
SSS: A perspective from a systems software and

component developer

Matthew Sottile (matt@lanl.gov)

Advanced Computing Laboratory

Los Alamos National Laboratory

SSS Meeting, Argonne National Laboratory

June 5, 2003

1

Overview: The good, the bad, and the ugly.

1. The good: Considering SSS is a prototype, it was in good

enough shape to allow me to take roughly 8 hours from

untarring sss-0.97.tgz to having a working server. Not bad.

2. The bad: BProc status is trivial. This should have been a

sub-1hr process.

3. The ugly: The interface seems incomplete - I was forced to

write a great deal of code that should be in a library.

<pet-peeve>And python-based servers?</pet-peeve>

July 1, 2003 Los Alamos National Laboratory Page 2

The task: BProc based cluster status server

Essentially bpstat in disguise.

/* populate array of node info structs */

nodecount = bproc_nodelist(&ninfo);

From the BProc perspective, this is trivial.

July 1, 2003 Los Alamos National Laboratory Page 3

Installation

• Very minor bugs found in install (autoconf didn’t subst some

things). Much thanks to Narayan for email support here (and

frequently later).

• With a minor struggle (<1 hour), I had things installed. Most

of my struggle was due to not wanting to install in /etc and

other system places.

• Python issues with nonstandard install location - env. variable

to fix this should be documented (README).

Bottom line: ./configure --prefix=~/sandbox ; make ; make install

should work, and it actually got close.

July 1, 2003 Los Alamos National Laboratory Page 4

Where to start....

• Example didn’t help much. Why was my client and server

mooing? Something using the real protocols would have been

nice.

• XML isn’t well documented. Narayan had to push me in the

right direction here.

• Ultimately I had to write something that received a message

from the control script and printed what it got. Although this

worked, it is a hack. Not a good way to figure out how things

work.a

What’s my point? It’s a prototype, and all of the above are

expected. I’d address some of the above pretty soon.
aThis part of the process should have been wrapped in an API somewhere

anyways.

July 1, 2003 Los Alamos National Laboratory Page 5

Writing the code...

I had to write too much code. Two big problem areas:

• Socket code

• XML parsing and creation

Get the eggs ready...

July 1, 2003 Los Alamos National Laboratory Page 6

The myth of socket portability

Quoting a Linux Kernel developer:

(from Andi Kleen (ak@suse.de))

I remember at least one other report of such a spurious delay too.

I suspect the problem is not the delayed ack algorithm as is, but the new user

context TCP fast path. 2.4 added a somewhat experimental variant of a Van

Jacobsen style user context TCP. When the receiver is blocking in recvmsg()

the packet is not processed directly in softirq context, but put on a special

prequeue and the user process woken up. When the user process schedules it’ll

run the TCP input path in its process context. If this doesn’t work out

(process schedules too late), the the delayed ack timer will do the TCP input

processing (it’s admittedly a bit of a hack) ... The reason

for this is to do csum-copy to user space, but when your NICs do hardware

checksumming anyways it shouldn’t make much difference. In addition we have

an adaptive delayed ack which can make the delay a bit unpredictable. It

should probably be shorter. I guess your workload for some reason

prevents the fast wakeup of the user context and you frequently run

into the timer delayed TCP processing.

July 1, 2003 Los Alamos National Laboratory Page 7

Linux TCP Is A Hack!

• This isn’t an issue in BSD-land and other UNIX systems (In

fact, Windows uses a BSD-based stack. Scary - windows is

saner than Linux in some areas.)

• This is only one example. Optimizations in OS’s to win

benchmarking contests and build clever web servers will cause

differences between implementations.

• Notice that he pointed out that our workload caused issues to

come up. Parallel programs look very similar to DOS attacks

and other traffic patterns to some systems. The HPC workload

on the network is different from something like a web server or

other service. So if the stack is going to act up, we’ll probably

see it.

• ... this means that the SSS code coexisting with parallel

programs must take into account how they’ll affect the network!

July 1, 2003 Los Alamos National Laboratory Page 8

• Socket code: Broken TCP/IP implementations (such as

Linux) requires #ifdef blocks to make sure the right stuff for

the right platform (or version) occurs. Hide this in a library

and programmers using SSS won’t be responsible for ensuring

portable code to connect to the infrastructure. Let them worry

about portability of their specialized code.

In supermon, this means on Linux, big chunks of code fall between

blocks like:

#ifdef LINUX_TCP_IS_A_HACK

...

#else

...

#endif

July 1, 2003 Los Alamos National Laboratory Page 9

• XML parser: I have to parse the XML myself? why? This

opens up a big can of worms, other than irritating people like

me who don’t want to write DOM or SAX code.

– The schema and an associated parser are intimately related.

Change the schema, change the parser. SSS opens itself up

to version skew issues. (“The schemas won’t change” - yeah,

right).

– Just maintain schemas, automatically generate SAX

parsers. AST used by SAX parser could also be used to

emit XML. Don’t trust users.

July 1, 2003 Los Alamos National Laboratory Page 10

So what did it look like?

