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ABSTRACT 
 

Environmental exposure measurements are, in general, positive and may be subject to left 
censoring, i.e. the measured value is less than a “limit of detection.”  In occupational monitoring, 
strategies for assessing workplace exposures typically focus on the mean exposure level or the 
probability that any measurement exceeds a limit.  A basic problem of interest in environmental 
risk assessment is to determine if the mean concentration of an analyte is less than a prescribed 
action level.  Parametric methods, used to determine acceptable levels of exposure, are often 
based on a two parameter lognormal distribution.  The mean exposure level and/or an upper 
percentile (e.g. the 95th percentile) are used to characterize exposure levels, and upper 
confidence limits are needed to describe the uncertainty in these estimates.  In certain situations 
it is of interest to estimate the probability of observing a future (or “missed”) value of a 
lognormal variable.  Statistical methods for random samples (without non-detects) from the 
lognormal distribution are well known for each of these situations.  In this report, methods for 
estimating these quantities based on the maximum likelihood method for randomly left censored 
lognormal data are described and graphical methods are used to evaluate the lognormal 
assumption.  If the lognormal model is in doubt and an alternative distribution for the exposure 
profile of a similar exposure group is not available, then nonparametric methods for left censored 
data are used.  The mean exposure level, along with the upper confidence limit, is obtained using 
the product limit estimate, and the upper confidence limit on the 95th percentile (i.e. the upper 
tolerance limit) is obtained using a nonparametric approach.  All of these methods are well 
known but computational complexity has limited their use in routine data analysis with left 
censored data.  The recent development of the R environment for statistical data analysis and 
graphics has greatly enhanced the availability of high quality nonproprietary (open source) 
software that serves as the basis for implementing the methods in this paper.  Numerical 
examples are provided and R functions are available at http://www.csm.ornl.gov/~frome/sand/ 
(SAND). 
 
 
 
 
 
 
 
 
Key words: lognormal, maximum likelihood, left censored, regression, confidence limits, 

prediction density, tolerance limit, exposure measurements, nonparametric 
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1.  INTRODUCTION 
 
Statistical methods for the analysis of right censored data using various parametric and non-
parametric methods are well known and generally referred to as “survival analysis” – see e.g. 
Cox and Oakes (1984) or Kabfleish and Prentice (1980).  In this situation, the dependent or 
response variable (say T) is usually time to the occurrence of event, i.e. the “survival time” (or 
time to failure) of an observational or experimental unit (e.g. animal, person, or machine).  T 
may be referred to as a “lifetime random variable” and is by definition positive, and may be 
subject to “censoring.”  As a typical example, let Ti represent the survival time of the ith patient 
in a clinical trial.  If the trial ends and the patient is not known to have “failed” the observed 
survival time, say t*

i  is right censored (i.e. it is only known that Ti is greater than t*
i ).  This can 

occur for several reasons.  If, for example, all patients enter the trial at the same time and are 
followed until a specified end date, then those individuals still alive have a censored survival 
time that is the same for all surviving patients (type I censoring).  If patients enter the trial at 
random and the trial ends at a fixed date, then the value of t*

i  is different for each surviving 
patient (random censoring).  Statistical methods for the analysis of right-censored data are 
widely used and computer software for survival analyses is available in most general purpose 
statistical programs. 
 
In this report, the dependent or response variable of interest is the amount, say D, of a measured 
quantity.  D is a positive random variable and as the result of the analytic methods used, the 
observed value for the ith measurement may be reported as (left) “censored” and is referred to as 
a non-detect or less than a “limit of detection” say d*

i  (i.e. it is only known that Di is less than 
d*

i ).  Schmoyer et al. (1996) considered the lognormal model for contaminant concentrations in 
environmental risk assessment.  Another general area of application of the lognormal model is 
occupational exposure data.  Lyles and Kupper (1996) have discussed strategies for the 
assessment of workplace exposures using time-weighed average (TWA) exposure measurements 
on a representative sample of workers as a typical example.  The TWA measurements are 
considered to be a random sample from a lognormal distribution without censoring.  They 
describe “exact” statistical methods for testing either i) the null hypothesis that the mean 
exposure level for a similar exposure group (SEG) is below a certain limit, i.e., the long term 
average permissible exposure limit, or ii) that a specified percentile of the TWA distribution 
does not exceed a limit.  These and other related procedures are described in detail by 
Mulhausen and Damiano (1998). 
 
 

2.  STATISTICAL ANALYSIS FOR COMPLETE SAMPLES 
 

To review what is known for the complete data case suppose that di, i = 1,…, n is a random 
sample from a lognormal distribution with mean µd  = exp (µy + 2

yσ  / 2), where µy and 2
yσ  are the 

corresponding mean and variance of yi = ln (di).  Let y−  = Σi yi / n and 2
ys  = Σ (yi  – y− 2)  / (n-1) 

where 2
ys  is the unbiased estimator for 2

yσ .  The maximum likelihood estimator of 2
yσ  is 

2
y

∧
σ  = 2

ys  [(n-1)/n]. 
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2.1.  CONFIDENCE LIMIT FOR THE MEAN EXPOSURE LEVEL 
 
To test the hypothesis that µd is below a specified limit, say *

dµ , the null and alternative 
hypothesis are H0 :  µd ≥ 

*
dµ  vs. H1: µd < *

dµ .  A convenient method for testing H0 (with type I 
error rate α) is to construct a one-sided upper (1 - α)100% confidence limit, and reject H0 if this 
limit is less than *

dµ .  A number of methods have been described for calculating an upper 
confidence limit (UCL) for µd - see e.g. Armstrong (1992).  For Land’s (1972) exact method the 
(1-α)100% UCL is  

exp [( y−  + ½ 2
ys  + C sy/√(n-1)], 

where C depends on sy, n, and α and requires special tables.  This is the “best,” i.e. uniformly 
most powerful unbiased (UMPU), test for complete samples.  The “best estimate” of µd in 
complete samples is the minimum variance unbiased estimate (MVUE)--see Hewett and Ganser 
(1997) for details.  Optimal methods (i.e., MVUE or UMPU) for randomly left censored data 
have not been developed.  Two approximate confidence limits have been described by Land 
(1972) for the complete data case that can be used for censored data. 
 
The first method is attributed to D.R. Cox and is based on calculating an estimate of φ = ln(µd) = 
µy + 2

yσ  / 2.  For the complete data case the MVUE of φ is φ∼  = y−  + ½ 2
ys , and the variance of 

φ∼  is var(φ∼ ) = var ( y− ) + ¼ var( 2
ys ) = 2

ys /n + ½ 4
ys  / (n-1).  The (1-α)100% UCL for µd is exp 

[φ∼ + t var(φ∼ )1/2], where t = t (1-α,n-1) is the 100(1-α) percentage point of Student’s t 
distribution on n-1 degrees of freedom – see e.g. Land (1972) and Armstrong (1992).  The point 
estimate of µd for this method is exp (φ∼ ).  These estimates can be viewed as “bias adjusted” 

maximum likelihood (ML) estimates, since the ML estimate of φ is φ̂  =  µ
∧

y + ∧σ y
2 / 2, and its 

variance is estimated as var( φ̂ ) = )n2/(n/ 4
y

2
y

∧∧
+ σσ .  The ML estimate of the (arithmetic) mean 

of d is dµ
∧

 = exp ( φ̂ ) and the estimate of the 100 (1-α)% UCL is exp [ φ̂ + t var( φ̂ )1/2].  For the 
censored data case ML estimates of the above quantities are not available in closed form, but can 
be obtained numerically (Cohen, 1991).  The bias adjustment of variance terms described above 
could be applied to the censored data ML estimates so that results will reduce to the complete 
data case as the proportion of non-detects goes to zero. 
 
