Regression Analysis of Poisson-Distributed Data
EDWARD L. FROME, MICHAEL H. KUTNER, and JOHN J. BEAUCHAMP*

The principle of maximum likelihood is used to obtain estimates of
the parameters in a regression model when the experimental observa-
tions are assumed to follow the Poisson distribution. The maximum
likelihood estimates are shown to be equivalent to those obtained by
minimization of a quadratic form which reduces to a modified chi
square under the Poisson assumption. Computationaily, both of these
estimation procedures are equivalent to a properly weighted least
squares analysis. Approximate tests of the assumed Poisson variation
and ‘‘goodness of fit"” of the data to the model are proposed. Applica-
tions of the estimation procedure to linear and nonlinear regression
models are discussed, and numerical examples are presented.

1. INTRODUCTION
1.1 Regression Analysis
Consider the general regression model

E(y;) = f(X,0), ¢=1,---,N,

i=1 .. (1.1)

*y My

where X; = (zq, * -, Zim) i8 the 7th set of values of the
m independent variables, n; is the number of replication's
of the 7th experimental condition, 8 = (6, -+ -, 9,) is a

p—dlmensmnal vector of unknown parameters, a.nd {ysi},

i=1---,N,j=1, .-, n, is a particular realization of
the expenment The regression function, f(X, 8), relates
the expected value of the dependent variable to the
independent variables and the parameters, and, given
the experimental conditions and the data, we would like
to estimate the unknown parameters. The most widely
used methods of estimation have been developed using
either the maximum likelihood or the least squares
principle. The assumptions underlying these principles of
estimation and the properties of the estimators have been
given by Kendall and Stuart [14]

It is well known that maximum likelihood and least
squares estimates are identical when the y;;’s are inde-
pendent and normally distributed with E(y;;) = f(X,, 6)
and Var (y;;) = o% If f(X, 8) is linear in the unknown
parameters, then the estimates are obtained using linear
regression analysis. When f(X, ) is not linear in all of
the parameters, estimation is more difficult, and some
type of iterative procedure will usually be required.
An introductory account of nonlinear regression, and
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the extent to which standard results from linear estima-
tion are applicable, have been given by Draper and"
Smith [8, Ch. 10]. Beauchamp T17] has presented a
thorough discussion of generalized least squares estima-
tion, and the properties of the estimates obtained using
a weighted nonlinear regression procedure. The equiva-
lence of maximum likelihood and least squares was
demonstrated by Turner, Monroe, and Lucas [25] for a
wide class of nonlinear models. They assumed inde-
pendently normally distributed residuals with constant
variance, or variance that depends on the independent
variable in a known way.

Another situation in which maximum likelihood and
least squares estimates are found to be equivalent is in
the analysis of sensitivity and quantal response data,
such as probit analysis. Here, the observations are
assumed to be independent and to follow the binomial
distribution with expectation given by equation (1.1),
and it can be shown that maximum likelihood estimates
are computationally equivalent to those obtained in a
properly weighted least squares analysis (see [16, 177]).

1.2 Poisson Distribution

The Poisson distribution has.only recently been con-
sidered in the context of regression analysis—see [12,
Ch. 57]. Turner [24] established the equivalence of the
maximum likelihood and weighted least squares estimator
for simple linear regression through the origin, and
Gart [11] has considered hypothesis testing. Multiple
linear regression has been discussed by Jorgenson [137].
In what follows it will be assumed that the dependent
variables in a regression analysis are counts that follow
the Poisson distribution, and that the observations are
independent with expectation as defined by equation
(1.1). The regression modél may represent, for example,
the number of failures of a piece of equipment per unit
time, the number of purchases of a particular commodity
per family, or the number of bacteria per unit volume of
suspension. It is further assumed that some general form
of the model is known, that f(X, 0) is a differentiable
function of 8, that N values of the independent variables
are selected by the experimenter or specified by the
situation, and that N is sufficiently greater than p to
ensure estimability of the parameters.