By the time I finished, I had this:

-rw-r--r-- 1 matt staff 393 Jun 3 16:19 Makefile

-rw-r--r-- 1 matt staff 6188 Jun 3 16:27 bpstat_sss.c

-rw-r--r-- 1 matt staff 1521 Jun 3 16:43 nodestate.cc

-rw-r--r-- 1 matt staff 910 Jun 3 16:23 nodestate_xml.h

-rw-r--r-- 1 matt staff 1349 Jun 3 16:51 request_xml.c

-rw-r--r-- 1 matt staff 257 Jun 3 16:24 request_xml.h

[staggerlee:~/tmp/sss/bproc_sss] matt%

July 1, 2003 Los Alamos National Laboratory Page 11

• bpstat sss.c : Main server. Has the bproc calls, sampling rate

throttling, socket goop.

• notestate.cc : Implementation of XML AST to XML string

code (object “.toXML()” calls)

• nodestate xml.h : Defines XML AST objects and C API to

populate them, create and destroy them, and generate the

appropriate strings.

• request xml.{c,h} : libxml2 based XML parser to parse

incoming requests and return a struct representing the request

back to the server.

IMHO, nodestate and request XML should have been prepackaged

SAX parsers and AST objects!

July 1, 2003 Los Alamos National Laboratory Page 12

Summary of coding experiences...

• Other than those issues, the API was OK. Unfortunately, the

bulk of what I expected SSS to handle i had to write myself.

The design seems to open itself up to HUGE possiblities for

version skew between servers and XML, unportable socket code

implementations, and a lack of correctness checking in the wire

protocol.a

• Overall, it didn’t take long, but I have lots of experience

writing XML processing code. Erik (Mr. Bproc) doesn’t. In

fact, he’s mildly allergic to that sort of thing. I’d reconsider

exposing some of this XML stuff to users.

aI prefer to not rely on validating parsers for this sort of thing

July 1, 2003 Los Alamos National Laboratory Page 13

I heard there were components here...

Really? I’m not sure if my definition of components is on the same

page here.

July 1, 2003 Los Alamos National Laboratory Page 14

Some philosophical ideas

• The Law of Least Surprise. Consistency is good. If one

component is minimal and another is everything including the

kitchen sink (and the pipes, water company, reservoir and

water cycle), then guess what - moving between components

will result in surprise.

• Insulate developers from the support structure. How do we

(LANL + SNL/CA CCA’ers) do it? Code generation and

libraries. Minimal coding on a users side = happy users and

less bugs. Bproc equivalent of what I wrote with CCA wrapper

would be sub 50 lines. The bproc part would be roughly 2

lines. Even without autogeneration it’s not very hard.

July 1, 2003 Los Alamos National Laboratory Page 15

Components

People have been thinking about components for many, many,

many years. Before CCA, there was {D}COM{+}. Before (or

near) COM, there was CORBA. Before CORBA, there was ILU.

Before ILU were years of PhD theses. And a long time ago, there

was this thing called RPC.

• What is a component? One definition is an

object-like-structure that exposes one of more functional

interfaces to the “public” (in OO terms), supporting

introspection and reflection - thus allowing these interfaces to

be discovered at runtime with no compile time information.

So what?

Are you sure you are doing components? I see XML defining a wire

protocol.

July 1, 2003 Los Alamos National Laboratory Page 16

What does CCA provide?

• Standard specification mechanism for interfaces of components.

SIDL. (Scientific IDL - I claim this is essentially CORBA IDL

+ Complex)

• Standard interfaces to the runtime substrate (“Framework”)

for components to discover each other and connect.

• Various runtime frameworks running in production

environments (CCAFFEINE, Uintah), academic frameworks

(CCAT), and prototypes (Dune). Some are direct connect

(same memory space), some are distributed. Transparent to

components, wire protocol hidden.

• As the spec (cca-spec) changes, the frameworks track the specs

and components don’t need to.a

aExcept in extreme cases where SIDL itself changes or data structures disap-

pear.

July 1, 2003 Los Alamos National Laboratory Page 17

CCA + SSS = ?

What would I suggest?

• A distributed CCA support substrate hides and handles

messaging layer. This wheel has been reinvented over, and

over, and over.

• Define interfaces in SIDL : scheduler, jobs, machines, status,

clusters, partitions, etc, etc, etc...

• Build services that conform to the SIDL interfaces. BProc

status would implement it’s notion of a machine, status, and

cluster. PBS would do its thing with jobs, schedulers, etc...

July 1, 2003 Los Alamos National Laboratory Page 18

My suggestion...

Concentrate on interfaces and the problem of mapping concrete

services (PBS, LSF, BProc, Supermon, Ganglia, etc...) into the

interface space of SSS.

Use a distributed object / component system that is done and

worksa. Or at least use parts of it. Give me one compelling reason

why one must be built from scratch? Even JavaSpaces with a bit of

bridging code would provide all of the infrastructure you need to

connect distributed services together, with the bridging code

allowing clients in any language.

CCA, Java, CORBA, Babel, RPC, ILU - they all provide working

distributed component infrastructure for arbitrary languages. This

seems to be a well known wheel not in need of reinvention.
aOK, not likely.

July 1, 2003 Los Alamos National Laboratory Page 19

Concluding remarks

• It’s not too late to clean up those APIs. Do your best to

minimize possiblities of version skew, portability issues between

servers, and unnecessary code complexity.

• It’s a bit late to adopt a CCA model. Maybe some of the

software from CCA could be of use (Babel or Chasm to provide

language bindings and distributed object models).

• What is your definition of a component? I’m curious.

• Overall, things worked - a good accomplishment.

July 1, 2003 Los Alamos National Laboratory Page 20

