
     Colloids are subject to hydrologic transport and are therefore included as mobile component species in the1

hydrologic subsystem of equations.  Colloids are considered adsorbent components in the biogeochemical subsystem.

3.1

3.0  NUMERICAL IMPLEMENTATION

3.1 Solution of Coupled Transport and Biogeochemical Reaction Problems

Section 2.0 presents a system of equations describing coupled hydrological transport and
biogeochemical reactions for the unknowns: T 's, c 's, C 's, W 's, s 's, N 's, x 's, y 's, z 's, p 's, b 's,j j j j j eqi i i i i i

and a 's.  Analytical solution to the system in general is beyond the capability of present-dayi

applied mathematics.  Numerical methods are the only tools that can be used to achieve a
solution.  Because the number of equations in the system is large, in the order of hundreds for
most practical applications, the system is divided into two subsystems:  hydrologic transport and
biogeochemical reactions.  

The species which are affected directly by hydrologic transport are solved for in the hydrologic
transport subsystem .  The governing equations for hydrologic transport are Equations (2.2.34),1

(2.2.54), and (2.2.55) which are used to determine the T �s, K  kinetic  x �s, and b �s, respectively,j x i i

and are modified here for numerical implementation:

For mobile chemical components:

(3.1.1)

where

(3.1.2)

(3.1.3)

(3.1.4)
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(3.1.5)

(3.1.6)

and where 

T = total equilibrium concentration of the j-th aqueous component, mass per mass/
 j

of liquid (M/M of liquid).
C = total dissolved concentration of the j-th aqueous component (M/M of liquid)./

 j

This equation is solved subject to either Dirichlet or variable boundary conditions:

(3.1.7)

or

(3.1.8)

(3.1.9)

For the kinetic aqueous complexed chemical species:
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(3.1.10)

where

(3.1.11)

(3.1.12)

and

(3.1.13)

This equation is solved subject to either Dirichlet or variable boundary conditions:

(3.1.14)

or

(3.1.15)
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(3.1.16)

For the aqueous microbial species: 

(3.1.17)

where

(3.1.18)

(3.1.19)

and

(3.1.20)

This equation is solved subject to either Dirichlet or variable boundary conditions:

(3.1.21)

or

(3.1.22)
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(3.1.23)

The remaining unknowns are solved for in the biogeochemical subsystem.  The governing
biogeochemical equations are the mass balance, mole balance,  and equivalents balance equations,
mass action equations for the equilibrium chemical species and reaction rate expressions for the
kinetic chemical and microbial species.  These biogeochemical system equations are regrouped
as: 

Mobile, aqueous chemical component species are represented by a mass balance equation,
Equation (3.1.24), in which the latest value of T  is provided from transport.  The equation isj

used to solve for the free species concentration, c .  The new  value of T  including the effect ofj j

reactions is recalculated using Equation (3.1.25) once the new values of all individual species
concentrations are known.  

Mass balance for the aqueous component species concentrations -

(3.1.24)

where

(3.1.25)

and

(3.1.26)
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Similarly, mobile, adsorbent chemical components (colloids) are represented by a mass balance
equation, Equation (3.1.27), in which the latest value of W  is provided from transport, and thej

equation is used to solve for the free species concentration, s .  The new  value of Wj includingj

the effect of reactions is recalculated using Equation (3.1.28) once the new values of all
individual species concentrations are known.  Immobile, adsorbent chemical components are
represented by a mass balance equation, Equation (3.1.27), in which the latest value of W  isj

provided from the prior time step, since its value will not be affected by hydrological transport.

Mass balance for the adsorbent component species concentrations -

(3.1.27)

where

(3.1.28)

and 

(3.1.29)

Each chemical product species is represented by one equation: either the mass action equation
for an equilibrium species (Eq. (2.3.2)) or the sum of the rate expressions for all of the kinetic
reactions in which the species participates (Eq. (2.3.6) for chemical reactions, Eq. (2.4.8) for
microbial reactions, and Eq. (2.4.14) for microbial endogenous respiration).  

Mass action equation for equilibrium aqueous complexed species -

(3.1.30)

Mass balance equation for kinetic aqueous complexed species with the combined effects of
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chemical reactions, microbial reactions, and microbial endogenous respiration -

(3.1.31)

where

(3.1.32)

Mass action equation for equilibrium adsorbed species -

(3.1.33)

Mass balance equation for kinetic adsorbed species with the combined effects of chemical
reactions, microbial reactions, and microbial endogenous respiration -
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(3.1.34)

where

(3.1.35)
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Each ion-exchange site is represented by an equivalents balance equation, Equation (3.1.36).  

Equivalents balance for the ion exchange site constraint equations -

(3.1.36)

where

(3.1.37)

and

(3.1.38)

Equation (3.1.36) is solved for the NSITE ªreferenceº ion-exchange species instead of a mass
action or mass balance equation.

For equilibrium ion-exchanged species -

(3.1.39)

where one of the species produced in the k-th reaction is an equilibrium controlled ion-exchanged
species (and is not the ªreferenceº ion-exchanged species).

Mass balance equation for kinetic ion-exchanged species with the combined effects of chemical
reactions, microbial reactions, and microbial endogenous respiration -

(3.1.40)

where
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(3.1.41)

For equilibrium precipitated species -

(3.1.42)

where K  = number of kinetically controlled precipitated species.p

Mass balance equation for kinetic precipitated species with the combined effects of chemical
reactions, microbial reactions, and microbial endogenous respiration -

(3.1.43)

where
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(3.1.44)

Each microbiological species is represented by the sum of the rate expressions for  microbial
growth, Eq. (2.4.10), microbial death/decay, Eq. (2.4.13), and the transfer between phases, Eq.
(2.4.18).  

Mass balance equation for the aqueous phase microbial species with the change in concentration
due to microbial growth, microbial death/decay, and transfer to the adsorbed phase -

(3.1.45)

where
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(3.1.46)

Mass balance equation for adsorbed phase microbial species with the change in concentration due
to microbial growth, microbial death/decay, and transfer to the aqueous phase -

(3.1.47)

where

(3.1.48)

Secondary equations describe the distribution of the aqueous chemical components between the
dissolved, sorbed,  and precipitated phases:
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(3.1.49)

(3.1.50)

(3.1.51)

where
C = total dissolved concentration of the j-th aqueous component, j

mass of chemical per per unit medium volume (M/L ).3

S = total sorbed concentration of the j-th aqueous component,j

mass of chemical per per unit medium volume (M/L ).3

P = total precipitated concentration of the j-th aqueous component,j

mass of chemical per per unit medium volume (M/L ).3

Table 3.1 summarizes the species which are included in each subsystem of equations and the
order in which they are stored in the program.  An array is used to map species from one
subsystem to the other.  

Two alternate approaches for solving coupled hydrologic transport and biogeochemical reaction
problems are included in HYDROBIOGEOCHEM: a fully implicit approach and an operator
splitting approach.  For both approaches, the non-mobile species concentrations are solved for
only in the geochemical reaction subsystem of equations.  The two approaches differ in their
coupling of transport and reaction subsystems of equations for the mobile species.  The fully
implicit approach solves the two subsystems of equations sequentially and iteratively; the operator
splitting approach solves them sequentially but does not iterate between them during a given time
step.