The second approximate method for an UCL for µd is to calculate the sample mean d  as the 
point estimate of µd and the approximate UCL = d  + t(1-α, n-1) sd/√n, where 2

ds  = Σi (di– d )2 

/ (n-1).  The central limit theorem implies that this method should converge to the exact limit as 
n becomes large.  For left censored data the product limit estimate (PLE) (Schmoyer et al, 1996) 
is used to obtain a non-parametric estimate of d  and an UCL for µd.   
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2.2.  UPPER CONFIDENCE LIMIT FOR Pth PERCENTILE 
 
Let Dp denote the 100pth percentile of the lognormal distribution.  The point estimate is 
dp = exp ( y−  +  zp sy) where zp is the pth quantile of the standard normal distribution.  An exact 
100γ% upper confidence limit for the pth percentile is Û(p, γ) = exp( y− + K sy) and is referred to 
as the upper tolerance limit.  The value of K depends on n, p, and γ  and is obtained from the 
100 γ  percentile of the noncentral t distribution with n-1 degrees of freedom and noncentrality 
parameter -√n zp – see Lyles and Kupper (1996); or Johnson and Welch (1940).  The null 
hypothesis of interest is H0: Dp ≥ L where L is a specified limit (i.e. the occupational exposure 
limit).  If Û (p, γ) < L then reject H0 indicating the workplace is safe, i.e., the probability is γ  
(we are 100γ% confident) that at least 100p% of the d values are less than U(p, γ).  The R 
function extol(n,p,γ) will return the one-sided tolerance factor K for any reasonable values of 
n, p, and γ.  The function extol(n,p,(1-γ)) will return the factor K΄ proposed by Tuggle (1982) 
that can be used to assess workplace exposure conditions.  The one-sided tolerance bounds can 
be combined to obtain an approximate two-sided tolerance interval which is a confidence 
interval for Dp.  Hahn and Meeker  (1991) discuss the relationship between exact one and two 
sided tolerance bounds, confidence intervals for population percentiles and other types of 
statistical intervals.  The factors K and K΄ obtained using extol() are found in their Table A.12 
for selected values of n,p, and γ.  
 
 
2.3.  PREDICTION DENSITY FOR FUTURE OUTCOMES 
 
In certain situations, it is of interest to estimate the probability of observing a future (or 
“missed”) value of a lognormal variable.  This situation occurs, for example, when a dose 
reconstruction is needed for a radiation worker as required under EEOICPA (2000), and there 
are time periods when an employed worker was not monitored or the dose is “missing.”  There 
are several situations of practical interest that can be considered as special cases of the following 
general regression model.  Let yi = log(di) denote the observed values of normally distributed 
random variables with expected value E(yi) = µ(xi, β) and variance σ2, where the row vector xi 

 = (xi1, …, xip) is the ith set of values of p known explanatory (also referred to as independent or 
predictor variables), and β is a p-dimensional vector of unknown parameters.  The regression 
function µ(x,β) relates the expected value of y to the explanatory variables and the parameters.  
Then, given {yi, xi, i = 1, …n} from “the past” we want to estimate the density function of a 
“future” value, say z, of the response variable at a known future value of the explanatory 
variables xf .  That is p(z; xf, β, 2σ ) = n(µ(xf, β), 2σ ) where n(µ, 2σ ) is the normal density with 
mean µ and variance 2σ .  The “pseudo” prediction density (Geisser, 1971) for z is 

q(z; xf, y, X) = n(µ(xf, 
∧
β ), 2∧σ ) ,      (1) 

where X is the known n x p matrix of explanatory variables, y = (y1,…yn) and 
∧
β  and 2∧σ  are the 

ML estimates of β and σ2 , respectively.  This pseudo prediction density does not reflect the 
uncertainty in parameter estimates.  A “large sample” maximum likelihood prediction density 
(MLPD) for z = log(d), as proposed by Lejeune and Faulkenberry (1982) is  

q(z; xf ,y, X ) = n[µ(xf,
∧
β ), 2∧σ  + var[µ(xf,

∧
β )]] ,     (2) 
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where the second term in the variance of z is the variance of µ(xf,
∧
β ) evaluated at the ML 

estimate 
∧
β . 

 
When the mean of yi is linear in the explanatory variables, i.e., µ(xi, β) = xiβ, then  
∧
β  = (X′X)-1X′y and 2∧σ  = (y-X

∧
β )′ (y-X 

∧
β )/n are ML estimates of β and σ2.  The MLPD (2) is 

then  
n(xf

∧
β , 2∧σ A) ,         (3) 

where A = [1 + xf(X′X)-1xf′].  Levy and Perng (1986) have shown that an “optimal” prediction 
density for the normal linear model is given by Student’s t density 

∧p (z;xf,y,X) = t(n-p, xf
∧
β , n 2∧σ A/(n-p)) ,     (4) 

with location parameter xf
∧
β , dispersion n 2∧σ A/(n-p), and n-p degrees of freedom.  The 

prediction density (4) is the optimal member of a reasonable class of prediction densities based 
on minimizing the Kullback-Leibler divergence.  Note that [n/(n-p)] 2∧σ  is the bias adjusted 
estimate of 2∧σ .  The prediction density (4) is equivalent to a particular Bayesian prediction 
density that is obtained by assuming a diffuse prior for (β,σ2) (see e.g. Box and Tiao, 1973).  It is 
also clear that when n is “large” and p is small the MLPD (2) will provide a good approximation 
to (4) with var[µ(xf,

∧
β )] =  var[xf

∧
β ] = 2∧σ [xf(X′X)-1x′f]. 

 
2.3.1.  Prediction Density without Explanatory Variables 
 
Let di, i = l … n denote the observed values for a random sample of size n from a lognormal 
distribution.  This is equivalent to a regression model for a “future” or “missed” value of  
z = log(d) with xi = 1 for i = 1,… n.  Since A = [1+1/n] the prediction density for z from (4) is  

∧p (z; y) = t(n-1, yµ
∧ , n 2

y
∧
σ (1+1/n)/(n-1))  

 = t(n-1, y− , 2
ys (1+1/n)) ,      (5) 

and for large n the prediction density for d is approximately lognormal. 
 
2.3.2.  Prediction Density with Explanatory Variables 
 
Suppose that for each value of di there is a known value of the vector xi of explanatory variables. 
 For simple linear regression, let E(yi) = α + βxi  =  xiβ where xi = (1,xi) and β′ = (α,β).  Then the 
optimal prediction density for a future or missed value of y at x = xf is obtained using (4) with 
x = (1,xf) and A = (1+ x(X′X)-1x′), i.e. 