In Section 2, the maximum likelihood principle will be
used to estimate the parameters in the regression model.
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It will then be demonstrated that a properly weighted
least squares analysis leads to the same iterative pro-
cedure that is obtained when the method of scoring is
used to find a root of the likelihood equations. Minimum
chi-square estimation will then be introduced, and we
will show that minimizing an appropriately defined
quadratic form results in an iterative method for obtain-
ing best asymptotically normal estimates. It will then be
demonstrated that, under certain conditions, the three
methods of estimation are equivalent—in the sense that
each results in the same iterative computational pro-
cedure. In Section 3, tests of the ‘“‘goodness of fit’’ of the
data to the model as well as the assumption of Poisson
variation will be proposed. In Section 4, computational
methods will be discussed, and examples of the applica-
tion of these methods using multiple linear regression and
nonlinear regression models will be presented.

2. E_STIMATION _
2.1 Maximum Likelihood (ML)

"The logarithm of the likelihood function of 8, given a
particular realization of the experiment described in
Section 1, is—neglecting a constant that does not involve
the parameters—

In L(8) = ¥: [y In (X, 0) — nif(X;, 0)], (2.1)

where! y;. = Y ;i;;. The ML equations are obtained by
differentiating (2.1) with respect to each of the param-
eters, i.e.,
G(0) = [91In L(8)/39,]

= [Z: pullye/f(X;, 0} — D) ],

r=1,---,p, (22)

where p;, = df(X;, 0)/36,. Since the ML equations will
generally be nonlinear with respect to the unknown
parameters, the method of scoring [19, p. 305] can be
used to develop an algorithm to find a root of (2.2). This
leads to the following system of equations:

- C(69% = G(87, (2.3)
where C(9°) is the information matrix with elements

Crs = Zl' Epi'pifni/f(xfl 0)]) Dy (24)

evaluated at 6 = 6 = (8, ---, 62 (a set of initial
values), and 8° = (6 — 6°). The system of equations in
(2.3) is solved for §°, and new values of the parameters
are obtained as 6! = 6° + §°. The procedure is repeated
until a stable solution is reached.

r,s=1,--

2.2 Least Squares (LS)

Consider the following weighted sum of squares—
which is to be minimized with respect to 6—

S(8) = Xiwlz: — f(X;0) ], (2.5)

1 In all of the equations that follow, the subscript ¢ will assume the values 1,
N, and the aubscnpt] which occurs only in expressions that involve yi;, will assume
the values 1, -
be indicated as a subscript on the summation operators, i.e., =i and Z;.
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where z; = ¥:./n;, and w;™}, ¢ = 1, - - -, N, is proportional
to Var (z:;)—oris a consistent estimate of Var (z;). f(X, 8)
will in general be nonlinear in the unknown parameters,
so we expand it about an initial estimate, 6°, in a Taylor
series through the linear terms. The resultmg approx1—
mation is then substituted into (2.5) to obtain

Tz — f(X;, 60 — PEF, (2.6)
where 8 = (89, , 89, and the vector P} is the sth
row of P(8°), the N X p matrix of partial derivatives
pir evaluated at 6 = 6°. The %s are the only unknowns
in (2.6), so we use the least squares principle to obtain

estimates of these quantities by solving the following
system of p linear equations:

P(0°)YWP(6°)8° = P(0°)W[Z — F(69)], (2.7)
where W = diag (w1, ---, ww), Z = (21, - -, 2n)’, and
F(6°) denotes F(8) = [f(X1,0), - - -, f(Xw, 0)] evaluated

at 8 = 6°. We then obtain a revised pa.ra.meter estimate,
0! = 0° + 8°, replace the zero superscripts in (2.7) with
ones, and solve for 8. This iterative process (Gauss-
Newton method) continues until some convergence
criteria are satisfied (see Section 4). Comparing (2.7)
with (2.3) we see that if on ‘each iteration we let
w; = ny/f(X;, 0%),1 =1, - - -, N (where 8* is the estimate
of 6 obtained on the preceding iteration), then the two
systems of linear equations are identical. Consequently,
the iterative procedure for obtaining weighted LS esti-
mates is computationally equivalent to using the method
of scoring to find a root of the likelihood equations (pro-
vided, of course, the same initial estimate is employed).