For the operator splitting approach, the concentrations of mobile species are solved for in both
subsystems of equations.  There is no iteration between the transport and biogeochemical
subsystems of equations for a given time step with this approach.  The mobile species are first
subjected to transport, without considering the reaction term, to yield an intermediate value of
their concentrations.  These transported concentrations are then subjected to the biogeochemical
reactions, yielding final values of the concentrations for the current time step.  Neglecting
sources/sinks, decay, and compressibility and using a simplified notation for simplicity of
presentation, the transport equation (3.1.1) solved using this approach is:
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(3.1.52)

where L() is an advective-dispersive transport operator and R is a biogeochemical reaction
operator.  In the operator splitting approach, this equation is solved in two steps:

(3.1.53)

(3.1.54)

where the superscripts (n), (n+1/2), and (n+1) denote the values at the prior time, at an
intermediate point in the current computation, and at the new time, respectively.  The same
approach is taken in solving for the kinetic aqueous species concentrations (x�s) and the aqueous
microbial species concentrations (b�s).  

For all simulations regardless of the solution approach chosen, the first step is to initialize the
system to equilibrium based on the input initial conditions by first fixing the concentration of the
kinetic species at their specified initial concentrations and then solving  Equations (3.1.24)
through (3.1.47) for all other species concentrations.  The total dissolved concentrations for the
components , C 's, are then calculated using Equation (3.1.49).j

Table 3.1 Species in the Two Subsystems of HYDROBIOGEOCHEM
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The solution procedure for every time step using operator splitting is outlined below:

1. Set the value of the reaction terms in the transport equations (3.1.1), (3.1.10), and
(3.1.17) to zero.

2. Solve the transport subsystem of equations ((3.1.1), (3.1.10), and (3.1.17) ) for
mobile components T  's, K  kinetic complexed species' x  's, and aqueousj x j

(n+1/2) (n+1/2)

microbial species� b  �s.i
(n+1/2)

3. With these intermediate values of  T  's, K  x  's, and b  �s, and priorj x j i
(n+1/2) (n+1/2) (n+1/2)

values of W  �s, N  �s, K  y  's, K  z  's, K  p  's, and a  �s, solvej eqi y j z j p j i
(n) (n) (n) (n) (n) (n)

Equations (3.1.24) through (3.1.47) for new values of all species concentrations.

4. Compute new values for T  �s, W  �s, N  �s and C  �s using Equationsj j eqi j
(n+1) (n+1) (n+1) (n+1)

(3.1.25), (3.1.28), (3.1.38), and (3.1.49) respectively.

5. Proceed to the next time step computation, repeating steps 1 though 4 for each
time step.

In the fully implicit approach, the concentration of the aqueous components,  kinetic aqueous
complexed species, and aqueous microbial species are solved for in the hydrologic transport
subsystem using the concentrations of all species from the previous iteration to evaluate the
reaction term; they are not solved again in the second subsystem.  The concentrations of these
mobile species determined in the hydrological transport subsystem are passed into the
biogeochemical subsystem for use in the mass balance and other equations as needed.  The
concentration of all remaining species are solved for in the biogeochemical reaction subsystem.
Neglecting sources/sinks, decay, and compressibility and using a simplified notation for simplicity
of presentation, the transport equation solved using this approach is :

(3.1.55)

where L() is an advective-dispersive transport operator and R is a biogeochemical reaction
operator.  The superscript (k) denotes the value at the prior iteration and (k+1) denotes the value
at the current iteration. 

The solution procedure for the fully implicit approach for every time step is outlined below:

1. Based on the initial values or prior iterates of the T 's, W �s, N �s, and K  x �s andj j eqi x i

b �s, solve the biogeochemical reaction Equations (3.1.24) through (3.1.47) for c 's,i j

s 's, (M  - K ) equilibrium x 's, y 's,  z 's, p 's, and a �s.j x x i i i i i
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2. Compute new values for C  �s using Equation (3.1.49).j
(k+1)

3. Estimate the value of the reaction terms for Equations (3.1.1), (3.1.10), and
(3.1.17)  based on working values for all species concentrations.

4. Solve the hydrologic transport Equations (3.1.1), (3.1.10), and (3.1.17)  for mobile
components T's, K  kinetic complexed species' x's, and aqueous microbial species�j x j

b �s.i

5. Check convergence of T 's,  K  x 's, and b �s using relative change from the priorj x j i

iteration against the specified error tolerance.

6. If the solution is not convergent, update the iterates of the total concentration of
all components and the concentration of all kinetic species, and repeat Steps 1
through 5.  If a convergent solution is obtained, proceed to the next time-step
computation.  

The solution of the transport equations for aqueous chemical components, kinetic chemical
species, and microbiological species are not independent of each other because they are coupled
through the reaction terms.  They must be solved either simultaneously or iteratively.  The
simultaneous solution of the partial differential equations governing the transport and the solution
of the biogeochemical reaction equations for realistically complex systems constitutes the major
effort in terms of computational time and computer storage.

A large number of numerical approximations can be used to reduce the partial differential
equations governing the hydrologic transport to a system of algebraic equations.  The most
common numerical methods used to approximate Equation 2 are finite-difference methods
(FDMs) and finite-element methods (FEMs) (Forsythe and Wasow 1960; Huebner 1975; Lapidus
and Pinder 1982).  Many other numerical techniques, such as the integrated finite-difference
method (IFDM) (Narasimhan and Witherspoon 1977), the integrated compartment method (ICM)
(Yeh and Luxmoore 1983), or the method of characteristics (MOC) (Konikow and Bredehoeft
1978), have been employed to deal with special cases of the hydrologic transport equations.
Only the FDMs and the FEMs can be applied to the most generalized form of the transport
equations.  

The advantages of FEMs are their inherent ability to make complex boundaries discrete, to make
flux-type boundary conditions easy to deal with, and to allow the flexibility to include cross-
derivative terms.  Disadvantages of FEMs include the central processing unit (CPU) time required
to obtain element matrices and the inflexibility of using iteration methods to solve the resulting
matrix equation.  The FDM offers great economy because it allows simple interpolation for the
derivatives and provides flexibility of solving the resulting matrix equation with various iteration
methods.  However, it suffers from the following aspects: the regular rectangular grid system has
to be used, the flux-type boundary conditions have to be extrapolated, and the cross-derivative
terms cannot be consistently approximated.  
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The most severe limitations of the IFDM are its inability to treat anisotropic media and its use
of the Jacobian iteration method, in which the rate of convergency is extremely slow; however,
it offers even more flexibility than the FEMs in making the complex boundaries discrete, and the
physical representation of the method is clearly understood.  The ICM, while retaining the
advantage of the IFDM, can deal with anisotropic media by defining new variables but at the
expense of having to solve a large number of simultaneous field equations (Yeh and Luxmoore
1983).  In addition, ICM provides options of using the direct elimination method and iteration
methods with the Gauss-Seidel (G-S) or successive over-relaxation (SOR) schemes to solve the
matrix equation (Yeh and Luxmoore 1983).  The MOC is best used to solve advection-dominant
transport problems.  The main limitations of the MOC lay in the fact that computer codes based
on the method are problem specific and are very difficult to modify for generic applications.

In light of these discussions, FEMs are the preferred numerical methods for addressing reactive
hydrologic transport problems.  In addition, there has been significant progress in using iterative
methods to solve finite-element equations (Yeh 1985, 1986), and influence coefficient methods
have been proposed to analytically and economically compute the element matrices (Huyakorn
et al. 1985).