∧p (z;xf,y,x) = t(n-2, α̂+
∧
βxf,n 2∧σ A/(n-2))  .     (6) 

Note that since var(
∧
β ) = s2(X'X)-1, where s2 = 2

ii)2n(
1 )y-y( ∧∑−  is the biased adjusted estimate of 

σ2, then the dispersion parameter in (6) is s2 + var( α̂  + 
∧
β xf) where, var( α̂+

∧
βxf) = var( α̂ ) + 2xf 

cov( α̂ ,
∧
β ) + xf

2 var(
∧
β ).  For large n the prediction density (6) for z = log(d) is well approximated 

by the MLPD i.e., n( α̂+
∧
β xf, 2∧σ A) and the prediction density for d is lognormal. 
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3.  ANALYSIS OF DATA WITH NON-DETECTS 

 
In many situations a sample value may be less than a detection limit that depends on the 
sampling and analytic methods used.  Exact methods have not been developed for the lognormal 
model with non-detects.  The maximum likelihood principle is used for parameter estimation, 
and to obtain large sample equivalents of confidence limits for the mean exposure level, the pth 
percentile, and the prediction density.  For a detailed discussion of assumptions, properties, and 
computational issues related to ML estimation see Cox and Hinkley (1979) and Cohen (1991).    
 
 
3.1.  MAXIMUM LIKELIHOOD ESTIMATION FOR LOGNORMAL DATA  
        WITH NON-DETECTS 
 
For notational convenience, the m detected values di are listed first followed by the *id  indicating 
non-detects, so that the data are d = {di, i = 1,...,m, *id , i = m + 1,...,n} and xi is the row vector of 
explanatory variables for each value of i.  If *id  is the same for each non-detect, this is referred to 
as a left singly censored sample (Type I) and d* is the limit of detection (LOD); if the *id  are 
different, this is known as randomly (or progressively) left censored data – see Cohen (1991) and 
Schmoyer et al (1996).  In some situations (see Example 1) a value of 0 is recorded when the 
measured dose is less than the LOD.  In this situation, the value of *id  = LOD indicating that di is 
in the interval (0, *id ).  When di is a radiation dose (see examples 1 and 3), and the recorded 
doses is 0, this is sometimes referred to as a “missed dose” and should not be confused with an 
unmonitored “missed dose.”  Assuming the data are a random sample from a lognormal 
distribution, the log of the likelihood function for the unknown parameters β, σ given the data is 

L (β,σ) = ∑=

m

1i
log [g (di ; µi, σ)] + ∑ +=

n

1mi
log [G ( *id ; µi ,σ)],  (7) 

where µi = µ(xi , β), g(d ; µ,σ) is the probability density function for lognormal distribution, and 
G(d*;µ,σ) is the lognormal cumulative distribution function (CDF), i.e. G(d*;µ,σ) is the 
probability that d is less than or equal to d*.  The ML equations are obtained by differentiating 
the log-likelihood function (7) with respect to the βj,j = 1,…,p and σ, i.e. 

∂L (β, σ) / ∂βj = 0 ,    j=1,…,p, 
∂L (β, σ) / ∂σ = 0 .        

These equations cannot be solved directly so a Newton-Raphson type iterative algorithm is used 
to find a root of this system of equations.  This leads to 

C(θ°)δ° = G(θ°) ,        (8) 
where G(θ) = [∂L(θ)/∂θj], θj=βj, (j=1,…,p), θp+1 = σ, and C(θ°) is the (p+1) x (p+1) information 
matrix with elements cjk = ∂2L(θ)/∂θj∂θk ,    j, k = 1,…,p+1.  Each of the elements in C and G is 
elevated at the value of an initial estimate θ° = (β°, °σ ).  This linear system of equations (8) is 
solved for δ°, and the new value θ1 = θ° + δ° is obtained.  The procedure is repeated until a 
stable solution θ

∧
  = (∧β ,∧σ ) is reached, i.e. G(θ

∧
) = 0 and C(

∧
θ ) is negative definite.  The large 

sample covariance matrix of the ML estimate θ
∧

 is obtained by inverting the information matrix 

evaluated at θ
∧

, i.e., V(θ
∧

) = C(θ
∧

)-1 .  The numerical approach used here is based on the R 
function optim() a general purpose optimization procedure that includes the Nelder-Mead, 
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quasi-Newton, and conjugate-gradient algorithms.  If the algorithm converges (as indicated by 
the convergence code from optim), and θ

∧
 is an interior point in the parameter space, it is the 

unique global maximum of (7) for situation considered here, i.e. µ(xi,β) =  xiβ and the m by p 
matrix of row vector xi (the predictor variables for the m detected values) is of full column rank. 
 Detailed instructions on how to obtain and use R are provided in the Appendix.  The SAND 
website also contains the data used in the examples and all of the R driver functions discussed in 
this report.  Note that for complete samples m = n and the second term in equation (7) is not 
present.  In this case, the solution of the likelihood equations result in well known estimate 
∧
β  = (X′X)-1X′y, 

∧σ = [Σ(yi - iµ
∧ )2 /n]1/2, where yi = log(di).  

 
 
3.2.  UPPER CONFIDENCE LIMIT FOR THE MEAN EXPOSURE LEVEL WITH  
        NON-DETECTS 
 
To test the hypothesis Ho: µd ≥ 

*
dµ , a one-sided upper (1-α)100% confidence limit is needed.  The 

first method considered is to use the censored data equivalent of Cox’s direct method, i.e., 

calculate 
∧
φ = 

∧
µ  + ½ 2σ∧ ,  var(

∧
φ ) = var(

∧
µ  + ½ 2σ∧ ) where 

 var(
∧
φ ) = var(

∧
µ ) + ¼ var( 2σ∧ ) +cov(

∧
µ , 2σ∧ ) .       (9) 

 

In (9) 
∧
µ  and 2σ∧  are the ML estimates of µ and σ2, and the estimated variances and covariance 

are obtained from  

V(
∧
θ ) = ⎥⎦

⎤
⎢⎣
⎡

)σ̂(var)σ̂,µ̂cov(
)σ̂ ,µ̂cov(         )µ̂var(

22

2
 .       (10) 

The (1-α)100% UCL for µx is exp[
∧
φ + t var(

∧
φ )], where t = t(1-α, m-1). 

 
An equivalent procedure is to estimate φ=µ+½σ2 and its standard error directly, i.e. by solving 
(8) with θ1=µ+½σ2 and θ2=σ2.  The R function lnmlnd() provided in the Appendix returns ML 
estimates of µ, σ, φ, σ2, and estimates of the standard errors for each of these parameter.  
A second method for obtaining an UCL for µd is based on the procedure proposed by Lyles and 
Kupper (1996) for the complete data case.  They use the relationship between the statistics 

y  + csy and the noncentral t distribution to obtain an approximate UCL for log(µd) of y  + uc
∧

sy 
where,   

[ ] n1)/-nα,- t(1 1)-nχ(α,/)1n/(nδ̂ cu +−−=
∧

  .      (11) 
In (11), χ(α, n-1) is the positive square root of the 100α percentile of the chi-square distribution 

with n-1 degrees of freedom, and sn2
1ˆ

y−=δ .  The quantity uc
∧

 is an estimate of the upper 

bound of nδ)/α,,1n(tc −′−= where t′  is the 100(α)th percentile of the noncentral t 
distribution with n-1 degrees of freedom and non centrality parameter σ/2.n-δ =   For the 

censored data case, the approximate log(UCL) for µd is 
∧
µ + uc

∧
σ
∧

 where in calculating uc
∧

 n is 
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replaced with m.  We speculate that the (1-α)100% approximate UCL for µd , exp(
∧
µ  + uc

∧
σ
∧

) 
should be a conservative upper bound.  When the data is complete (i.e. m = n) Lyles and Kupper 
(1996) have shown that this procedure is similar in terms of power and type I error rate to Land’s 

exact method in most situations they considered.  Recall that the exact method depends on 
∧
µ  and 

2
ys  being independent and respectively normally and a constant times a chi-square.  For left 

censored data cov(
∧
µ , 2∧
σ ) (see equation 9) is negative and increases in magnitude as the 

proportion of non-detects increases.  The R function LKcl() computes confidence limits for µd 

using this approximate method. 
 