2.3 Minimum Chi Square (MCS)

We now consider a method for obtaining best asymp-
totically normal (BAN) estimates—see [9, 18, 28, 29].
Let Y1, Y3, ---, Y., be a sequence of N-dimensional
independent random vectors,? where Y; = (yu;, * -+, yYn;)’
represents the outcome of the jth replication of the
experimental conditions X;, 7 = 1, - - -, N (see Section 1).
The distribution of the Y’s depends on the parameter 6,
with expectation E(Y |8) = F(8), and variance

V(e) = E{[Y — F(0)][Y F()1}.

The quadratic form
n[Z. — F@TV(©®)[Z. — F (0)], (2.8)
where Z, = n (X, ¥s;, -+, 2iYni), 18 called a chi
square, and the value of & which minimizes it is called a
MCS estimate. If W(Z,) is a p X p positive-definite,
symmetric matrix depending on Z, only, then
n[Zn — FO)TW(Z.)[Z~ — F(0)],

is called ‘a modified chi square. Differentiating (2.9) with
respect to each of the parameters and equating the
results to zero yields

nP(8)' W (Z,)[Z. — F(8)] = 0,

(2.9)

(2.10)

, ni. As a notational convenience, only the index of summation will. . .

‘ 2 This corresponds to ni = nfors =1, -+, N.
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which is a linear form as defined in Ferguson’s Theorem
(see [28, Theorem 27). If W(Z,) converges in probability
to V(8)~! and certain regularity conditions are satisfied,
then a root, say 8, of (2.10) is BAN. To find 8 we expand
F(8) in a first-order Taylor series about an initial estimate
8¢, substitute the resulting approximation into (2.10), and
obtain

P(e)'W(Z,.)[Z;— F(e) — P(65°] = 0. (2.11)

It can be shown [9] that if 6° is consistent, then replacing
P(0) with P(6°) in (2.11) will result in a BAN estimate
whenever the root to (2.10) is BAN. This leads to

P(6°)'W (Z,)P(6°)%°
= P(eo)/W(Zn)[Zn - F(Oo)],

from which we obtain ! = 6° + §°, and the procedure is
_repeated until convergence is obtained. If the elements of
the Y’s are mutually independent, then V(8) will be
diagonal. If we take W (Z,) to be a diagonal matrix whose
elements are consistent estimates of the reciprocals of the
variances, then the iterative procedure just described is
identical to that described in Section 2.2, i.e., equations
(2.7) and (2.12) are the same. If we further assume that
the observations are Poisson, it follows that the iterative
procedures for finding ML, LS, and MCS estimates are
computationally equivalent when the method of scoring,
the Gauss-Newton method, and the modified MCS pro-
cedures are employed. We are not able to show that the
iterative procedure will converge, or that, if it converges,
the root of the lmear form is unique. The procedure
described will produce a BAN estimate if the initial
estimate, 6, is consistent—there is, however, no general
method for finding consistent initial estimates as far as
we know. Other iterative methods will also produce BAN
estimates, and although these estimates are “asymp-
totically equivalent,” there is no theory that indicates
“which method is “best” for small samples. We note that
the results discussed in Section 1 are easily obtained
using Section 2 results and the appropriate definition of
V(8) under the binomial or normal assumption.

3. COVARIANCE MATRIX AND CHI SQUARE

The large sample covariance matrix of maximum likeli-
hood estimators is the inverse of the information matrix,
C(6)*—see (2.4). If 8 is a stable solution of the likelihood
equations, then estimates of the elements of this matrix
may be obtained by replacing 6 by 8.