3.2 Solution of Transport Equations

Because the hybrid Lagrangian-Eulerian FEM is used to solve the transport equations, Equation
(3.1.1) is rearranged in the implicit Lagrangian form.  Disregarding the decay and compressibility
terms and dropping the subscript to simplify the notation, we obtain

For mobile chemical components:

(3.2.1)

where the Lagrangian tracking velocity is

(3.2.2)

and

(3.2.3)

and
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(3.2.4)

Similarly, expressing Equation (3.1.10) for the kinetic aqueous complexed chemical species in
Lagrangian form:

(3.2.5)

where the Lagrangian velocity is

(3.2.6)

and
(3.2.7)

and

(3.2.8)

Similarly, expressing Equation (3.1.17) for the aqueous microbial species in Lagrangian form:

(3.2.9)

where K and the Lagrangian velocity are given by Equations (3.2.6) and (3.2.7), respectively, and

(3.2.10)

The kinetic aqueous complexed species and the aqueous microbial species by definition exist only
in the aqueous phase.  The ratio of their concentration in the aqueous phase to their total
concentration is therefore unity.  Equations (3.2.5) and (3.2.9) are therefore identical in form to
Eq. (3.2.1), with C/T = 1, + (C/T) = 0, and the reaction terms defined appropriately for these
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cases.  The remainder of this section will discuss the solution of the transport equations in terms
of Eq. (3.2.1); the discussion is applicable to the solution of Equations (3.2.5) and (3.2.9) as well.

3.2.1  Spatial Discretization of Transport Equations

Equation (3.2.1) is integrated in the spatial dimensions by the weighted residual method in
conjunction with finite elements.  Because the formulation and use of the FEM has been well
documented, the theoretical basis will not be presented here.  Only the numerical procedures are
summarized in the following discussion.  The region of interest is subdivided into an assemblage
of smaller domains called elements, which are interconnected by nodes either on the vertices or
the boundaries of the elements.  Following the procedure of the finite-element weighted-residual
method, the approximate formulation of the distribution of the total analytical concentration T
in Equation (3.2.1) is obtained.  Thus, let the variable T be approximated by

(3.2.11)

where

N = the basis function of the spatial coordinate for j-th node.j

T = the value of T  at node j./ /
j

n = number of finite-element nodes in the region.

Upon substituting Equation (3.2.11) into Equation (3.2.1) and applying the Galerkin FEM, we
obtain the following matrix equation:

(3.2.12)

where

=  column vector containing the values of  .

{T } =  column vector containing the value of T  at all nodes./ /

[A] =  mass matrix.

[D] =  stiff matrix resulting from dispersion.

[C] =  matrix resulting from the first order rate constant term.

[Q] =  matrix resulting from the source term.
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{R} =  load vector from the biogeochemical reactions.

{S} =  load vector from the external source.

{B} =  load vector from the boundary source.

The matrices [A], [D], [C], and [Q] are given by

(3.2.13)

(3.2.14)

(3.2.15)

and

(3.2.16)

where

R =  region of element e.e

M =  set of elements that have a local side �-� coinciding with the global side i-j.e

N =  �-th local base function of element e.�
e

Similarly, the load vectors {R}, {S}, and {B} are given by

(3.2.17)

(3.2.18)

and

(3.2.19)

where
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B = the length of boundary segment e.e

N = set of boundary segments having a local node � coinciding with global node i.se

The reduction of the partial differential equation, Equation (3.2.1), to the set of ordinary
differential equations, Equation (3.2.12), simplifies to the evaluation of integrals on the right-hand
side of Equations (3.2.13) through (3.2.19) for every element or boundary segment.  The major
task that remains is the specification of base functions and the performance of numerical
integration to yield the element matrices.  This will be carried out for both the quadrilateral and
triangular elements because both types of elements are employed in this computer program.

3.2.2  Base and Weighting Functions

For a quadrilateral element having four corner nodes, a bilinear polynomial base function for the
�-th node may be written in terms of local normalized coordinates as

(3.2.20)

where �  and �  are the local coordinates of the corner nodes, which are numbered 1 to 4 and� �

which progress around the element in a counterclockwise direction as shown in Figure 3.1.
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Fig. 3.1  Global Versus Local Coordinates for a Typical Quadrilateral Element
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The transformation  from local coordinate (� ,� ) to the global coordinate (x,z) is achieved by� �

(3.2.21)

For a linear triangular element e (Figure 3.2), the base functions are given by

(3.2.22)

where

N (� = 1, 2, or 3) = the base function of node � in terms of local coordinate�
e

 (L ,L ,L ) (Figure 3.2).1 2 3

The local coordinates are also called area coordinates for a reason to be explained later.  The
global coordinates (x,z) and the area coordinates (L ,L ,L ) are related by 1 2 3

(3.2.23)

and

where

(3.2.24)

and A is the area of the triangle.  It is seen from Equations (3.2.23) and (3.2.24) that

(3.2.25)

Thus, it is clear that only two of the area coordinates can be independent, just as in the original
coordinate system, where there are only two independent coordinates, x and z.  Furthermore, a
little algebraic manipulation will reveal that the coordinates L , L , and L  are in fact the ratios1 2 3
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of the areas A , A , and A , respectively, to the triangular area A (Figure 3.2).  This is why they1 2 3

are called  area coordinates.
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Fig. 3.2  Global Coordinates vs. Local Coordinates for a Typical Triangular
Element
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3.2.3  Evaluation of Element Matrices

To complete the reduction of the partial differential equation [Equation (3.2.1)] to the ordinary
differential equation [Equation (3.2.12)], one has to evaluate the integrals on the right-hand sides
of Equations (3.2.13) through (3.2.19) for every element to yield the element mass matrix [A ],e

dispersion matrix [D ], first order rate matrix [C ], fluid source matrix [Q ],  element reactione e e

vector {R } and source vector {S } ase e

(3.2.26)

(3.2.27)

(3.2.28)

(3.2.29)

(3.2.30)

and

(3.2.31)

where the superscript or subscript e denotes the element, �, � = 1, 2, 3, or 4 for bilinear
quadrilateral elements, and �, � = 1, 2, or 3 for linear triangular elements.

Equations (3.2.26) through (3.2.31) are computed by either Gaussian (Conte 1965) or nodal
quadrature as specified by the user .  With the element matrices [A ], [D ], [C ], and [Q ] and thee e e e

element column vectors {R } and {S } computed, the global matrices [A], [D], [C], and [Q] ande e

the global column vectors {R} and {S} are then assembled element by element.

3.2.4  Mass Lumping Option

Referring to the element mass matrix [A ], first order rate matrix [C ], and source matrix [Q ],e e e
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one may note that these are the unit matrices if the finite-difference formulation is adopted in the
spatial discretization.  Hence, by proper scaling these matrices can be reduced to the finite-
difference equivalent by lumping (Clough 1971).  In many cases, the lumped matrices result in
a better solution.  Furthermore, with these lumped element matrices, the problem can be reduced
to a beaker system when advection and dispersion-diffusion terms are not involved in the
transport equation.  Under such circumstances, they are preferred to the nonlumped mass, fluid
source, and growth matrices.  Therefore, an option is provided for the lumping of these matrices.
A systematic and mathematically acceptable procedure for such lumping has been well
established (Zienkiewicz 1977).  For example, the fluid source matrix can be lumped according
to the following:

(3.2.32)

3.2.5  Time Integration

An important advantage of the finite-element approximation is the inherent ability to handle
complex boundaries and obtain the normal derivatives therein.  In the time dimension, such
advantages are not evident.  Thus, FDMs are typically used in the approximation of the time
derivative.  Using a time weighting factor, w, we obtain from Equation (3.2.12) the following
matrix equation:

(3.2.33)

where

{T}  = column vector representing the value of {T} at time (t+�t).t+�t

 {T } = the Lagrangian concentration.*

�t = time-step size.