 
3.3.  UPPER CONFIDENCE LIMIT FOR PTH PERCENTILE WITH NON-DETECTS 
 

The point estimate of yp = log (Dp) is py
∧

 = 
∧
µ  + zp σ

∧
 with variance 

var( py
∧

) = var(
∧
µ  + zpσ

∧
) 

 
= var(

∧
µ ) + z2

p var (σ
∧

) + 2zp cov(
∧
µ ,σ

∧
). 

   
The 100γ% UCL for Dp, i.e. the estimated 100p-100γ geometric tolerance limit is  

1/2p pˆ(p,γ) exp[y t(γ, m-1)var(y ) ] .U
∧

= +       (12) 

The 100% ML estimates of var(
∧
µ ), var(σ

∧
), and cov(

∧
µ ,σ

∧
) are obtained from the ML variance-

covariance matrix using R function lnmlnd() provided in the Appendix. 
 

A second method that can be used to estimate the upper tolerance limit is to treat 
∧
µ  and σ

∧
 as if 

they were obtained from a complete sample of size m and calculate  Û (p,γ) = exp(
∧
µ + Kσ

∧
), 

where K is obtained from the non-central t distribution using m, p, and γ as described in Section 
2.2.  If there are no non-detects, then m = n and method 2 provides the exact upper tolerance 
limit (this requires the bias adjusted estimate of σ ).  The R function lnclxpnd() at the SAND 
web site calculates estimates of the U(p, γ) using both large sample ML approach (method 1) and 
using K (method 2).  Method 2 is the result of analogical reasoning and we view it as a 
conservative upper bound on U(p, γ) for lognormal data with non-detects.  The K factor in 
Section 2.2 is obtained using the fact that y−  and 2

ys  are independent statistics calculated from a 
random sample from a normal distribution Johnson and Welch (1940). 
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3.4.  PREDICTION DENSITY WITH NON-DETECTS 
 
To estimate the prediction density for z = log(d) at known values of the explanatory variables xf, 
we use the “large sample” MLPD in equation (2), the ML estimate θ

∧
, and the estimated variance 

- covariance V(θ
∧

).  If the mean is linear in x then µ( xf,β
∧

) = xfβ
∧

, and the var(xfβ
∧

) = xfV(β
∧

) fx′ , 

where V(β
∧

) corresponds to the pxp submatrix of V(θ
∧

) obtained by deleting the last row and 
column.  In then follows from large sample results for ML estimators that the prediction density 
for z = log(d) is approximately 

q(z|xf) = n(xfβ
∧

, 2σ
∧ + xf V(β

∧
)xf′ ) ,        (13) 

i.e. the prediction density for d is lognormal.  In particular, if p=2, β = (α,β), and x = (1, xf), then 

)(µ βx
∧∧

 = α
∧ +xfβ

∧
 and var[

∧
µ (xf β

∧
)] = var[α

∧ +xfβ
∧

]  ,      

var[α
∧ +xf β

∧
] = [1,xf ] ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
∧∧∧

∧∧∧

)β(var)β,αcov(
)β,αcov(        )αvar(

 ⎥⎦
⎤

⎢⎣
⎡
x
1

f  

= var( α̂ ) +2 xf cov( α̂ ,β
∧

 ) + x2
f var(β

∧
)  ,  

and the MLPD is n( α̂ +β
∧

xf , 2σ̂  + var[ α̂ + xf β
∧

]) .   
 
 
3.5.  NON-PARAMETRIC METHODS FOR SAMPLES WITH NON-DETECTS 
 
The product limit estimator (PLE) of the cumulative distribution function was first proposed by 
Kaplan and Meier (1958) for right censored data.  Turnbull (1976) provides a more general 
treatment of non-parametic estimation of the distribution function for arbitrary censoring.  For 
randomly left censored data, the PLE is defined as follows – see Schmoyer et al (1996).  Let  
a1 <  . . . < aL be the L distinct values at which detects occur, rj is the number of detects at aj , and 
nj is the sum of non-detects or detects that are less than or equal to aj.  Then the PLE is defined to 
be 0 for 0 ≤ d ≤ a1 ́ where a1 ́ is a1 or the value of the detection limit for the smallest non-detect if 

it is less than a1 .  For a1 ́ ≤ d < aL the PLE is jF
∧

= 
j
∏  (nj – rj)/nj , where the product is over all aj > 

d, and the PLE is 1 for d ≥ aL .  Note that when there are only detects this reduces to the usual 
definition of the cumulative distribution function.  The R function plend() in the Appendix is 
used to compute the PLE. 
 
The PLE is used to determine the plotting positions on the horizontal axis for the censored data 
version of a theoretical quantile – quantile (q-q) plot for the lognormal distribution (see 
Chambers et al, 1983).  Waller and Turnbull (1992) provide a good overview of q-q plots and 
other graphical methods for censored data.  The lognormal q-q plot is obtained by plotting aj (on 

log scale) versus Hj = G-1( jP
∧

), where G-1 is the inverse of the CDF of the standard normal 

distribution and  jP
∧

 = ( jF
∧

+ jF
∧

-1)/2.  If the lognormal distribution is a close approximation to the 
empirical distribution, the points on the plot will fall near a straight line.  An objective 
evaluation of this is obtained by calculating the square of the correlation coefficient associated 
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with the plot, i.e. R2 = cor(logaj, Hj)2.  In the complete data case this will be a close 
approximation to the Shapiro-Wilk W statistic that is used as a test for normality.  Verril and 
Johnson (1988) considers the large sample distribution of the correlation statistic for Type I and 
Type II right censored data.  A formal test for normality of randomly left censored data has not 
been developed. 
 
The mean ( pd ) of the PLE is a censoring-adjusted point estimate of µd.  An approximate 
standard error of the PLE mean can be obtained using the method of Kaplan and Meier (1958) 
and the (1-α)100% UCL is pd  + t (α, m-1) sp, where sp is the Kaplan-Meier standard error of pd  
adjusted by the factor m/(m-1), where m is the number of detects in the sample.  When there is 
no censoring this reduces to the second approximate method described by Land (1972).  The R 
function Kmms() in the Appendix is used to calculate pd , sp, and confidence limits. 
 
3.5.1.  NON-PARAMETRIC UPPER TOLERANCE LIMIT 
 
A non-parametric upper tolerance limit can be obtained using the method described by 
Somerville (1958).  Given a random sample of size n from a continuous distribution, then, with a 
confidence level of at least γ, 100p percent of the population will be below the kth  largest value 
in the sample.  The value of k for specific values of n, p, and γ can be obtained from published 
tables or, for any reasonable values of n, p, and γ, by using the R function nptl() provided in the 
Appendix.  The 100γ% upper tolerance bound is equivalent to an upper 100γ% confidence 
interval for the 100pth percentile of the population. 
 