The expected number of counts for each value of X,
1 =1, » N, may be estimated by f; = f(X; 6)
Assummg the regression model and Poisson variation (see
Section 1.2), then the statistic

Q = i Xifi yi — fo?

will be distributed approximately as a chi square with
D, = ¥m; — p degrees of freedom (d.f.). Q, may be
partitioned into two independent approximately chi

(3.1)

(2.12)
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square statistics, Q. and Qq, as follows:

Q= Qu+ Qa=X:X; fit(yij — 2:)?
‘ + Tinfi Nz — ff)2,_ (3.2)

where the d.f. for @, and Q; are D, = 3 ;n; — N and
Dy = N — p, respectively. If the value of the statistic
Q. is found to be significantly large, then this may be
attributed to either heterogeneity of variance or “lack
of fit” of the regression model, or both. In this situation,
Q» may be compared with the chi-square distribution
with D, d.f. If @, is significantly large (indicating hetero- .
geneity of variance), then the ratio (Qs/Das)/(Qw/Dw)
may be compared with the F distribution (approximate
test). A significantly large value of this ratio indicates
the lack of fit of the model. If the regression model is not
rejected, then the presence of heterogeneity of variance
is taken into account by multiplying the elements of the
estimated covariance matrix by the factor Q./D..

Although the preceding results are only approximate,
they may provide some insight into the source of errors
in an experiment. In practice, it may be advisable to
perform a preliminary test for heterogeneity of variance
by calculating Fisher’s index of dispersion [12, Ch. 5]
for each experimental condition, i.e., for each value of
X compute Y ;27 (y:; — 2:)?, which is approximately a
chi square with (n; — 1) d.f, 7 =1, , N. If these
approximate chi squares indicate that the Poisson as-
sumption is reasonable, then the method of estimation
described in Section 2.1 can be used. If a significant
deviation from Poisson variability is apparent and cannot
be attributed to known causes, then the least squares
procedure of Section 2.2 can be used with fixed weights
(rather than iterative weights) defined by w; = n,—/s";,
where s is the sample variance. If the conditions given
in Section 2.3 are satisfied, then the welghted least
squares estimates will be BAN.

4. APPLICATIONS
4.1 Computations

Various approaches—based on gradient methods—to
the numerical problem encountered in nonlinear regres-
sion have been discussed by Smith and Shannon [227. A
gradient method is one which calculates (on each itera-
tion) a search vector, D* = (d¥, , 5, defined by

= A(WP)[Z — F(0)], 1)

where A is a p X p matrix, and the right side of (4.1) is
evaluated at 6% (the current estimate of 8). We then let
6%+ = ¢* 4+ D* and the foregoing procedure is re-
peated until some convergence criterion is satisfied. If
A = (P'WP), then D is the Gauss-Newton vector and,
if good starting values are available this approach has
desirable convergence properties. When good initial esti-
mates are not available, some other search procedure
(e.g., Marquardt’s [15]) may be useful. Marquardt’s
vector combines the best features of the steepest descent
and Gauss-Newton methods and avoids singularities that
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may occur when P'WP is ill-conditioned. Another ap-
proach to function optimization that uses a random
search technique has been developed by Bremermann
[4]. This method may be of value when there are a large
number of parameters and initial estimates are not
available. A method for generating (pseudo random)
normal deviates—which are required in Bremermann’s
program—has been discussed by Chen [5].

In the applications that follow, methods for finding
starting values are given, and the Gauss-Newton pro-
cedure is used (see Section 2.2). If a stable solution, 8, is
found, it will be & root of the likelihood equations when
- the observations are counts that follow the Poisson
distribution. The starting values, final estimates of the
parameters, number of iterations to convergence, and
the estimated covariance matrix are given for each
example. Convergence is defined to have occurred when
the relative change in each of the parameters is less than
10-5 The computations were carried out in single pre-
cision arithmetic, and the Gauss-Jordan method was
used for matrix inversion (see [27, Ch. 67).