The matrices [G] and [H] are given as

(3.2.34)

When w = 0, the time integration is explicit.  When w = 0.5, it is the Crank-Nicolson central
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difference.  For the implicit (or backward) difference, w = 1.0.

The Lagrangian concentration {T } is computed by the backward method of characteristics as*

follows:

(3.2.35)

where

x = the Lagrangian point  =  the location  at time t of a fictitious particle  whichi
*

would arrive at the node x  at time t+�t.i

T (t) = the value of concentration at node j at time t./
j

N (x) = the interpolation function associated with node j evaluated at the Lagrangianj i
*

point x.i
*

and V  is the Lagrangian tracking velocity given by Equation (3.2.2) and repeated here:L

(3.2.36)

If x is located within the region of interest, we define �) in Equation (3.2.35) asi
*

(3.2.37)

If x  is located outside the region of interest, we must find a �)(x) such thati i
* *

(3.2.38)

will locate x  on the boundary.  Thus, �) is less than or equal to �t.*
i

3.2.6 Conventional Finite Element Method

HYDROBIOGEOCHEM allows the user to choose the conventional finite element method rather
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than the hybrid Lagrangian-Eulerian method for solution of the matrix equations if desired.  In
this case, the matrix equation (3.2.33) is instead:

(3.2.39)

where

{T }  = column vector representing the value of {T } at time t./ /
t

The matrices [G] and [H] are given as

(3.2.40)

where

wv =  time weighting factor for the velocity term
[V] =  matrix resulting from the velocity term, given by

(3.2.41)

This global velocity matrix [V] is assembled element by element from the velocity matrix for
each element [ V  ] :��

e

(3.2.42)

3.2.7  Boundary Conditions

To incorporate the boundary conditions, we have to evaluate the right-hand side of Equation
(3.2.19) for every boundary segment B  to yield the load vector {B }:e

e

(3.2.43)
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Variable boundary conditions are imposed on  the flow-through boundary segments, where the
flow direction is not known a priori.  When the flow is directed out of the region, the Neumann
boundary condition given by Equation (3.1.8) is implemented.  Combining Equation (3.2.43) and
(3.1.8) yields the following for a Neumann boundary segment:

(3.2.44)

This represents the normal fluxes through the two nodal points of the segment B  on the variablee

boundary when V�n > 0.  

The total analytical concentration on the boundary segment B  can be approximated bye

(3.2.45)

Using Equation (3.2.45), the boundary-element column vector {B} for a Neumann segment cann
e

be expressed as:

(3.2.46)

where the Neuman boundary matrices are given by

(3.2.47)

When flow on the variable boundary is directed into the region, the Cauchy boundary condition
given by Equation (3.1.9) is implemented. Combining Equation (3.2.43) and (3.1.9) yields the
following for a Cauchy boundary segment:
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(3.2.48)

Using Equation (3.2.45), we obtain the boundary-element column vector {B} for a Cauchyc
e

segment:

(3.2.49)

in which the Cauchy boundary flux vector {q} and the Cauchy boundary matrix [V] are givenc c
e e

by

(3.2.50)

where

C  = the total dissolved concentration in the incoming fluid.in

Note that V  in Eq. (3.2.50) and V1  in Eq. (3.2.47) have the same form.e e
c�� n��

Since the flow direction is not known a priori on the variable boundary, Equations (3.2.46) and
(3.2.49) can be combined across all variable boundary segments into a general expression for the
global boundary column vector {B}:

(3.2.51)

in which
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(3.2.52)

where 

N =  the number of variable-boundary segments (= N  + N ),ve ce ne

N =  the number of Cauchy boundary segments on the variable boundary,ce

N =  the number of Neuman boundary segments on the variable boundary,ne

and

(3.2.53)

When the flow is directed out of the region, {q} is set equal to 0.  When the flow is directedv
e

into the region, [V2 ] is set equal to 0.e
v��

Substituting Equation (3.2.51) into Equation (3.2.33), we obtain

(3.2.54)

where [U] and [W] are given by the following equations:
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(3.2.55)

At nodes where Dirichlet boundary conditions are applied, an identity equation is generated for
each node and included in the matrices of Equation (3.2.54).  The detailed method of applying
this type of boundary condition can be found elsewhere (Wang and Connor 1975).

Equation (3.2.54), after modified for the Dirichlet boundary condition, is solved sequentially and
iteratively with the the biogeochemical reaction problem specified by Equations (3.1.24) through
(3.1.51) to yield {T}, {W}, {N }, {c}, {s}, {x}, {y}, {z}, {p}, {b}, and {a} for all species, and/

eq

{C}, {S}, and {P) for all chemical components.

Boundary conditions need to be implemented in the computation of the Lagrangian concentrations
{T }.  If flow on the variable boundary is directed out from the region of interest (i.e. a Neumann*

boundary condition), the boundary condition need not be implemented.  On the Neumann
boundary, backtracking would locate x in the interior of the domain; hence, the Lagrangiani

*

concentration at the i-th Neumann boundary node is simply computed via interpolation.  If the
flow is directed into the region (i.e. a Cauchy boundary condition), then the Lagrangian
concentration on the i-th variable boundary node T  is computed byvi

*

(3.2.56)

where
C =  the concentration in the fluid entering through the variable boundary.in

On the Dirichlet boundary nodes, the Lagrangian concentration is simply set to the specified
value.

3.2.8  Solution of the Matrix Equations

Although both the matrices [U] and [W] are not functions of the unknown {T}, Equation (3.2.54)
still represents a system of nonlinear algebraic equations because of the reaction terms, {R}.  The
solution of this system requires some type of iterative procedure.  The approach taken here is to
make an initial estimate of the unknown {T}.  We compute the value of the reaction terms using
the biogeochemical subsystem of equations and the working values for the concentrations of the
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species involved in these reactions.  Substituting the reaction term vectors into Equation (3.2.54),
we linearize the matrix equation, which is then solved by the method of linear algebra to obtain
the new solution {T}.  The new estimate is obtained by the weighted average of the new solution
and the previous estimate,

(3.2.57)

where

{T } =  the new estimate.{k+1)

{T } =  the previous estimate.k

{T} =  the new solution.
3 =  the iteration relaxation parameter.

The procedure is repeated until the new solution {T} is reached within a prescribed tolerance of
error.  When the iteration parameter is greater than or equal to 0 but is less than 1, the iteration
is termed under-relaxation.  If 3 = 1, the method is exact-relaxation.  For the cases in which 3
is greater than 1 but less than or equal to 2, the iteration is termed over-relaxation.

The individual terms in the reaction load vector {R} may be positive, negative, or zero depending
upon the progress over the current time step of the reactions in which the chemical or microbial
species associated with that equation participates.  An adaptive explicit-implicit scheme is
incorporated to handle the reaction load vector to help achieve convergent solutions for the case
when the reaction term is negative.  Incorporating this scheme into Equation (3.2.54):

(3.2.58)

(3.2.59)

where [R], the matrix resulting from the reaction term used on the left hand side of Equation
(3.2.59) is given by

(3.2.60)

The handling of the reaction term as explicit or implicit can vary for each of the matrix equations
at one time step and can vary from one time step to the next for a given species� equation.