 

4.  APPLICATIONS 
 

In several situations of practical interest statistical analysis of left censored data from a 
lognormal distribution are required.  The “exact” results for complete samples described in 
Section 2 have not been developed for censored data.  The methods presented here are “large 
sample” results and follow directly from the properties of ML estimators described in Section 3. 
 Each of the three examples will describe the censored data equivalent of one or more of the 
exact methods used with complete samples.  The emphasis here is on describing the methods and 
software.  More substantive issues will be considered in subsequent reports—see Watkins et al 
(2004) and Frome and Wambach (2004).  
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4.1.  EXAMPLE 1. QUARTERLY DOSES FOR A RADIATION WORKER 
 
This example demonstrates the use of R for all of the methods described in Section 3.  These 
“informal” or driver functions are provided for the readers’ convenience (see the Appendix for 
details).  In the discussion that follows, we assume that the reader has visited the SAND website 
and completed Steps 1-4.  Typing the name of an R function (or any other object) at the console 
without the parentheses will list the function (object).  The data in Table 1 are an individual's 
gamma radiation doses of record at the Y-12 plant in Oak Ridge, TN, from 1961 to 1970.  
Individuals were monitored quarterly and a recorded dose of zero means the dose to the worker 
was less than the limit of detection (LOD) unless a smaller value is given—see Watkins et al 
(2004) for details.   

 

Table 1.  Quarterly Film Badge Doses+ 

Year 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 

Q1 9 6 0 0 0 0 0 25 38 34 

Q2 112 182 16 0 29 23 0 80 23 23 

Q3 31 4 38 33 22 11 2 0 0 14 

Q4 69 143 0 0 66 21 10 10 54 34 
+mSv*100 

 

The driver function mlnd2(dd) shown in Exhibit 1 illustrates the use of the R function optim() 
to obtain ML estimates of µ  and σ for left censored lognormal data.  The input to mlnd2(dd) is a 
two column matrix with the nonnegative data values di in column 1, and column two contains a 
censoring indicator that is equal to zero for non-detects and one for detects. Anything to the right 
of the # character on a line in Exhibit 1 is a comment.  The data from Table 1 in the two column 
matrix format are available at the SAND website in file Ex1.txt.  
Results obtained using R interactively for the data in Table 1 are as follows: (The symbol 
“>”indicates the R prompt and results obtained interactively are in the 
font Courier New .) 
> ex1 <- read.table(“Ex1.txt”) 
> mlnd2(ex1) 
  µ           σ      se(µ)    se(σ)       cov      n   -2Log(L) 
3.01279   0.99174   0.17065   0.12883  -0.00407  40.00 280.75718 
 
The initial estimates of µ and σ ( see Exhibit 1) that are required by optim() are the mean and 
standard deviation (ignoring censoring and dividing non-detects by 2) of log(di).  These initial 
estimates, in the vector est, are the first argument to optim().  The second argument to optim() 
is the function to be minimized.  This function, nlnd(), is listed at the bottom of Exhibit 1.  The 
first argument to nlnd() is the vector of parameters over which minimization is to take place, and 
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the second argument is the two column data matrix.   nlnd() uses base R functions dlnorm() and 
plnorm()to compute the values of the lognormal density and cumulative distribution function in 
the log-likelihood function in equation (1) evaluated at each value of  di using the current values 
of µ and σ in est.  nlnd() returns the negative value of the log-likelihood function.  The third 
argument tells optim() to use the Nelder-Mead method to find the MLEs of µ and σ, and the last 
argument contains the data that is passed to nlnd().  The Nelder-Mead algorithm is a derivative 

free robust method that will find the MLE estimates, µ
∧

 and σ
∧ . 

 
Exhibit 1 of Section 4.1 
mlnd2 <- function(dd =ex1) 
{ 
# mlnd2   find  Maximum Likelihood estimates of mu and sig  
#         left censored sample from lognormal distribution 
# 
# INPUT: matrix dd with d[i] in column 1 and cen in col 2 
#  d[i] is positive lognormal data cen=0 for non-detect ; 1 for detect 
#     y= log(d) is normal with mean mu and standard deviation sig 
# OUTPUT: ML estimate of mu  and sig  estimates of standard errors 
#          of mu and sig and - 2*Log-likelihood function 
#          
# REQUIRES: function nlnd() and base R optim()    
#  initial estimate of mu and sig required by optim() 
   yt <- ifelse(dd[,2]==0,dd[,1]/2,dd[,1]) 
   est <- c( mean(log(yt)), sd(log(yt) ) ) 
   n <- dim(dd)[[1]] ; m <- sum(dd[,2]) 
# ML estimate mu and sig 
# 
est <- optim(est,nlnd, method = c("Nelder-Mead"),dx=dd )$par 
cont <- list(parscale=abs(est)) 
opt1 <- optim(est,nlnd ,NULL,  method ="L-BFGS-B",lower=c(-Inf,0.0), 
          upper=c(Inf,Inf),cont, hessian=T,dx=dd ) 
mle <- opt1$par               #  ML estimates of mu and sig 
vcm <- solve(opt1$hessian)    #  ML varaince-covariance matrix 
semle <- sqrt(diag(vcm))      #  standard errors of mu and sig 
cv <- vcm[1,2]                #  covariace(mu,sig)  
est <- c( round( c(mle,semle,cv) ,5 ),n,2*opt1$value) 
names(est) <- c("mu","sig","se.mu","se.sig","cov","n","-2Log(L)") 
est 
} 
nlnd <- function(p=est,dx) 
{ 
# compute  - log liklihood for lognormal sample 
mu <- p[1]; sig <- p[2]; d <- dx[,1] 
xx <- ifelse(dx[,2]==1,dlnorm(d,mu,sig,log=T),plnorm(d,mu,sig,log.p=T)) 
  -sum(xx) 
} 
 
The second call to optim() uses a quasi-Newton derivative based method to obtain the Hessian 
matrix G (the observed information matrix).  The inverse of G is the variance-covariance matrix 
for the ML estimates.  The square root of the diagonal terms are estimates of the standard errors 

of µ
∧

 and σ
∧ , respectively.  The off-diagonal element provides an estimate of the covariance of µ

∧
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and σ
∧ .  These second order statistics are needed to obtain the ML estimate of the upper tolerance 

limit and the standard deviation of the prediction density function.   
 
The data in Table 1 are shown graphically in the censored data lognormal q-q plot (see Figure 1) 
that is obtained using the PLE (see Section 3.4), i.e. columns 1 and 2 from plend():   
> plend(ex1)  
        apl         d    ple     n r    suv 

1  0.02109375   2 0.0421875  1 1 1.0000000 
2  0.06328125   4 0.0843750  2 1 0.9578125 
3  0.10546875   6 0.1265625  3 1 0.9156250 

…. 
 
