest/samples/timeout/timeout.apb

/usr/local/apitest/samples/timeout/timeout.apt

51

DISTRIBUTION:

1 Thomas Naughton
ORNL
1 Bethel Valley Road, bldg.
5600, rm A205
Oak Ridge, TN 37831-6016

5 MS 1110
William McLendon, 9223

1 MS 0817
Sue Goudy, 9224

1 MS 1110
William Hart, 9215

1 MS 1110
Ron Oldfield, 9223

1 MS 1110
Steve Plimpton, 9212

1 MS 1110
Neil Pundit, 9223

1 MS 9018
Central Technical Files,
8940-2

2 MS 0899
Technical Library, 4916

2 MS 0619
Review & Approval Desk,
4916

52