Six options are employed to solve the linearized matrix equation: the direct elimination method,
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the pointwise iteration method and four preconditioned conjugate gradient methods.  When the
direct elimination method is used to solve the matrix equation, a single iteration loop is employed
to iterate the nonlinearity.  However, when the pointwise iterations are used, a double loop is
required: the inner loop to solve the linearized equation and the outer loop to iterate the
nonlinearity.   Three options can be employed when the pointwise iteration method is used to
solve the linearized matrix equation:  the successive under-relaxation (SUR), Gauss-Seidel (G-S),
and successive over-relaxation (SOR) iteration methods.  These methods are unified  by a
relaxation parameter, 3.  When 3 is less than 1 but greater than or equal to 0, the method is
termed SUR iteration.  When 3 equals 1, the method is termed G-S iteration.  If 3 is greater
than 1 but less than or equal to 2, the method is termed SOR iteration.

3.3 Solution of Geochemical Reaction Equations

The total concentration of the aqueous components (T 's), the concentration of the kinetic aqueousj

complexed species (K  x 's), and the concentration of aqueous microbial species (b 's) are obtainedx i i

from the hydrologic transport subsystem of the program and the adsorbent components� W �s, ionj

exchange sites� N �s, and other kinetic species� concentrations are given by the values at theeqi

prior time step.  With these values, the remaining governing equations involve 7 sets of
unknowns in 7 sets of algebraic equations after the kinetic rate equations are discretized by
implicit time difference: N  c 's, N  s 's, (M  -K ) x 's, M  y 's, M  z 's, M  p 's, and M  a 's.  Thea k s k x x i y i z i p i a i

Newton-Raphson iterative technique is used in HYDROBIOGEOCHEM to solve these sets of
equations.

For computational efficiency in the Newton-Raphson method, the number of simultaneous
equations are kept to a minimum.  Simplifications can be made to reduce the number of
simultaneous equations to be solved.  When dealing with equilibrium reactions for both
complexed and adsorbed species it is seen in equations (3.1.30) and (3.1.33) that the complexed
species (x 's) and the adsorbed species (y 's) concentration values are functions of the aqueous andi i

adsorbed component species.  Thus the equilibrium complexed species (x ) and the adsorbedi

species (y ) can be eliminated from the solution matrix by substituting for each using thesei

functional relations to the component species.  This allows the program to solve the equilibrium
equations for the complexed and adsorbed species outside of the matrix solver after the other
species concentrations have been obtained, thereby reducing the number of simultaneous
equation.

Substitution of Equations (3.1.30) and (3.1.33) into Equation (3.1.25) yields the following mole
balance equation for mobile aqueous components:
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(3.3.1)

where � � NRXNE is the equilibrium reaction in which the equilibrium complexed or adsorbed
species is formed.

Substitution of Equations (3.1.33) into Equation (3.1.28) yields the following mole balance
equation for adsorbent components:

(3.3.2)

3.3.1  Solution of the Nonlinear Algebraic Equations

The sets of equations for the biogeochemical subsystem can be solved by methods of nonlinear
algebra.  The Newton-Raphson iterative technique has been described in detail elsewhere (Westall
et al. 1976) and is summarized as follows.  Consider a system of algebraic equations of the form

(3.3.3)

Taylor expansion of Equation (3.3.3) about the previous iterate yields

(3.3.4)
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where

y  = value of y(x) evaluated at x .n n

x  = value of x from the previous iteration.n

x  = value of x at the new iteration.n+1

Written in matrix notation, Equation (3.3.4) becomes

(3.3.5)

where
Y = residues.
Z = Jacobian of Y with respect to X.

superscript n = value at the previous iteration.
superscript n+1 = value at the new iteration.

Thus, the solution of Equation (3.3.3) involves the following steps:

1. Given the function y(x) and the value of x , compute the residue Y .  n
n

2. Compute the Jacobian Z .n

3. Find the values �X (where �X denotes X -X ) by Equation (3.3.4).n n+1

4. Compute the new iterate by

(3.3.6)

The above steps are repeated until a convergent solution is obtained.  The application of the
Newton-Raphson method to the geochemical reaction model is straightforward.  The residues are
computed from Equations (3.1.24) through (3.1.47) (or their reduced sets).   The Jacobian is
computed by taking the partial differential of Equations (3.1.24) through (3.1.47) (or their
reduced sets) with respect to the species concentrations (or the reduced set of species
concentrations).

For the Newton-Raphson method, it is advantageous to keep the number of simultaneous
equations at a minimum.  As noted above, Equations (3.1.30) and (3.1.33) for the equilibrium
complexed and adsorbed species are not independent from the other equations and can be solved
outside of the matrix solver.  Therefore, the remaining governing equations for the
biogeochemical reactions are solved simultaneously for the c 's, s 's, K  kinetic y 's, z 's, p 's, andj j y i i i

a 's during one iteration.  After they are obtained, the (M  - K ) equlibrium x 's and (M  - K )i x x i y y

equlibrium y 's are computed from Equations (3.1.30) and (3.1.33).  The major tasks are thus thei

evaluation of the residuals and Jacobians for Equations (3.1.24) through (3.1.47).

3.3.2  Evaluation of the Residuals

The first set of residuals that is computed are those based on the component governing equations.
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The computation is relatively simple, where one just substitutes the iterates of all species
concentrations into the equations below.

Residuals for the aqueous component species concentrations:

(3.3.7)

where

(3.3.8)

and

(3.3.9)

and where GR is the residual of the equation for the i-th species under consideration.  IOPTRSisi

an indicator for the solution scheme selected.  IOPTRS=1 if the operator splitting scheme is used
and =0 if the fully implicit scheme is used.  

For a steady state simulation, ,T  / ,t = 0, or T  = T , and the residual is simply:m m m
(n+1)

(3.3.10)

Residuals for the adsorbent component species concentrations:
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If species m is an adsorbent component, W  is not known and W  is provided from them m
(n+1) (n)

prior iteration.  The new individual species concentrations are solved for using:

(3.3.11)

where

(3.3.12)

and

(3.3.13)

The new values of W  are calculated after the new values for the s �s and y �s are determined.m j i
(n+1)

For a steady state simulation, ,W  / ,t = 0, or W  = W , and the residual is simply:m m m
(n+1)

(3.3.14)

Since the equilibrium aqueous complexed and adsorbed species� concentrations are not computed
in the matrix solver, their residuals do not need to be calculated.  

For the fully implicit approach, the concentrations of the kinetic aqueous complexed species are
determined in the hydrologic transport subsystem of equations  before the biogeochemical
subsystem is entered.  The residuals for these species within the biogeochemical subsystem are
therefore zero.

(3.3.15)

where N = the total number of components, both aqueous and adsorbent, (N  + N ).a s



     The change in moisture content term, , is evaluated explicitly using the concentration2

values for species m at the old iteration if the change is negative and implicitly using the concentration values at the
new iteration if the change is positive.  This is also the case for the aqueous phase microbial species equations. 