The data points are close to the solid line (which is calculated from the ML estimates), indicating 
that the lognormal distribution is reasonable model for this data.  This is further confirmed by the 
R2 of 0.984.  The estimated (arithmetic) mean and confidence limits for the lognormal model 
(see Section 3.2) and the non-parametric Kaplan-Meier method (see Section 3.5) are shown in 
the upper left area of Figure 1.  The 95% confidence level is for a one-sided test as described in 
Section 3.2 (i.e. the interval is a 90% confidence interval for the mean).  The estimated value of 
the 95% UCL for the 95th percentile  Û (0.95,0.95) based on the lognormal model (see Equation 
12) is shown in the lower right of Figure 1 (see 95-95 Geometric TL).  Also shown are the 
observed 95th percentile, the estimated 95th percentile from the lognormal model, and the value 
of R2.  The estimates and confidence intervals can be obtained using  

> lnstats(ex1,3000,95,95).   
Prior to 1961 only selected workers ---see Watkins et al (1997), Watkins et al (2004) --- were 
monitored and for this example we assume that this individual worked in 1960 and was not 
monitored.  An estimate of the unmonitored “missed dose” for each quarter in 1960 is needed.  
The doses are assumed to follow a lognormal distribution and the LOD is 0.3 mSv. That is, given 
the left censored sample from a lognormal distribution we want to estimate the prediction density 
for d, the unobserved quarterly doses in 1960.  (see Section 3.4).   The MLPD for z = log(d) is 
approximately normal with mean 3.013 and variance=0.9917+(0.1706)2 --- see output from 
mlnd2(ex1).  The prediction density for the missed dose is lognormal with a geometric mean of 
20.3 and geometric standard deviation of 2.775  
 
 
4.2.  EXAMPLE 2.  BERYLLIUM EXPOSURE DATA 
 
As part of a chronic disease prevention program, the Department of Energy (DOE) adopted a 
threshold limit value 8-hour time-weighted average (TWA) of 0.2 micrograms per cubic meter 
proposed by the American Conference of Government Industrial Hygienists (DOE 10 CFR Part 
850).  The development of the 8-hour occupational exposure limit for beryllium is discussed by 
Wambach and Tuggle (2000).  Figure 2 summarizes the results of 280 personal 8-hour TWA 
beryllium exposure readings at a DOE facility.  This data contains 175 non-detects that range in 
value from 0.005 to 0.100 µg/m3, i.e. this is an example of random (progressive) left censored 
data (available at the SAND web site in file Ex2.txt).  The q-q plot in Figure 2 was obtained 
using the PLE as described in Section 3.5 using R function plend(ex2).  Both Figure 1 and 
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Figure 1.  Lognormal Q-Q Plot for Example 1 
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Figure 2 can be obtained using R utility function qqlogA().  To obtain Figure 2, use the 
following at the R prompt: 
 
>ex2←read.table(“Ex2.txt”)  
>qqlognA(ex2, “Example 2”, OLE=0.2, unit = “mug/m^3”).  
 
 ML estimates of µ, σ, log(µd), and σ2 are obtained using : 
 
> mlndln(ex2) 
                µ         σ        logE      σ2         -2Log(L)     Conver 

mle   -5.1786787 1.5357165 -3.9994324 2.3585614 -2.175955e+02      0 
semle  0.1340638 0.1155163  0.1485077 0.3548366 -8.918476e-03    105 

 
The R function mlndln() is described in the Appendix and at the SAND website.  To obtain the 
ML estimate of the 95-95 geometric upper tolerance limit (see Section 3.3 equation 12) calculate 

.95y
∧

= 
∧
µ  + z.95 σ

∧
 = -2.652 and   

var( py
∧

) = var(
∧
µ ) + z2

p var (σ
∧

) + 2zpcov(
∧
µ ,σ

∧
) 

 = 0.13412 + 1.6452(0.1155)2 + 2*1.645(-.008918) 
 = 0.0247 

Then from equation 12  Û (0.95,0.95) = exp[-2.652 + 1.1659 (0.0247)1/2] = 0.091.   
 
4.3.  EXAMPLE 3.  LINEAR REGRESSION WITH NON-DETECTS 
 
The data in Table 2 are the quarterly dose of record from 1956 to 1965 for a worker at the Oak 
Ridge Y-12 plant (see Example 1).  The doses are assumed to follow the lognormal distribution 
with  

E(yi) = µi = α + βxi 
where yi = log(di) and x = year – 1961, i.e. the intercept α represents the log dose in the first 
quarter of 1961 and β is the change per year in y.  The dose data in Table 2 are in the first 
column of the file Ex3.txt at the SAND web site.   
 

Table 2.  Quarterly Film Badge Doses+ 

Year 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 

Q1 0 110 16 103 15 2 15 0 0 3 

42 0 16 46 64 60 53 56 0 0 4 

Q3 0 0 99 36 29 53 44 4 0 5 

Q4 52 0 93 35 75 89 23 4 0 23 
+mSv*1008 

The 0s are changed to 30 (the LOD) and the censoring indicator is in column 2.  Column 3 is the 
predictor variable t61 = year – 1961.   ML estimates of α, β, and σ are obtained using the R 
driver function  
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     Figure 2.  Lognormal Q-Q Plot for Example 2 
 



 16

lnexh2( ) shown in Exhibit 2 using the ML estimation method described in Section 3.4. 
 
Exhibit 2 of Section 4.3 
 
lnexh2 <- function(ww=ex3,lod=30)  
{ 
#    find ML estimates 1956-65 quarterly data 
#   data in ww Col 1   Col 2    Col 3  
#              dose   cen(0,1)  t61 
#     y = log(dose)  x = year - 1961 
#       E(y) = alpha + beta*x 
# 
#    initial estimates using LS with zeros = lod/2 
y0 <- log(ifelse( ww[,2]==0,lod/2,ww[,1] )) 
go<-  summary( lm( y0  ~ ww[,3]  ) ) 
est <- c(go$coef[1,1], go$coef[2,1] , go$sigma )  
names(est) <- c("alpha","beta","sigma") 
#   Use R function optim() with lognomal log-likelihood LNlr2() 
#   use Nelder-mead option to obtain ML estimates 
opt <- optim(est,LNlr2, method = c("Nelder-Mead"),w=ww) 
est <- opt$par 
#   use "L-BFGS-B" option to obtain estimate of var-covar matrix 
opt <- optim(est,LNlr2 ,NULL,  method ="L-BFGS-B", 
    lower=c(-100.0,-100.0,0.1), upper=c(Inf,Inf,Inf),,hessian=T,w=ww) 
# use "L-BFGS-B" option again with pscale added 
pscale <- c(sqrt(diag(solve(opt$hessian)))) 
opt <- optim(est,LNlr2 ,NULL,  method ="L-BFGS-B", 
    lower=c(-100.0,-100.0,0.1), upper=c(Inf,Inf,Inf), 
    control=list(parscale=pscale), hessian=T,w=ww) 
est <- opt$par 
se <- sqrt(diag(solve(opt$hessian))) 
vcvmle <- solve(opt$hessian) # ML covariance matrix 
drc <- diag( 1/se) ;  
corm <- round( drc%*%vcvmle%*%drc,6) # correlation matrix 
vcvmle <- round(vcvmle,9) 
est <- c(opt$par,2*opt$value,opt$conver) 
names(est) <- c("alpha","beta","sigma","-2Log(L)","Convrg") 
vcv.cor <- cbind(vcvmle,corm) 
se <- c(se,length(ww[,1]),NA) 
mle <- rbind( est, se) 
out <- list( mle ,vcvmle, corm ) 
names(out) <- list("MLE","Variance-Covariance","Correlation Matrices") 
out 
} 
 