4.2 Linear Regression

A special case of (1.1) occurs when the expected
number of counts can be represented as a linear com-
bination of the parameters and the independent variables.
The regression model is (8) = X0, where Xisan N X p
matrix with rows X,;. In this situation, the matrix of
partial derivatives is P = X, and we take

W = diag (n;/X.8), 2=1, ---,N.

Ezxample 1: Simple Linear Regression. The problem of
estimating the concentration of viruses or bacteria from
dilution counts has been discussed by Gart [11]. Here
we have m = p = 1, and E(y;) = z.6, where z; is the
tth dilution factor for which n; parallel counts are made,
and y; is the observed colony count for the jth plate of
the 7th dilution. The parameter § represents the mean
particle density per unit volume of suspension. The ML

estimator is easily obtained from (2.2) as
=722, Yii/ 2o Mai,

with variance Var (§) = 6/3; nz;. Roberts and Coote
[20] have discussed the interpretation of the chi-square
statistics (see Section 3), and have shown how a further
partitioning can be achieved. This is the only situation
considered that results in a ‘closed form expression for
the ML estimator. Therefore, numerical examples will be
presented to illustrate further areas of application of the
methods proposed in Sections 2 and 3.

Ezxample 2: Multiple Linear Regression. Consider the
linear model with m = p = 2, so that X; = (24, 2:)’,
where z.1 and z,» are the times spent in regimes one and
two during the sth cycle of operation of a piece of elec-
tronic equipment, and y; is the number of failures that
occur during the sth cycle. Using the data from Jorgenson
([13, Table 1]), and the initial estimates 62 = .1725 and
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63 = .0657, we obtain §; = .1666 and 8, = .0904 after
five iterations. The estimated elements of the parameter
covariance matrix are var (§;) =.001216, var (6;) =.00397,
cov (1, 6;)=—.001956; and S(8)=8.897. The multiple
linear regression model of the Poisson process has also
been used by Weber [26] in the study of accident rate
potential.

4.3 Nonlinear Regression

In ‘Section 4.2, we saw that the matrix of partial
derivatives of f(X, 8) did not depend on 6. In nonlinear
models the partial derivatives will involve the param-
eters as well as the independent variables, and conse-
quently the matrix P is reevaluated after each iteration.
Other than this the computations are identical to those
used in the multiple linear regression case. To clarify the
difference, and to demonstrate the general procedure that
is followed for nonlinear models, examples from two
different areas of application are now considered.

Ezample 3: Simple Exponeniial Regression. In this
example the independent variable X; = z; is time
(m = 1), and the counts describe the decay of the
neutron-density in a medium size assembly of beryllium
with f(X,, 6) = 61exp (—6x,), 2 =1, ---, N. The data
used here is taken from Cornell ([7, p. 107]), and we use
as preliminary estimates of the parameters the values
obtained by Cornell using the method of partial totals:
6] = 100043 and 63 = .2539. The matrix of partial deriva-
tives in this case is calculated using p: = exp (—6.z:)
and pe = — z6, exp (—6x;),7 = 1, - - -, N. The iterative
procedure converged after two iterations, indicating that
the partial total estimates were excellent first approxi-
mations. The final values for the parameters are
6, = 100099, 8, = .2537, and the estimated covariance
matrix is

iyt — [42882 06169 :I

.06169 .18827 X 10—

and S(8) = 13.208.

The application of maximum likelihood estimation to -
the analysis of the multi-exponential function, which is
frequently used in tracer kinetic studies, has been dis-
cussed by Sandor ef al. [217]. In the more general case of
simultaneous compartmental analysis, the partial totals
method of Beauchamp and Cornell [2, 3] may be used
to obtain consistent initial estimates of the parameters.

In the preceding examples, the number of observations
for a given value of the independent variable was one
(ie., n; =1, ¢=1, ---, N). Consequently, the chi
square statistic in Section 8 [equation (3.2)] is given by
Q. = 8(8), with d.f. = N — p. In the next example, we
will have n; > 1,7 = 1, - - -, N, so that both the assumed
distribution and the model may be tested independently
using the procedure presented in Section 3.