     The change in bulk density term, , is evaluated explicitly using the concentration values3

for species m at the old iteration if the change is negative and implicitly using the concentration values at the new
iteration if the change is positive.  This is also the case for the ion exchanged, precipitated, and adsorbed microbial
species equations.
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If the operator splitting scheme is used, the concentrations of the kinetic aqueous complexed
species are adjusted in both the hydrologic transport and biogeochemical subsystem of equations.
With this approach, the residuals for the kinetic aqueous complexed species are2

(3.3.16)

For kinetic adsorption :3

(3.3.17)

Ion exchange site constraint equation used for the ªreferenceº ion-exchange species:

(3.3.18)

where
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(3.3.19)

and

(3.3.20)

Note that for a steady state simulation, ,N  / ,t  = 0, and the residual is expressed as:eqj

(3.3.21)

For equilibrium ion-exchange:

(3.3.22)

For kinetic ion-exchange:

(3.3.23)

For equilibrium precipitation:



3.43

(3.3.24)

For kinetic precipitation:

(3.3.25)

For the fully implicit approach, the concentrations of the aqueous phase microbial species are
determined in the hydrologic transport subsystem of equations  before the biogeochemical
subsystem is entered.  The residuals for these species within the biogeochemical subsystem are
therefore zero.

(3.3.26)

If the operator splitting scheme is used, the concentrations of the aqueous phase microbial species
are adjusted in both the hydrologic transport and biogeochemical subsystem of equations.  With
this approach, the residuals for these species are

(3.3.27)

For adsorbed phase microbial species:
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(3.3.28)

3.3.3  Evaluation of Jacobians

3.3.3.1  Rows for N  Speciesa

The first set of Jacobians are those involved with the component species.  In the following, GJij

is the entry in the i-th row, j-th column of the Jacobian array.  For a transient simulation, the
Jacobians for the rows corresponding to the aqueous components, m = 1, 2, ..., N  , i = m , are:a
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(3.3.29)
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where k � NRXNE is the equilibrium reaction defining the formation of equilibrium species l.

(3.3.30)

where k � NRXNE is the equilibrium reaction defining the formation of equilibrium species l.

(3.3.31)

(3.3.32)
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(3.3.33)

(3.3.34)

(3.3.35)

(3.3.36)
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(3.3.37)

The partial derivatives of the reaction terms are evaluated as follows for any chemical species
f:

(3.3.38)

and

(3.3.39)

The derivative with respect to g  is taken term by term for each reactant and product in eachn

kinetic chemical and microbiological reaction and their contributions to the Jacobian matrix for
row m are summed.  For a given species ªfº and a given reaction ªkº, the evaluation of the
derivatives will depend only on a column ªnº, and not on the row ªmº being considered.  The
evaluation of these  derivatives with respect to g   is therefore applicable for all rows and isn

presented in sections 3.3.3.9 through 3.3.3.11.

For a steady state simulation, the Jacobians for the rows corresponding to the aqueous
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components, m = 1, 2, ..., N  , i = m , are:a

(3.3.40)

where k � NRXNE is the equilibrium reaction defining the formation of equilibrium species l.

(3.3.41)

where k � NRXNE is the equilibrium reaction defining the formation of equilibrium species l.

(3.3.42)

(3.3.43)
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(3.3.44)

(3.3.45)

(3.3.46)

(3.3.47)
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3.3.3.2  Rows for N  Speciess

For a transient simulation, the Jacobians for the rows corresponding to the adsorbent component
species, m = 1, 2,..., N , i = m + N  are:s a

(3.3.48)

where k � NRXNE is the equilibrium reaction defining the formation of equilibrium species l.

(3.3.49)

(3.3.50)
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(3.3.51)

(3.3.52)

(3.3.53)

The evaluation of the partial derivatives of the reaction rate terms is presented in sections 3.3.3.9
through 3.3.3.11.

For a steady state simulation, the Jacobians for the rows corresponding to the adsorbent
component species, m = 1, 2,..., N , i = m + N  are:s a

(3.3.54)

where k � NRXNE is the equilibrium reaction defining the formation of equilibrium species l.



3.53

(3.3.55)

(3.3.56)



     The change in moisture content term is included in Eq. (3.3.61) if ,# �/,t is positive,4
1

since the term is evaluated  in the residual using the working concentration for this case.  If
,#�/,t is negative, this term is included explicitly in the residual and therefore does not appear1

in Eq. (3.3.61).  See Section 3.3.2.
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3.3.3.3  Rows for K  Speciesx

The next set of Jacobians is for the rows corresponding to the K  kinetic complexed species.  Ifx

the fully implicit approach is used (IOPTRS = 0), the Jacobians for rows the m = 1, 2, ..., K  ,x

i = m + N and N = N  + N  are:a s

(3.3.57)

(3.3.58)

(3.3.59)

If the operator splitting approach is used (IOPTRS =1), the Jacobians for the rows m = 1, 2, ...,
K , i = m + N and N = N  + N  are :x a s

4

(3.3.60)

(3.3.61)



     The change in bulk density term is included in Eq. (3.3.64) if ,# /,t is positive, since the5
b

term is evaluated  in the residual using the working concentration for this case.  If ,# /,t isb

negative, this term is included explicitly in the residual and therefore does not appear in Eq.
(3.3.64).  See Section 3.3.2.
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(3.3.62)

The evaluation of the reaction terms is detailed in sections 3.3.3.9 through 3.3.3.11.

3.3.3.4  Rows for K  Speciesy

The next set of Jacobians, for the kinetic adsorbed species, is similar in form to that for the
kinetic aqueous complexed species.  The Jacobians for the rows corresponding to the K  kineticy

adsorbed species , m = 1, 2, ..., K , i = m + N + K , are:5
y x

(3.3.63)

(3.3.64)

(3.3.65)

The evaluation of the reaction terms is detailed in sections 3.3.3.9 through 3.3.3.11.

3.3.3.5  Rows for M  Speciesz

The Jacobians for rows corresponding to the ion-exchanged species are m = 1, 2, ..., M , i = mz

+ N + K  + K , depend on whether the species m is (1) a ªreferenceº ion exchange species forx y

one of the ion exchange sites, (2) an equilibrium controlled ion exchanged species, or (3) a
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kinetic controlled ion exchanged species.  The Jacobians for each of these three cases follow:

If species m is the ªreferenceº species for an ion exchange site, the residual for this species for
a transient simulation is given by Eq. (3.3.18) and the Jacobian for this row is evaluated as
follows:

(3.3.66)

(3.3.67)

(3.3.68)

(3.3.69)

For a steady state simulation, the residual for the ªreferenceº species is given by Eq. (3.3.21) and
the Jacobian for this row is evaluated as follows:

(3.3.70)
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(3.3.71)

(3.3.72)

(3.3.73)

If species m is an equilibrium controlled ion exchanged species and is not the ªreferenceº species
for an ion exchange site, the residual for this species is given by Eq. (3.3.22) and the Jacobian
for this row is evaluated as follows:

For columns n � N , j = n, the contribution to the Jacobian is:a

From reactant r � N  in the equilibrium reaction k which defines the formation of species m:a

(3.3.74)

From product p  � N  in the equilibrium reaction k which defines the formation of species m:a

(3.3.75)

From reactant r � (M -K ) in the equilibrium reaction k which defines the formation of speciesx x

m:

(3.3.76)

where � � NRXNE is the equilibrium reaction defining the formation of equilibrium species r.
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From product p � (M -K ) in the equilibrium reaction k which defines the formation of speciesx x

m:

(3.3.77)

where � � NRXNE is the equilibrium reaction defining the formation of equilibrium species p.