LNlr2 <- function(par=est,w) 
{ 
#  LNlr2 =  - log liklihood for left censored  sample lognormal 
d<-w[,1]; cen<-w[,2] ; m<-par[1] + par[2]*w[,3] ;s<-par[3] 
xx<-ifelse( cen==1,dlnorm(d,m,s,log=T) ,plnorm(d,m,s,log=T) ) 
  -sum(xx ) 
} 
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Results obtained using R for the data in Table 2 are as follows:  
 
> ex3 <- read.table("Ex3.txt",T) 
> lnexh2(ex3,30) 
 
$MLE 
        α           β          σ     -2Log(L) Convrg 
est 3.0222162 -0.17484139 0.9906669 284.3878      0 
se  0.1710291  0.06015249 0.1296071  40.0000     NA 
 
 
 
$"Variance-Covariance" 
             α                 β             σ  
α       0.029250951   0.000975915  -0.003819348 
β       0.000975915   0.003618322   0.000136836 
σ      -0.003819348   0.000136836   0.016797999 
 
 
The ML estimates and standard errors for α, β, and σ are in the first two lines of output from 
lnexh2(ex3 ), followed by the estimated variance-covariance matrix.  This worker was not 
monitored prior to 1956 and the unmonitored dose in any quarter can be estimated using the 
prediction density (see equation 13).  For example, for the first quarter in 1953 xf = 53 - 61 = -8. 
 

fµ
∧

 = α
∧  + β

∧
xf = 3.022 - 0.1748(-8)  = 4.421, and 

var( fµ
∧

) = var(α
∧ ) + 2 xf cov(α

∧ ,β
∧

) + x2
f  var(β

∧
)  

 = 0.0293 + 2(-8)(0.00098) + (-8)2(0.00362) = 0.245 

 

The MLPD for zf = log(df) is approximately normal with mean fµ
∧

 and variance 2σ̂  + var( fµ
∧

 ) = 
(.991)2   + 0.245 = 1.227.  The MLPD for df (the first quarter of 1953) is approximately 

lognormal ( fµ
∧

= 4.421, fσ̂  = 1.227) and the geometric mean is 83.2, the geometric standard 
deviation is 3.4, and the (arithmetic) mean is 176.6.  The data from Table 2 are shown in 

Figure 3 along with the ML estimate (solid line) E(yt) = tµ
∧  = α∧  + β

∧
(t-61).  The x symbols 

(corresponding to non-detects) are obtained as the conditional expectation of yt given that the it 

is less than the log(LOD), i.e. y0
t = tµ

∧  - [n(zt ) /N(zt)]σ
∧

 ,where zt = [log(LOD) - tµ
∧ ] / σ

∧
,  n(z) is 

the standard normal density, and N(z) is the normal CDF.  This example illustrates how linear 
regression with non-detects can be used to estimate a workers dose during a quarter when the 
worker was not monitored.  Watkins et al (2004) consider this problem in more detail and 
describe a better approach that uses data on a large group of workers with a similar employment 
and monitoring experience to describe the change in dose over time with a log-linear regression 
model.  Groer and Ramachandran (2004) demonstrate the practical equivalence of ML 
estimation and Bayesian methods for these data. 
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Figure 3.  Data from Example 3 
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4.4.  EXAMPLE 4.  QUARTERLY GAMMA DOSES FOR A GROUP OF RADIATION     
        WORKERS 
 
Figure 4 shows the q-q plot and summary statistics for recorded doses for 844 workers at the Y-
12 plant that were monitored for radiation exposure in the first quarter of 1959.  Prior to 1961 
only selected workers were monitored --- see Watkins et al (2004) for details. 
 
Recorded doses are “true” doses (that have a between worker distribution) with “measurement 
error and recording policies” that result in recorded doses (many of which are non-detests). The 
recorded doses for a group of individuals during a quarter are described by a lognormal 
distribution.  ML estimates of µ, σ, log(µd), and σ2 are obtained using R function m1nd1n() as 
follows: 
 
> ex4<-read.table("Ex4.txt") 
> mlndln(ex4) 
              µ      σ       logE          σ2      -2Log(L)     Conver 
mle   4.72692355 0.86932542 5.10483381 0.75573483  9.870420e+03      0 
semle 0.03004886 0.02204226 0.03524518 0.03836954 -1.686256e-05    800 
 
The 95-95 geometric UTL is 509.5, indicating compliance with the OEL limit, i.e. reject Ho:  
Dp ≥ 3000 (see Section 2.2).  These results can be used to estimate the dose for an unmonitored 

worker using the MLPD (Section 3.4).  The MLPD z = log(d) will be normal with mean µ
∧

 and 

standard deviationσ
∧  =  ( var(σ 2 +∧ ∧

µ ))1/2.  This is equivalent to using equation 13 when there is 

no predictor variable (i.e. p=1) so that 
∧
µ  = 

∧
α  and var(

∧
µ ) = var(

∧
α ).  The MLPD for d is then 

approximately lognormal (µ
∧

= 4.726, σ
∧  = 0.8698) with geometric mean 112.9, geometric 

standard deviation 2.4, and arithmetic mean 164.9.    
 
 

5.  DISCUSSION 
 
The results in Sections 3 and 4 are based on large-sample methods and the resulting confidence 
intervals may be “too short” in “small samples.”  Schmee et al (1985) have considered 
confidence limits for the parameters µ and σ for Type I right censored samples from the 
lognormal distribution.  Their report indicates that “exact” results (obtained using Monte Carlo 
methods) are most useful when the number of uncensored observations is small.  They found that 
when the number of uncensored observations is greater than 20 agreements between exact and 
large sample ML confidence limits is good irrespective of the sample size. They did not consider 
confidence intervals for functions of µ and σ.  As far as we know exact (small sample) results 
have not been developed for randomly (progressively) left censored data.  
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Figure 4.  Lognormal Q-Q Plot for Example 4 
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In this report we have suggested that certain approximate methods for calculating confidence 
limits for functions of µ and σ may be useful as upper bounds for the large sample results.  It also 
appears (based on limited simulation studies not reported here) that the percent non-detects will 
affect these limits.  This issue will be considered in more detail in a subsequent report (Frome 
and Wambach, 2004).  

Table 3 shows the results of applying method 1 (large sample ML) and method 2 (see Sections 
3.2 and 3.3) to the data in examples 1, 2, and 4 to obtain upper confidence limits for µd and the 
95th percentile (upper tolerance limit).  

 

Table 3.  95 Percent Upper Confidence Limits 

 µ 95th Percentile  

Example Method 1 Method 2 Method 1 Method 2 n m 

1 46.2 52.4 158.1 186.2 40 29

2 0.023 0.027 0.091 0.107 280 105

4 174.7 176.2 509.5 511.5 844 800
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APPENDIX 
 
R (2004) is available as Free Software under the terms of the Free Software Foundation's GNU 
General Public License in source code and binary form. It compiles and runs on a wide variety of 
UNIX platforms and similar systems (including FreeBSD and Linux), Windows and MacOS.  
Detailed documentation on all aspects of R is available at the R home page http://www.r-
project.org/ (see e.g. An Introduction to R under the “Manuals” link.)  Additional manuals, 
tutorials, etc. are provided by users of R under the “Contributed” Link.  Additional references are 
provide under the “Publications” link and the book by Venables and Ripley(2002) is highly 
recommended. 
 
