
SSS Update 5/05
Infrastructure and Blue Gene

Narayan Desai

desai@mcs.anl.gov



Overview
• SSS Infrastructure changes

• Cobalt

• Blue Gene deployment

• Validation of interfaces

• Differences between cluster and BG/L Implementations



SSS BCM Updates
• Quite stable system

• Only one bugfix in the last 4 months.

• SSS Infrastructure in use in many locations at ANL
• Clusters

• BG/L

• ia32 and ppc64

• Better documentation now exists (finally)



LRS Syntax
• Language specification is done

• SDK implementation is complete
• Message processing library

• Server class integration

• SSSlib integration remains to be done
• needed for a LRS service directory

• will be finished this summer

• Components can be written with LRS right now



Blue Gene/L
• Arrived in January

• Online with Cobalt in February

• Substantial feature requests starting in March

• 1 rack system
• 1024 compute nodes (2048 processors)

• 32 I/O nodes (system call nodes; 1 per 32 compute nodes)

• 16 storage nodes

• 1 service node

• 4 login nodes

• Complex allocation requirements
• allocated by I/O node + compute node chunks

• requires network partitioning

• DB2 used for everything



Cobalt
• Same software as on Chiba City

• Like SSS, somewhat cluster-centric

• Complete system implementation of most SSS components
• System Management

• Resource Management

• Process Management

• All python components
• implemented using the SSS-SDK

• Several major extensions required for Blue Gene/L



Job Execution Architecture
• Similar to Chiba City

• Four main components involved
• Scheduler

• Queue manager

• Process manager

• Allocation manager



Scheduler (bgsched)
• New implementation

• Cluster scheduler not really appropriate

• Needs to match system topology for allocations

• Needs to coordinate with DB2

• Topology aware
• Understands system partitioning

• Can detect conflicts

• DB2
• Can detect job failures

• Works around broken IBM tools



Queue Manager (cqm)
• Same software as on Chiba City

• Minor modifications to accommodate system oddities
• Addition of execution modes

• Used existing support for on-the-fly operating system changes
• Changes on clusters far more heavyweight

• Blue Gene/L nodes can be rebooted before every job, so OS changes are 
simple



Process Manager (bgpm)
• New implementation

• Compute nodes don't run a full OS, so MPD is not an option

• Native process management system uses private interfaces to boot 
nodes and load applications

• mpirun is extraordinarily complicated
• Reboots nodes

• Boots I/O nodes

• Loads application

• Talks to DB2

• Not quite perfect



Allocation Manager (am)
• Same as on Chiba City

• Quite simple minded
• Project verification

• Usage tracking

• So far, we haven't needed much more functionality, but this will 
be changing



Experiences
• Small codebase

• Easy to port

• Simple to find and fix bugs

• Simple approach makes the system easy to understand

• Agility has been absolutely required on BG/L
• Frequently changing (IBM supplied) system software

• Odd bugs frequently crop up

• All software is under constant development

• Comprehensive interfaces expose actionable information
• Administrators can access internal state

• Makes component behavior less mysterious

• Extracting new information is easy



What Have We Learned?
• The basic component interfaces are right

• However, modifications will be required to accommodate esoteric platforms 
and unusual hardware features

• Component interfaces simplify the porting process
• Appropriate components can be reused

• New components easily integrated as needed

• Component architectures are pretty manageable
• Abstract across heterogeneity

• Administrators get familiar software across architectures

• Administrators like systems composed of little pieces