For any other reactant species r or product species p, the contribution to the Jacobian in columns
n � N  is zero.a

For columns n � N , K , K , j = n + N , the Jacobian entry is zero:s x y a

(3.3.78)

For columns n � M  ,  j = n + N + K  + K , the contribution to the Jacobian is:z x y

For reactant r �M   in the equilibrium reaction k which defines the formation of species m:z

(3.3.79)

(3.3.80)

(3.3.81)

For product p �M   in the equilibrium reaction k which defines the formation of species m:z
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(3.3.82)

(3.3.83)

(3.3.84)

For any other reactant or product species, the contribution to the Jacobian for columns n �M  isz

zero.

For columns n � M  +M  + M ,j = n + N + K  + K  + M , the contribution to the Jacobian isp b a x y z

zero.

(3.3.85)

If species m is a kinetic controlled ion exchanged species and is not a ªreferenceº species, the
residual for this row is given by Eq. (3.3.23) and the Jacobian for this row is evaluated as
follows:

(3.3.86)

(3.3.87)
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(3.3.88)

As was done for the other kinetic species rows, the partial derivatives of the reaction terms are
evaluated by taking the partial derivatives term by term for each species participating in each
chemical and microbiological reaction.  The equations in Section 3.3.3.9 through 3.3.3.11 can be
used to evaluate these terms.  However, because sorbent component species, adsorbed species or
precipitated species do not participate in chemical reactions involving ion exchange, the
contribution to the Jacobian from chemical reactions for these columns will be zeroes for the
kinetic ion exchanged species rows.

3.3.3.6  Rows for M  Speciesp

For the rows corresponding to the precipitated species, m = 1, ..., M , i = m + N + K   + Kp x y

+ M , the Jacobians will depend on whether the species is equilibrium or kinetic controlled.  Forz

the equilibrium case, the residual equation is (3.3.24) and the Jacobians for row m are:

For columns n �N , j = n:a

From reactant r �N  in the equilibrium reaction k which defines the formation of species m:a

(3.3.89)

From reactant r �(M  - K ) in the equilibrium reaction k which defines the formation of speciesx x

m:

(3.3.90)

where � � NRXNE is the equilibrium reaction defining the formation of equilibrium species r.

For other columns, contribution to the Jacobian is zero:
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(3.3.91)

For the kinetic precipitated species, the residual equation is (3.3.25) and the Jacobians for row
m are:

(3.3.92)

(3.3.93)

(3.3.94)

As was done for the other kinetic chemical species rows, the partial derivatives of the
production/consumption rate terms are evaluated by taking the partial derivatives term by term
for each species participating in each chemical and microbiological reaction.    The equations in
Section 3.3.3.9 through 3.3.3.11 can be used to evaluate these terms.    However, because sorbent
component species, adsorbed species or ion exchanged species do not participate in chemical
reactions involving precipitation, the contribution to the Jacobian from chemical reactions for
these columns will be zeroes for the kinetic precipitated species rows.

3.3.3.7  Rows for M  Speciesb

If the fully implicit scheme is used (IOPTRS = 0), the Jacobians for the rows corresponding to
the aqueous phase microbial species, m = 1, ..., M , i = m + N + K  + K  + M  + M , are:b x y z p
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(3.3.95)

(3.3.96)

(3.3.97)

If the operator splitting approach is used (IOPTRS = 0), the Jacobians for the rows corresponding
to the aqueous phase microbial species, m = 1, ..., M , i = m + N + K  + K  + M  + M , are:b x y z p

(3.3.98)

(3.3.99)

(3.3.100)

The partial derivatives of the microbial growth rate terms are evaluated as follows:

(3.3.101)
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The derivative with respect to g  is taken term by term for each species in each microbiologicaln

reaction and their contributions to the Jacobian for row m are summed.  For a given row m, the
evaluation of these derivatives is analogous to that outlined for the Jacobians for the kinetic
chemical species rows.  The equations in Section 3.3.3.10 can be used to evaluate the
microbiological growth contributions in the Jacobian for the microbial species.  

The partial derivatives of the microbial phase transfer terms are evaluated as follows:

(3.3.102)

For columns n � N  + N  + K  + K  + M  + M , j = n, the contribution to the Jacobian from thea s x y z p

microbial phase transfer reactions is zero.

For columns n � M , j = n + N  + N  + K  + K  + M  + M , the contribution to the Jacobianb a s x y z p

from the  microbial phase transfer reactions is:

(3.3.103)

For columns n � M  , j = n + N  + N  + K  + K  + M  + M + M , the contribution to thea a s x y z p b

Jacobian from the  microbial phase transfer reactions is:

(3.3.104)

3.3.3.8  Rows for M  Speciesa

For the rows corresponding to the adsorbed phase microbial species, m = 1, ..., M , i = m + Na

+ K  + K  + M  + M  + M , the residual equation is (3.3.28) and the Jacobians for row m are:x y z p b
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(3.3.105)

(3.3.106)

(3.3.107)

The partial derivatives of the microbial growth rate and phase transfer terms are evaluated as for
the aqueous phase microbial species rows, the derivative with respect to g  is taken term by termn

for each species and their contributions to the Jacobian for row m are summed.  

3.3.3.9  Contribution from chemical reactions

The contribution to the Jacobian from each term in the k-th chemical reaction (k  � NRXNK)
is as follows: 

(3.3.108)

For columns n � N  + N , j = n, the contribution to the Jacobian from the k-th chemical reactiona s

is:

From reactant r � N  or N :a s

(3.3.109)
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From product p  � N  or N :a s

(3.3.110)



3.66

From reactant r � (M -K ) or (M -K ), i.e. equilibrium complexed or adsorbed species:x x y y

(3.3.111)

where � � NRXNE is the equilibrium reaction defining the formation of equilibrium species r.

From product p � (M -K ) or (M -K ):x x y y

(3.3.112)

where � � NRXNE is the equilibrium reaction defining the formation of equilibrium species p.

For any other reactant species r or product species p, the contribution to the Jacobian in columns
n � N  + N  is zero.a s

For columns n � K  + K , j = n + N, the contribution to the Jacobian from the k-th chemicalx y

reaction is:

For reactant r � K  + K , i.e. kinetic complexed or adsorbed species:x y

(3.3.113)

From product p � K  + K :x y

(3.3.114)

For any other reactant or product species, the contribution to the Jacobian in columns n � K +Kx y

is zero.
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For columns n � M  , j = n + N + K  + K , the contribution to the Jacobian from the k-thz x y

chemical reaction is:

For reactant r �M :z

(3.3.115)

(3.3.116)

(3.3.117)

For product p �M :z

(3.3.118)

(3.3.119)
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(3.3.120)

For any other reactant or product species, the contribution to the Jacobian for columns n �M  isz

zero.