Ezxample 4: Multi-target Survival Curve. In this example,
the observed response is the number of colonies produced
in the spleen of recipient animals—by bone marrow cells
from irradiated donor animals. A quantitative model of
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the effect of radiation damage on stem cell survival is
given by

E(y,;) = (X, 8) = 1za[l — {1 — exp (—B8az:s)} %],

where z,; is the concentration of injected cells, z, is the
radiation dose, and 61, 8:, and 6; are parameters of bio-
logical interest. This is known as the multi-target survival
curve and is a special case of a more general model derived
from the ‘‘target-hit” statistical theory of radiation
damage. The application of the maximum likelihood
estimation procedure and interpretation of the results
have been presented in detail by Frome and Beauchamp
[10]. Further application and discussion of the chi-square
partitioning have been presented by Comas [6]. Using
the data from Till and McCulloch [23] (see the table)
and graphically obtained starting values (&0 = 8.0,
63 = .01, and 6§ = 3.1), the estimates of the parameters
f: = 7.64, 62 = .00934, and 6; = 2.892, were obtained
after six iterations. The estimated covariance matrix is

8206 —.1239 X 102 — 5017
C() = 1590 X 10— 2544 X 10-%
..5589

The chi-square values are calculated using equation (38.2)
and are @, = 24.44 with 49 d.f. and Q; = 7.595 with
4 d.f.

SURVIVAL CURVE DATA

Concentra- Radiation Number of colonies
tiona (rads) counted
i - n; —_— z; I(X,-,o')
Xj1 Xj2 Yij
1 1.25 0 6 11101111 9 8 10.000 9.546
1.75 96 7 12 8 9 9 8 ¢ 9.429 10.429
. 11
3 -3.00 192 4 1110 11 14 11.500 9.376
4 7.20 288 -] 8 8 912 810 9.111 10.114
. 1310 8
5 24.00 432 11 121214 10 7 10 9.546 9.216
811 8 7 6
6 75.00 576 15 7 5 9 4 910 8.200 7.596
78 9 712 7
1 71
7 120.00 872 4 2 3 3 4 3.000 4.974

8Unit concentration of colony forming units = 104 bone marrow cells.
Source: Data from [23].

In presenting the applications in this section, we have
attempted to demonstrate—with simple numerical ex-
amples—general areas of application of the method of
estimation presented in Section 2. Since it has been our
intention to demonstrate the general nature of the com-
putational procedure and its relation to well-known
statistical methods, we have chosen examples from
several different disciplines. We have not attempted to
discuss substantive aspects of the problems presented,
such as selecting the regression model, experimental
design (choosing the X/s), or interpretation of the
results. More detailed discussion of these problems
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and additional applications can be found in the cited
references.

[Received March 1972. Revised February 1973.]

REFERENCES

[1] Beauchamp, John J., Simultaneous Nonlinear Estimation, Ph.D.
dissertation, Florida State University, 1966.

-and Cornell, R.G., “Simultaneous Estimation by Partial

Totals for Compartmental Models,” Journal of the American

Statistical Association, 63 (June 1968), 573-83.

and Cornell, R.G., “Spearman Simultaneous Estimation
for a Compartmental Model,” Technometrics, 11 (August 1969),
551-60.

[4] Bremermann, H., “A Method of Unconstrained Global Op-
timization,” Mathematical Biosciences, 9 (December 1970),
1-15.

[5] Chen, E.H., “Random Normal Number Generator for 32-bit
Word Computers,”” The Journal of the American Statistical
Association, 66 (June 1971), 400-03. .

(6] Comas, F., “The Radiosensitivity of Rat Marrow Cells,”
International Journal of Radiation Biology, 17, No. 6 (1970),
549-57.

[7] Cornell, R.G., “A Method for Fitting Linear Combinations of
Exponentials,” Biometrics, 18 (March 1962), 104-13.