All of the R functions discussed in this report and the data used in the examples in Section 4 are 
available at the Statistical Analysis of Non-Detects (SAND) website at URL 
http://www.csm.ornl.gov/~frome/sand  
 
Most of the serious computing is done by R base functions optim() and uniroot().  The R 
functions described in this report are provided to assist the reader that may not have experience 
with R.  They are not “formal” R functions, i.e. there is no error checking or online “help” files.  
Documentation for each function is provided in this report and as comments in each function.  
All of the files at the SAND web site are ascii ( txt  ) files and can be modified using any text 
editor ( e.g. xemacs, wordpad, vi).   The most important functions with more detailed 
documentation are combined into one file main.R (see Exhibit 3).  The additional functions 
reflect the authors’ interest and require revisions for other applications.  They are also provided 
in the file util.R at the SAND website. 
 
Exhibit 3 in the Appendix 
 
#  Listing of R functions: 
# 
#  mlndln() calculates ML estimates for left censored sample 
#  extol()  exact tolerance limit for Logmormal model 
#  nptl()   calculate index for Nonparametric tolerance limit 
# 
###########################  mlndln ################################ 
mlndln <- function(dd = ex1 ) 
{ 
#    ML estimates for lognormal sample with non-detects 
#      see ORNL/TM-2004/146 Section 3 
# USAGE: mlndln( dd ) 
# ARGUMENT: matrix dd with d[i] in column 1 and cen[i] in col 2 
#  d[i] is positive lognormal data cen[i]=0 for non-detect ; 1 for detect 
#     y= log(d) is normal with mean mu and standard deviation sigma 
#     E(dose) = exp( mu + 0.5*sig2)= exp(logE) where sig2 = sigma^2 
#     m is number of detects and Conver is convergence check 
# VALUE: mlndln returns  estimates of following in 2 by 6 matrix format: 
#     mu    sigma      logE     sig2     -2Log(L)     Conver 
#   se.mu  se.sigma  se.logE  se.sig2   cov(mu,sig)   m 
# REFERENCE: Cohen, A.C (1991) Truncated and Censored Samples 
#            Marcel Decker, New York         
#  REQUIREs  ndln() ndln2() loglikelihood function for optim()         
#  see R help file for details on optim() and dlnorm()  
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   m <- sum(dd[,2])   #  number of non-detects   
#  initial estimate of mu and sig (sigma)    
      yt <- ifelse(dd[,2]==0,dd[,1]/2,dd[,1] ) 
      est <- c( mean(log(yt)), sd(log(yt)) ) 
# ML estimates  mu and sig 
est <- optim(est,ndln, method = c("Nelder-Mead"),xd=dd )$par 
cont <- list(parscale=abs(est)) 
opt1 <- optim(est,ndln ,NULL,  method ="L-BFGS-B",lower=c(-Inf,0.0), 
          upper=c(Inf,Inf),cont, hessian=T,xd=dd ) 
conv1 <- opt1$conv          # convergenc check from optim() 
mle <- opt1$par             # ML estimate of mu and sig 
vcm <- solve(opt1$hessian) 
semle <- sqrt(diag( vcm ))  # standard Errors of mu and sig 
cov <- vcm[1,2] #  covariace(mu,sig) needed for Tolerance bound 
#  est logE(dose)  and sig2 (sigmma^2) 
# 
 est[1] <- mle[1] + 0.5*mle[2]^2 
 est[2] <- mle[2]^2 
cont <- list(parscale=abs(est)) 
opt2 <- optim(est,ndln2 ,NULL,  method ="L-BFGS-B",lower=c(-Inf,0.0), 
          upper=c(Inf,Inf),cont, hessian=T,xd=dd ) 
#  next line adds ML estimate of logE  sig2 -2Log(L) and Conver 
#  If Conver is not equal to 0 CHECK RESULTs--- see optim() help 
mle <- c(mle,opt2$par, 2*opt2$value,opt2$conv+conv1 ) 
semle <- c(semle,sqrt(diag(solve(opt2$hessian))),vcm[1,2],m) 
names(mle) <- c("mu","sigma","logE","sig2","-2Log(L)","Conver") 
out<-rbind( mle,semle) 
out 
} 
 
ndln <- function(p=est,xd) 
{ 
#  - log liklihood for lognormal sample 
 mu <- p[1];sig <- p[2];x <- xd[,1] 
xx <- ifelse(xd[,2]==1,dlnorm(x,mu,sig,log=T) , plnorm(x,mu,sig,log.p=T)) 
  -sum(xx) 
} 
ndln2 <- function(p=est,xd) 
{ 
 mu<-p[1] - 0.5*p[2]; sig<-sqrt(p[2]);x<-xd[,1] 
xx<-ifelse(xd[,2]==1,dlnorm(x,mu,sig,log=T) , plnorm(x,mu,sig,log.p=T)) 
  -sum(xx) 
} 
 
###########################  extol ################################ 
extol <- function(n=50,p=0.95,gam=0.95)  
{ 
#  For random sample size n from normal distribution  
#  ybar is sample mean and SD is standard deviation    
#  calculate with confidence level gam that at least 
#    100p percent of population lies  below the   
#    tolerance limit =  ybar + k*SD 
# USAGE: extol(n,p,gam) 
# ARGUMENTS: n: sample size p: defined above 
#            gam:  confidence level for one-sided interval 
# VALUE: factor k for exact tolerance limit   
# DETAILS: R function uniroot is used to find quantile 
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#     of noncentral t distribution 
# REFERENCES:  
#      Johnson, N. L. and Welch, B. L. (1940), Applications  
#      of the Non-Central T distribution, Biometrika, 362-389 
#       see Table 1 in 
#      Odeh, R.E. and Owen, D.B.(1980) Table for Normal Tolerance Limits, 
#      Sampling Plans, and Screening,Marcel Deker, New York 
# NOTE: second argument to uniroot may not be optimal 
 
tx <- function(x,nn=n,th=p,ga=gam) 
{pt(x,nn-1,(-sqrt(nn)*qnorm(th))) + ga- 1} 
 
uout <- uniroot(tx,sqrt(n)*c( -(1/(1- max(p,gam) )),50) ) 
u.tmp <<- uout 
k<- -uout$root/sqrt(n)  
k 
} 
 
###########################  nptl ################################ 
nptl <- function(n=100,p=0.95,gamma=0.95) 
{ 
#  function nptl(n,p,gam)  given  n  p  and gamma 8Oct2002 
#     For a random sample of size n calculate largest value 
#      of m such that with  confidence level gamma 
#      100p percent of population lies  below the 
#      mth largest data value in the sample 
# USAGE: nptl(n,p,gam) 
# ARGUMENTS: n: sample size p: defined above 
#            gam:  confidence level for one-sided interva 
# VALUE: m  
# DETAILS: Requries base R function qbeata(p,par1,par2) 
# REFERENCES: 
#   Sommerville, P.N. (1958) Annals Math Stat pp 599-601 
k <- ceiling(n*p) 
pv <- qbeta(1-gamma,k,n+1-k) 
while( pv < p && k < n+1) 
{ 
k <- k + 1 
if( k == n + 1) next 
pv <-qbeta(1-gamma,k,n+1-k) 
} 
if( k <= n) m<- n+1-k else m <- NA 
m 
} 
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