For columns n � M  , M  + M , j = n + N + K  + K  + M , the contribution to the Jacobian fromp b a x y z

the k-th chemical reaction is zero:

(3.3.121)

3.3.3.10  Contribution from microbiological degradation

The contribution to the Jacobian from each term in the k-th microbial biodegradation reaction (k
� NBRXNK) is: 

(3.3.122)

For columns n � N  + N , j = n, the contribution to the Jacobian from the k-th microbial reactiona s

is:

If substrate S  � N  or N  and S  c I:k a s k

(3.3.123)

If electron acceptor A  � N  or N  and A  c I:k a s k
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(3.3.124)
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If nutrient N  � N  or N  and N  c I:k a s k

(3.3.125)

If inhibitor I � N  or N , and I c S , I c A , I c N , I c B :a s k k k k

(3.3.126)

If inhibitor I � N  or N , and I = S :a s k
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(3.3.127)

If inhibitor I � N  or N , and I = A :a s k

(3.3.128)

If inhibitor I � N  or N , and I = N :a s k
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(3.3.129)
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If substrate S  � (M  - K ) or (M  - K ), i.e. equilibrium complexed or adsorbed species, and Sk x x y y k

c I:

(3.3.130)

where � � NRXNE is the equilibrium reaction defining the formation of equilibrium species S .k

If electron acceptor A  � (M  - K ) or (M  - K ), i.e. equilibrium complexed or adsorbed species,k x x y y

and A  c I:k

(3.3.131)

where � � NRXNE is the equilibrium reaction defining the formation of equilibrium species A .k

If nutrient N  � (M  - K ) or (M  - K ), i.e. equilibrium complexed or adsorbed species, and Nk x x y y k

c I:
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(3.3.132)

where � � NRXNE is the equilibrium reaction defining the formation of equilibrium species N .k
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If inhibitor I � (M  - K ) or (M  - K ), i.e. equilibrium complexed or adsorbed species and I cx x y y

S , I c A , I c N :k k k

(3.3.133)

where � � NRXNE is the equilibrium reaction defining the formation of equilibrium species I.

If inhibitant I = substrate S  � (M  - K ) or (M  - K ), i.e. equilibrium complexed or adsorbedk x x y y

species:
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(3.3.134)

where � � NRXNE is the equilibrium reaction defining the formation of equilibrium species I
= S .k
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If inhibitant I = electron acceptor A  � (M  - K ) or (M  - K ), i.e. equilibrium complexed ork x x y y

adsorbed species:

(3.3.135)

where � � NRXNE is the equilibrium reaction defining the formation of equilibrium species I
= A .k

If inhibitant I = nutrient N  � (M  - K ) or (M  - K ), i.e. equilibrium complexed or adsorbedk x x y y

species:
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(3.3.136)

where � � NRXNE is the equilibrium reaction defining the formation of equilibrium species I
= N .k

For any other species participating in the k-th microbial reaction, the contribution to the Jacobian
for columns n � N  or N  is zero.a s

For columns n � K  + K  + M  + M , j = n + N, the contribution to the Jacobian from the k-thx y z p

microbial degradation reaction is:

If substrate S  � K  + K  + M  + M  and S  c I:k x y z p k

(3.3.137)
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If electron acceptor A  � K  + K  + M  + M  and A  c I:k x y z p k

(3.3.138)

If nutrient N  � K  + K  + M  + M  and N  c I:k x y z p k

(3.3.139)

If inhibitor I � K  + K  + M  + M , and I c S , I c A , I c N :x y z p k k k
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(3.3.140)

If inhibitor I � K  + K  + M  + M , and I = S :x y z p k

(3.3.141)
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If inhibitor I � K  + K  + M  + M  , and I = A :x y z p k

(3.3.142)

If inhibitor I � K  + K  + M  + M  , and I = N :x y z p k
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(3.3.143)

For any other species participating in the k-th microbial reaction, the contribution to the Jacobian
for columns n �K  + K  + M  + M  is zero.x y z p

For columns n � M  + M , j = n + N + K  + K  + M  + M , the contribution to the Jacobianb a x y z p

from the k-th microbial degradation reaction is:

If B  c I:k

(3.3.144)

If B  = I:k
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(3.3.145)

3.3.3.11  Contribution from microbial respiration

The contribution to the Jacobian from endogenous respiration of the k-th microbial species (k
� M ) is:B

(3.3.146)

If the species f � (N  + N  + K  + K  + M  + M ), it will contribute to its own column and toa s x y z p

the column corresponding to microbial species k.  For this case, the contribution to column n in 

the Jacobian from maintenance/respiration of the k-th microbial species is:

(3.3.147)

and

(3.3.148)

If the species f � (M  - K ) or (M  - K ), it will contribute to the columns for the componentsx x y y

is contains and to the column corresponding to microbial species k.   For this case, the
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contribution to column n in the Jacobian from maintenance/respiration of the k-th microbial
species is:

(3.3.149)

where � � NRXNE is the equlibrium reaction defining the formation of equilibrium species f,
and

(3.3.150)

3.3.4  Treatment of Precipitation/Dissolution

Precipitation/dissolution can be considered with two different approaches.  The first one is to
consider the concentrations of all precipitated species as independent unknowns in addition to the
component species concentrations.  This approach has been used in several geochemical
equilibrium models such as EQ3/EQ6 (Wolery 1979), PHREEQE (Parkhurst et al. 1980), and
some multispecies transport models such as THCC (Carnahan 1986).   The second approach is
to substitute the mass action equation for each precipitated species into the other equations to
eliminate M  c 's out of N  c 's and M  p 's from the set of governing equations.  The detail ofp k a k p i

this type of substitution and the subsequent reduction of the number of equations can be found
on pages 56 through 63 in the MINEQL manual (Westall et al. 1976).  For every precipitated
species eliminated, the number of simultaneous equations can be reduced by two:  one mass
action equation describing that species and any one mole balance equation containing that species
(Westall et al. 1976).  However, by using the first approach, one is able to treat mixed chemical
equilibrium and chemical kinetics so that precipitation/dissolution kinetics can be simulated.  This
version of the code uses the first approach to treat precipitation-dissolution reactions.

3.3.5  Treatment of a System Involving Oxidation-Reduction Reactions

Oxidation-reduction reactions are treated by defining electron activity as a component species and
considering operational electrons as aqueous components.  For multivalent elements, a species
in one of the higher oxidation states of an element is chosen as the component species to
represent that element.  Reduction to a lower oxidation state is described by a half-cell reaction,
which is analogous to complexation.  The total concentration of "operational" electrons is
obtained by summing over all added chemicals that contain lower oxidation state elements.  The
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mole balance equation for operational electrons is different from those for other aqueous
components in that the first term on the right-hand side is set to zero and c  in all other termse

is interpreted as the activity of the electrons rather than the concentration of free electrons.

Mathematically, operational electrons can be treated just as other aqueous components.
Numerically, however, this component requires special attention.  Because the electron activity
can span over at least 40 orders of magnitude, an ill-conditioned matrix often results when this
equation is solved simultaneously with other mole balance equations with the Newton-Raphson
method.  To circumvent this difficulty, a split scheme is used in this version of the code.  In this
split scheme, the mole balance equation for operational electrons is solved with a modified
bisection method (Forsythe et al. 1977), while all other mole balance equations are solved
simultaneously with the Newton-Raphson method.  This split scheme is particularly effective for
reducing conditions when the solution fails to converge without the split scheme.

3.3.6  Treatment of a System Involving Acid-Base Reactions

Acid-base reactions are treated by defining hydrogen activity as a component species.  The
"excess" hydrogen is subject to transport as are other aqueous components.   The mole balance
equation for the excess hydrogen is different from those for other aqueous components.  The first
term on the right-hand side of Equation (3.3.1) is written as c / �   where �  is the activityH H H

coefficient of the free hydrogen ion.  In all other terms, C  is replaced by c  and is interpretedk H

as the activity of hydrogen rather than the concentration of free hydrogen.  If an (OH) appears
in any species, the stoichiometric coefficient of the hydrogen in that species is set to -1.  If n
(OH)s appear in any species, the stoichiometric coefficient of hydrogen in that species is set to
-n. 