[8] Draper, N.R. and Smith, H., Applied Regression Analysss,
New York: John Wiley & Sons, Inc., 1966.

[9] Ferguson, T.S., “A Method of Generating Best Asymptotically

- Normal Estimates with Application to the Estimation of Bac~
terial Densities,”” The Annals of Mathematical Statistics, 29
(December 1968), 1046-58.

[10] Frome, E.L. and Beauchamp, J.J., “Maximum Likelihood
Estimation of Survival Curve Parameters,” Biometrics, 24
(September 1968), 595-605.

[11] Gart, J.J., “The Analysis of Poisson Regression with an Ap-
plication in Virology,” Biomeirika, 51 (December 1964),
517-21.

f12] Haight, F.A., Handbook of the Poisson Distribution, New York:
John Wiley & Sons, Inc., 1967.

[13] Jorgenson, D.W., “Multiple Regression Analysis of a Poisson
Process,” Journal of the American Statistical Association, 56
(June 1961), 235-45.

[14] Kendall, M.G. and Stuart, A., The Advanced Theory of Statis-
tics, Vol. 2, New York: Hafner Publishing Company, 1946.

[15] Marquardt, D.W., “An Algorithm for Least Squares Estima-
tion of Nonlinear Parameters,” Journal of Society of Applied
Mathematics, 11 (June 1963), 431-41.

[16] Moore, R.H. and Zeigler, R.K., “The Use of Nonlinear Regres-
sion Methods for Analyzing Sensitivity and Quantal Response
Data,” Biometrics, 23 (September 1967), 563-67.

[17] Nelder, J.A., “Weighted Regression, Quantal Response Data,
and Inverse Polynomials,”” Biometrics, 13 (February 1968),
979-85.

(18] Neyman, J., “Contributions to the Theory of the x* Test,”
Berkeley Sympostum on Mathematical Statistics and Probability,
Berkeley : University of California Press, 1949.

(19] Rao, C.R., Linear Statistical Inference and Its Applications,
New York: John Wiley & Sons, Inc., 1965.

[20] Roberts, E.A. and Coote, G.C., “The Estimation of Concentra-
tion of Viruses and Bacteria from Dilution Counts,” Biometrics,
21 (December 1965), 600-15.

[21] Sandor, T., Conroy, M.F. and Hollenberg, N.K., “The Applica-
tion of the Method of Maximum Likelihood to the Analysis of
Tracer Kinetic Data,”” Mathematical Biosciences, 9 (December
1970), 149-59. -

[22] Smith, F.B. and Shannon, D.F., “An. Improved Marquardt
Procedure for Nonlinear Regression,” Technometrics. 13 Feb-
ruary 1971), 63-74.

2]

(3]



940

[23] Till, J.E. and McCulloch, E.A., “A Direct Measurement of
Radiation Sensitivity of Normal Mouse Bone Marrow Cells,”
Radiation Research, 14 (February 1961), 213-22. ‘

[24] Turner, M.E., “Straight Line Regression Through the Origin,”
Biometrics, 16 (September 1960), 483-85.

[25] . Monroe, R.J. and Lucas, H.L., “Generalized Asymp-
totic Regression and Non-linear Path Analysis,” Biometrics,
17 (March 1961), 120—43.

[26] Weber, D.C., “Accident Rate Potential: An Application of

‘ .Journul of the American Statistical Association, December 1973

Multiple Regression Analysis of a Poisson Process,” Journal of

the American Statistical Association, 66 (June 1971), 431-41.
[27] Weeg, G.P. and Reed, G.D., Iniroduction to Numerical Analysts,

Waltham, Massachusetts : Blaisdell Publishing Company, 1966.
[28] Wijsman, R.A., “On the Theory of BAN Estimates,” The

Annals of Mathematical Statistics, 30 (March 1959), 185-91.
“Correction on ‘On the Theory of BAN Estimates,’”’
The Annals of Mathematical Statistics, 30 (December 1959),
1268-70.

[29]



